	http://elec3004.com
Frequency Response	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 9 elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u> © 2019 School of Information Technology and Electrical Engineering at The University of Queensland	March 27, 2019

ture	Sc	hedu	le:	
	Week	Date	Lecture Title	
	1	27-Feb	Introduction	
	1	1-Mar	Systems Overview	
	2	6-Mar	Systems as Maps & Signals as Vectors	
_	2	8-Mar	Systems: Linear Differential Systems	
	2	13-Mar	Sampling Theory & Data Acquisition	
_	,	15-Mar	Aliasing & Antialiasing	
	4	20-Mar	Discrete Time Analysis & Z-Transform	
	7	22-Mar	Second Order LTID (& Convolution Review)	
	5	27-Mar	Frequency Response	
	5	29-Mar	Filter Analysis	
	6	3-Apr	Digital Filters (IIR) & Filter Analysis	
	0	5-Apr	PS 1: Q & A	
	-	10-Apr	Digital Filter (FIR) & Digital Windows	
	7	12-Apr	FFT	
	8	17-Apr	Active Filters & Estimation & Holiday	
		19-Apr		
	[24-Apr	Holiday	
		26-Apr		
	0	1-May	Introduction to Feedback Control	
9		3-May	Servoregulation/PID	
	10	8-May	PID & State-Space	
_	10	10-May	State-Space Control	
	11	15-May	Digital Control Design	
	11	17-May	Stability	
	12	22-May	State Space Control System Design	
	12	24-May	Shaping the Dynamic Response	
	12	29-May	System Identification & Information Theory	
	13	31-May	Summary and Course Review	

Discrete-Time Systems & Discrete Convolution [2]									
Will consider <u>causal</u> systems									
iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0									
Impulse response									
input,0,0, <mark>1</mark> ,0,0,0,> output,0,0, <mark>h[0]</mark> ,h[1],h[2],h[3],									
General input u[0],u[1],u[2],u[3] (cfr. linearity & shift-invariance!)									
y[0] $h[0]$ 0 0 0									
$ \begin{vmatrix} y[1] \\ h[1] \\ h[0] \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$									
y[2] $h[2]$ $h[1]$ $h[0]$ 0 $u[1]$									
$ y[3] ^{=} 0 h[2] h[1] h[0] u[2] $									
y[4] = 0 0 $h[2]$ $h[1] = u[3]$ this is called	a								
v[5] 0 0 0 $h[2]$ Toeplitz' ma	trix								
ELEC 3004: Systems 27 March 2019 27									

Filter De	sign & z-Transform	
Filter Type	Mapping	Design Parameters
Low-pass	$z^{-1} \to \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$	$\alpha = \frac{\sin[(\omega_c - \omega'_c)/2]}{\sin[(\omega_c + \omega'_c)/2]}$ $\omega' = \text{desired cutoff frequency}$
High-pass	$z^{-1} \rightarrow -\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$	$\alpha = -\frac{\cos[(\omega_c + \omega'_c)/2]}{\cos[(\omega_c - \omega'_c)/2]}$ $\omega'_c = \text{desired cutoff frequency}$
Bandpass	$z^{-1} \rightarrow -\frac{z^{-2} - [2\alpha\beta/(\beta+1)]z^{-1} + [(\beta-1)/(\beta+1)]}{[(\beta-1)/(\beta+1)]z^{-2} - [2\alpha\beta/(\beta+1)]z^{-1} + 1}$	$\alpha = \frac{\cos[(\omega_{c2} + \omega_{c1})/2]}{\cos[(\omega_{c2} - \omega_{c1})/2]}$ $\beta = \cot[(\omega_{c2} - \omega_{c1})/2]\tan(\omega_{c}/2)$
Bandstop	$z^{-1} \rightarrow \frac{z^{-2} - [2\alpha/(\beta+1)]z^{-1} + [(1-\beta)/(1+\beta)]}{[(1-\beta)/(1+\beta)]z^{-2} - [2\alpha/(\beta+1)]z^{-1} + 1}$	$\omega_{c1} = \text{desired lower cutoff frequency}$ $\omega_{c2} = \text{desired upper cutoff frequency}$ $\alpha = \frac{\cos[(\omega_{c1} + \omega_{c2})/2]}{\cos[(\omega_{c1} - \omega_{c2})/2]}$
		$\beta = \tan[(\omega_{c2} - \omega_{c1})/2] \tan(\omega_c/2)$ $\omega_{c1} = \text{desired lower cutoff frequency}$ $\omega_{c2} = \text{desired upper cutoff frequency}$
ELEC 3004: Systems		27 March 20

Butterworth Filters

- Butterworth: Smooth in the pass-band
- The amplitude response $|H(j\omega)|$ of an nth order Butterworth low pass filter is given by:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

• The normalized case ($\omega_c=1$)

Recall that: $|H(j\omega)|^2 = H(j\omega) H(-j\omega)$

ELEC 3004: Systems

Chebyshev Filters

• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the sameorder Butterworth filter, but this is achieved at the expense of inferior passband behavior (rippling)

→ For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

• The amplitude response of a normalized Chebvshev lowpass filter is:

$$|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_n^2(\omega)}}$$

Where $Cn(\omega)$, the nth-order Chebyshev polynomial, is given by:

Chebyshev Pole Zero Diagram • Whereas Butterworth poles lie on a semi-circle, The poles of an nth-order normalized Chebyshev filter lie on a semiellipse of the major and minor semiaxes: $a = \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right) \& b = \cosh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right)$ And the poles are at the locations: $H(s) = \frac{1}{(s-s_1)(s-s_2)\dots(s-s_n)}$ $s_k = -\sin\left[\frac{(2k-1)\pi}{2n}\right]\sinh x + j\cos\left[\frac{(2k-1)\pi}{2n}\right]\cosh x, \ k = 1,\dots,n$

	Chebyshev Values / Table						
		$\mathcal{H}(s)$ =	$=rac{K_n}{C'_n(s)}=$	$\overline{s^n + a_{n-1}}$	$\frac{K_n}{s^{n-1}+\cdots+}$	$-a_1s + a_0$	
			$K_n = \begin{cases} a_0 \\ \hline \end{cases}$	$\frac{a_0}{1+\epsilon^2} = \frac{a_0}{10^{\hat{r}/2}}$	n odd $\overline{0}$ $n \text{ even}$	L	
ſ	n	a ₀	a_1	a_2	<i>a</i> ₃		1 dla simala
	2	1.9052207 1.1025103	1.0977343				$(\hat{r} = 1)$
	3	0.4913067	1.2384092	0.9883412			(
	4	0.2756276	0.7426194	1.4539248	0.9528114		
	J E	LEC 3004: Systems					27 March 2019 54

Other Filter Types: **Chebyshev Type II** = Inverse Chebyshev Filters

- Chebyshev filters passband has ripples and the stopband is smooth.
- Instead: this has passband have smooth response and ripples in the stopband.

 \rightarrow Exhibits maximally flat passband response and equi-ripple stopband

→ Cheby2 in MATLAB

 $|\mathcal{H}(\omega)|^2 = 1 - |\mathcal{H}_C(1/\omega)|^2 = \frac{\epsilon^2 C_n^2(1/\omega)}{1 + \epsilon^2 C_n^2(1/\omega)}$ Where: H_e is the Chebyshev filter system from before

- Passband behavior, especially for small ω , is **better** than Chebyshev
- **Smallest transition band** of the 3 filters (Butter, Cheby, Cheby2)
- Less time-delay (or phase loss) than that of the Chebyshev
- Both needs the **same order** *n* to meet a set of specifications. ٠
- **\$\$\$** (or number of elements): Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order])

ELEC 3004: Systems

Band Loose Tight Tight Tight	Command butter cheby cheby2 ellip
Loose Tight Tight Tight Tightest	butter cheby cheby2 ellip
Tight Tight Tightest	cheby cheby2 ellip
Tight Tightest	cheby2 ellip
Tightest	ellip

How to Beat the Noise?

Idea 2: Modulation

\mathcal{Z} Transform (**Extra** Review³! – Another Way to L $^{\circ}$ $^{\circ}$ k at it)

ELEC 3004: Systems

27 March 2019 64

<text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

<section-header><section-header><text><text><equation-block><section-header><section-header><text><text><equation-block><text>

The z-Transform Effect of delay: $\mathcal{Z}\{e(kT - T)\} = z^{-1}E(z) \text{ where } E(z) = \mathcal{Z}\{e(kT)\}$ **Example** – z-transform of a delayed sequence Take a finite length sequence $e_0, e_1, e_2, e_3, e_4, \ldots = 1.5, 1.6, 1.7, 0, \ldots$ introduce a delay of one sampling interval: $f_0, f_1, f_2, f_3, f_4, \ldots = 0, 1.5, 1.6, 1.7, 0, \ldots$ take z-transforms: $E(z) = \sum_{k=0}^{\infty} e_k z^{-k} = 1.5 + 1.6z^{-1} + 1.7z^{-2}$ $F(z) = \sum_{k=0}^{\infty} f_k z^{-k} = 1.5z^{-1} + 1.6z^{-2} + 1.7z^{-3}$ $= z^{-1}E(z)$

The z-Transform Example – z-transform of a delayed exponential $Delay x(t) = Ce^{-at}U(t) \text{ by a time } T:$ $y(t) = x(t-T) \implies y(t) = Ce^{-a(t-T)}U(t-T)$ sample y(t) with sample interval T: $y_k = \begin{cases} 0 & k = 0 \\ Ce^{-a(k-1)T} & k = 1, 2, ... \end{cases}$ z-transform: $Y(z) = \sum_{k=0}^{\infty} y_k z^{-k} = \sum_{k=1}^{\infty} Ce^{-a(k-1)T} z^{-k}$ $= Cz^{-1} \sum_{j=0}^{\infty} (e^{-aT} z^{-1})^j = \frac{C}{z - e^{-aT}}$ Comparing X(z) and Y(z): $X(z) = \frac{Cz}{z - e^{-aT}} \implies Y(z) = z^{-1}X(z)$

the z-transform of vo	up ta	inctions	r 1001s (
t the z-transform of ye			
Table of Z-Transform F	Pairs		
$x[n]=\mathcal{Z}^{-1}\left\{X(z)\right\}=\tfrac{1}{2\pi j}\oint X(z)z^{n-1}dz$	$\stackrel{Z}{\longleftrightarrow}$	$X(z) = \mathcal{Z} \left\{ x[n] \right\} = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$	ROC
x[n] x[-n] $x^*[n]$ $x^*[-n]$	$\begin{array}{c} \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \end{array}$	X(z) $X(\frac{1}{z})$ $X^*(z^*)$ $X^*(\frac{1}{z^*})$	R_{π} $\frac{1}{R_{\pi}}$ R_{π} $\frac{1}{R_{\pi}}$
$\Re e\{x[n]\}$ $\Im m\{x[n]\}$	\xrightarrow{Z}	$\frac{1}{2}[X(z) + X^*(z^*)]$ $\frac{1}{22}[X(z) - X^*(z^*)]$	R_x R_x
time shifting $x[n-n_0]$ $a^n x[n]$ downsampling by N $x[Nn]$ $N \in \mathbb{N}_0$	$\begin{array}{c} \overset{Z}{\underset{Z}{\longrightarrow}}\\ \overset{Z}{\underset{Z}{\longrightarrow}}\end{array}$	$ \begin{array}{l} z^{-n_0}X(z) \\ X\left(\frac{z}{a}\right) \\ \frac{1}{N}\sum_{k=0}^{N-1}X\left(W_N^kz^{\frac{1}{N}}\right) W_N=e^{-\frac{z^{2\omega}}{N}} \end{array} $	R_x $ a R_x$ R_x
$ \begin{array}{c} & ax_1[n] + bx_2[n] \\ & x_1[n]x_2[n] \\ & x_1[n] * x_2[n] \end{array} $	$\begin{array}{c} \stackrel{Z}{\longleftrightarrow} \\ \stackrel{Z}{\longleftrightarrow} \\ \stackrel{Z}{\longleftrightarrow} \end{array}$	$aX_1(z) + bX_2(z)$ $\frac{1}{2\pi\beta} \oint X_1(u)X_2\left(\frac{z}{u}\right) u^{-1}du$ $X_1(z)X_2(t)$	$egin{aligned} R_x \cap R_y \ R_x \cap R_y \ R_x \cap R_y \end{aligned}$
$\delta[n]$ $\delta[n - n_0]$	$\stackrel{Z}{\longleftrightarrow}$	$\frac{1}{z^{-n_0}}$	$\forall z$ $\forall z$
u[n] -u[-n-1] nu[n]	\xrightarrow{z} \xrightarrow{z} \xrightarrow{z}	$\frac{z}{z-1}$ $\frac{z}{z-1}$ $\frac{z}{z-1}$	z > 1 z < 1 z > 1

Г

∴ Eigenfunctions of D	Discrete-Tin	ne LTI System	IS
In Section 3.6 we showed that linear combination of basis fur	t if the input to an LT netions $\phi_k[n]$, that is,	ΓI system is written as a	
x	$[n] = \sum_{k} a_k \phi_k[n],$	(6.1.1)	
then the output of the system	can be similarly expre	essed as	
y	$[n] = \sum_{k} a_k \psi_k[n],$	(6.1.2)	
where the $\psi_k[n]$ are output ba			
$\psi_k[$	$n] = \phi_k[n] * h[n].$	(6.1.3)	
This is, in fact, simply a gene the special case where the inpu- have the same form, that is,			
	$\psi_k[n] = b_k \phi_k[n]$	(6.1.4)	
for constants b_k , the function discrete-time LTI system with tions are then basis functions	ons $\phi_k[n]$ are called corresponding <i>eigenve</i> for both the input x	l eigenfunctions of the alues b_k . The eigenfunc- [n] and the output $y[n]$	
because y	$[n] = \sum_{k} c_k \phi_k[n],$	(6.1.5)	
for constants $c_k = a_k b_k$,		Source: Jac	kson, Chap. 6
ELEC 3004: Systems			27 March 2019 80

Eigenfunctions of Discrete-Time LTI Systems A Section Sect

In analogy with the continuous-time case, the eigenfunctions of discrete-time LTI systems are the complex exponentials

$$\phi_k[n] = z_k^n$$

for arbitrary complex constants z_k . Alternatively, to avoid the implication that the eigenfunctions form a finite or countably infinite set, we will write them as simply

$$\phi[n] = z^n, \tag{6.1.7}$$

(6.1.6)

where z is a complex variable. To see that complex exponentials are indeed eigenfunctions of any LTI system, we utilize the convolution sum in Eq. (3.6.10), with $x[n] = \phi[n] = z^n$, to write the corresponding output $y[n] = \psi[n]$ as

$$\psi[n] = \sum_{m=-\infty}^{\infty} h[m]\phi[n - m]$$

$$= \sum_{m=-\infty}^{\infty} h[m]z^{n-m}$$

$$= z^n \sum_{m=-\infty}^{\infty} h[m]z^{-m}$$

$$= H(z)z^n.$$
Source: Jackson, Chap. 6

🖳 ELEC 3004: System

Linear Difference Equations

