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Lecture Schedule: 
Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 
6-Mar Systems as Maps & Signals as Vectors 

8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 27-Mar Frequency Response 
29-Mar Filter Analysis 

6 
3-Apr Digital Filters (IIR) & Filter Analysis 

5-Apr PS 1: Q & A 

7 
10-Apr Digital Filter (FIR) & Digital Windows 

12-Apr FFT 

8 17-Apr Active Filters & Estimation & Holiday 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation/PID 

10 
8-May PID & State-Space 

10-May State-Space Control 

11 
15-May Digital Control Design 

17-May Stability 

12 
22-May State Space Control System Design 

24-May Shaping the Dynamic Response 

13 
29-May System Identification & Information Theory 

31-May Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Review mostly  

• Chapter 9 (Time-Domain Analysis 

of Discrete-Time Systems) 

– § 9.4 System Response to External Input 

– § 9.6 System Stability 

 

• Chapter 10 (Discrete-Time System Analysis 

Using the z-Transform) 

– § 10.3 Properties of DTFT 

– § 10.5 Discrete-Time Linear System analysis by 

DTFT 

– § 10.7 Generalization of DTFT  

to the 𝒵 –Transform 

 

 

 

 

Today 
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Announcements 
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Thinking about 
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• Without pre-filtering: 

 

 

 

 

 

• With Filtering 

 

Remember: Effect of Noise… 
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Remember: Derivatives magnify noise! 
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• Filtering (Narrow-banding):  

Only look at particular portion of frequency space 

• Multiple measurements … 

• Other (modulation, etc.) … 

 

 

 

 

 

 

 

 

By adding shared information (structure) between the 
sender and receiver (the noise doesn’t know your structure) 

How to beat the noise 

phase 

frequency 

signal 

noise 
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1. Over time:  multiple readings of a quantity 
over time 

• “stationary” or “ergodic” system 
• Sometimes called “integrating” 

 

2. Over space: single measurement (summed) 
from multiple sensors each distributed in 
space 

 
3. Same Measurand: multiple measurements 

take of the same observable quantity by 
multiple, related instruments  
 
e.g., measure position & velocity 
simultaneously 
 

 Basic “sensor fusion” 
 

 
. 

 

Treating Uncertainty with Multiple Measurements 
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• How often the signal repeats  

• Can be analyzed through Fourier Transform 

 

 

 

 

 

 

• Examples: 

Frequency 

signal(f) 

frequency 

signal (t) 

time 
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Convolution* 
 

(The * tool that let’s us ℱ and ℱ−1 and  more!)  
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Convolution Definition 

 



dtfftf )()()( 21

The convolution of two functions f1(t) and 

f2(t) is defined as: 

)(*)( 21 tftf

Source: URI ELE436 
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Properties: 

• Commutative:  

• Distributive: 

• Associative: 

• Shift: 

if f1(t)*f2(t)=c(t), then  f1(t-T)*f2(t)= f1(t)*f2(t-T)=c(t-T) 

• Identity (Convolution with an Impulse): 
 

• Total Width: 

 

Convolution Properties  

Based on  Lathi, SPLS, Sec 2.4-1 
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• Convolution systems are linear: 

 

 

• Convolution systems are causal: the output y(t) at time t 

depends only on past inputs 

 

• Convolution systems are time-invariant 

(if we shift the signal, the output similarly shifts) 

 

  

 

 

 

 

 

 

 

Convolution Properties [II] 
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• Composition of convolution systems corresponds to: 
– multiplication of transfer functions 

– convolution of impulse responses 

 

 

 

 

 

 

• Thus: 
– We can manipulate block diagrams with transfer functions as if 

they were simple gains 

– convolution systems commute with each other 

 

 

Convolution Properties [III] 
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• The two systems are identical! 

 

Properties of Convolution: Distributive Property 

h1(t) h2(t) h3(t) 

h2(t) h3(t) h1(t) 

Source: URI ELE436 
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Properties of Convolution: Commutative Property 

Source: URI ELE436 
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Impulse Response 

LTI System 

h(t) 

f(t) f(t)*h(t) 

Properties of Convolution: LTI System Response 

)(*)()(*)( 1221 tftftftf 

Impulse Response 

LTI System 

f(t) 

h(t) h(t)*f(t) 

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

 



dtfttf )()()(*)(

 



dtf )()(

)(tf

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

)()(*)( TtfTttf 

 



dTtfTttf )()()(*)(

 



dTtf )()(

)( Ttf 

Source: URI ELE436 
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Properties of Convolution 

f(t) f(t T) 

)()(*)( TtfTttf 

 

 
0 T 

(tT) 

t 
f (t) 

0 

t 
f (t) 

0 T 

Source: URI ELE436 
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Source: URI ELE436 

Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

dtedtfftftfF tj






  



  )()()](*)([ 2121






   









 ddtetff tj)()( 21

 




 dejFf j)()( 21

 




 defjF j)()( 12
)()( 21  jFjF

Time Domain Frequency Domain 
convolution multiplication 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal Low-Pass Filter 

0 

Fi(j) 

 
0 

Fo(j) 

 

 

 
0 

H(j) 

p p 

1 

Source: URI ELE436 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal High-Pass Filter 

0 

Fi(j) 

 

 

 
0 

H(j) 

p p 

1 

0 

Fo(j) 

 

Source: URI ELE436 
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Consider this for the discrete case: 
 
1. Rename the independent variable as m. You now have x[m] and h[m]. 

Flip h[m] over the origin. This is h[-m] 
2. Shift h[-m] as far left as possible to a point “n”, where the two signals 

barely touch. This is h[n-m] 
3. Multiply the two signals and sum over all values of m. This is the 

convolution sum for the specific “n” picked above. 
4. Shift / move h[-m] to the right by one sample, and obtain a new h[n-m]. 

Multiply and sum over all m. 
5. 5. Repeat 2~4 until h[n-m] no longer overlaps with x[m], i.e., shifted out 

of the x[m] zone.  
 

 The “n” dependency of y[n] deserves some care:  
For each value of “n” the convolution sum must be computed separately over 
all values of a dummy variable “m”.  

Discrete Convolution 

27 March 2019 ELEC 3004: Systems 25 

Will consider linear time-invariant (LTI) systems 

 

 

 

     Linear :  

       input u1[k] -> output y1[k] 

      input u2[k] -> output y2[k] 

      hence a.u1[k]+b.u2[k]-> a.y1[k]+b.y2[k] 

 

     Time-invariant (shift-invariant) 

       input u[k] -> output y[k] 

      hence input u[k-T] -> output y[k-T] 

 

Discrete-Time Systems & Discrete Convolution [1] 

u[k] y[k] 
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this is called a  

`Toeplitz’ matrix 

Discrete-Time Systems & Discrete Convolution [2] 

K=0 

Will consider causal systems  

     iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0 

Impulse response  

     input …,0,0, 1 ,0,0,0,...-> output …,0,0, h[0] ,h[1],h[2],h[3],... 

General input u[0],u[1],u[2],u[3]       (cfr. linearity & shift-invariance!) 

K=0 
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Discrete-Time Systems & Discrete Convolution [3] 
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u[0],u[1],u[2],u[3] y[0],y[1],... 

h[0],h[1],h[2],0,0,... 

y[k]= h[k - k ]
k

å .u[k ]=
D

h[k]*u[k] = `convolution sum‘ 
(=more convenient than Toeplitz matrix notation 

when considering (infinitely) long input and impulse 
response sequences 
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Discrete-Time Systems & Discrete Convolution [4] 
Z-Transform of system h[k] and signals u[k],y[k]  
Definition:  

     
Input/output relation:  
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Matrix Formulation of Convolution 
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 For c(τ)=              : 

1. Keep the function f (τ) fixed  

2. Flip (invert) the function g(τ) about the vertical axis (τ=0) 

 =  this is g(-τ) 

3. Shift this frame (g(-τ)) along τ (horizontal axis) by t0.  

  = this is g(t0 -τ)  

 

 For c(t0): 

4.  c(t0) = the area under the product of f (τ) and g(t0 -τ)  

 

5. Repeat this procedure, shifting the frame by different values 

(positive and negative) to obtain c(t) for all values of t. 

Graphical Understanding of Convolution 
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Graphical Understanding of Convolution (Ex) 
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Another View 

x(n) = 1 2 3 4 5  

h(n) = 3 2 1 

0 0 1 2 3 4 5 

1 2 3 0 0 0 0 

0 0 1 2 3 4 5 

0 1 2 3 0 0 0 

0 0 1 2 3 4 5 

0 0 1 2 3 0 0 

x(k) 

h(n,k) 

3 2 6 1 4 9 y(n,k) 

e.g. convolution 

y(n) 3 8 14 

Sum over all k 

Notice the  

gain 

h(n-k) 
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• Convolution system with input u (u(t) = 0, t < 0) and output y: 

 

 

• abbreviated: 

 

 

• in the frequency domain: 

 

Convolution & Systems 
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• In the time domain: 

 

 

 

• In the frequency domain: 
– Y=G(U-Y) 

Y(s) = H(s)U(s) 

 

 

Convolution & Feedback 
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BREAK!  
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How to Beat the Noise? 
Idea 1: (analog) Filters! 

  

27 March 2019 ELEC 3004: Systems 37 

• Frequency-shaping filters: LTI systems that change the shape 

of the spectrum 

• Frequency-selective filters: Systems that pass some 

frequencies undistorted and attenuate others 

Filters 
Lowpass Bandpass 

Highpass Bandstop (Notch) 

27 March 2019 ELEC 3004: Systems 38 



20 

Filters 
Specified Values: 

• Gp = minimum passband gain 

Typically: 

 

 

• Gs = maximum stopband gain 

– Low, not zero (sorry!) 

– For realizable filters, the gain cannot 

be zero over a finite band (Paley-

Wiener condition) 

• Transition Band: 

transition from the passband to the 

stopband  ωp≠ ωs 

 

 

Lowpass 

Highpass 
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Filter Design & z-Transform 
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• Butterworth: Smooth in the pass-band 

• The amplitude response |H(jω)| of an nth order Butterworth 

low pass filter is given by: 

 

 

 

• The normalized case (ωc=1) 

 

 

 

 

Recall that:   

 

Butterworth Filters 
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Butterworth Filters 
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• Increasing the order, increases the number of poles: 

 

 

 

 

 

 

Odd orders (n=1,3,5…): 

• Have a pole on the Real Axis 

 

Even orders (n=2,4,6…): 

• Have a pole on the off axis 

 

 

Butterworth Filters of Increasing Order: 
Seeing this Using a Pole-Zero Diagram 

Angle between 

poles: 

 

 

27 March 2019 ELEC 3004: Systems 43 

 

 

 

 

 

• Since H(s) is stable and causal, its poles must lie in the LHP 

• Poles of -H(s) are those in the RHP 

• Poles lie on the unit circle (for a normalized filter) 

 

       

Where: 

 

 

 

Butterworth Filters: Pole-Zero Diagram 

n is the order of 

the filter 
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Butterworth Filters: 4th Order Filter Example 

• Plugging in for n=4, k=1,…4: 

 

 

 

 

• We can generalize  Butterworth Table 

 

 

 

This is for 3dB 

bandwidth at 

ωc=1 

27 March 2019 ELEC 3004: Systems 45 

• Start with Normalized equation & Table 

• Replace ω with       in the filter equation 

 

• For example:   

for fc=100Hz  ωc=200π rad/sec 

 
From the Butterworth table: for n=2, a1=√2 

Thus: 

 

 

 

Butterworth Filters: Scaling Back (from Normalized) 
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• Define Gx as the gain of a lowpass Butterworth filter at ω= ωx 

• Then: 

 

 

 
And thus: 

 

 

 

Or alternatively:           &   

 

Solving for n gives: 

 

 

 

PS.  See Lathi 4.10 (p. 453) for an example in MATLAB 

 

 

 

 

Butterworth: Determination of Filter Order 
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• equal-ripple:  

Because all the ripples in the passband are of equal height 

• If we reduce the ripple, the passband behaviour improves, but 

it does so at the cost of stopband behaviour 

Chebyshev Filters 

27 March 2019 ELEC 3004: Systems 48 
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• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-

order Butterworth filter, but this is achieved at the expense of inferior passband 

behavior (rippling)  

 For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev 

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB 

 

• The amplitude response of a normalized Chebyshev lowpass filter is: 

 

 
Where Cn(ω), the nth-order Chebyshev polynomial, is given by: 

 

 

 

      and where Cn is given by: 

Chebyshev Filters 
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• It’s normalized: The passband is 0<ω<1 

• Amplitude response: has ripples in the passband and is 

smooth (monotonic) in the stopband 

• Number of ripples: there is a total of n maxima and minima 

over the passband  0<ω<1 

 

•   

 

• ϵ: ripple height   

 

• The Amplitude at ω=1:  

 

• For Chebyshev filters, the ripple r dB takes the place of Gp 

 

 

 

Normalized Chebyshev Properties 
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• The gain is given by: 

Thus, the gain at ωs is: 

 

• Solving:   

 

 

 

• General Case: 

  

 

Determination of Filter Order 
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• Whereas Butterworth poles lie on a semi-circle, 

The poles of an nth-order normalized Chebyshev filter lie on a 

semiellipse of the major and minor semiaxes: 

 

 

 

  And the poles are at the locations: 

  

Chebyshev Pole Zero Diagram 
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Ex: Chebyshev Pole Zero Diagram for n=3 

 Procedure: 

1. Draw two semicircles of radii a and b 

(from the previous slide). 

2. Draw radial lines along the corresponding 

Butterworth angles (π/n) and locate the 

nth-order Butterworth poles (shown by 

crosses) on the two circles.  

3. The location of the kth Chebyshev pole is 

the intersection of the horizontal 

projection and the vertical projection from 

the corresponding kth Butterworth poles 

on the outer and the inner circle, 

respectively.  
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Chebyshev Values / Table 
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• Chebyshev filters passband has ripples and the stopband is smooth. 

• Instead: this has passband have smooth response and ripples in 

the stopband.  

Exhibits maximally flat passband response and equi-ripple stopband 

 Cheby2 in MATLAB 

 

 
Where: Hc is the Chebyshev filter system from before 

• Passband behavior, especially for small ω, is better than Chebyshev  

• Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)  

• Less time-delay (or phase loss) than that of the Chebyshev 

• Both needs the same order n to meet a set of specifications.  

• $$$ (or number of elements):  

Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order]) 

Other Filter Types:  
Chebyshev Type II = Inverse Chebyshev Filters 
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• Allow ripple in both the passband and the stopband,  

 we can achieve tighter transition band 

 

 
Where:  Rn is the nth-order Chebyshev rational function determined from a given ripple spec. 

  ϵ controls the ripple 

 Gp =  

• Most efficient (η)  
– the largest ratio of the passband gain to stopband gain 

– or for a given ratio of passband to stopband gain, it requires the 

smallest transition band  

 

 in MATLAB: ellipord followed by ellip  

 

 

Other Filter Types:  
Elliptic Filters (or Cauer) Filters 
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Filter Type 
Passband 

Ripple 

Stopband 

Ripple 

Transition 

Band 

MATLAB Design 

Command 

Butterworth No No Loose butter 

Chebyshev Yes No Tight cheby 

Chebyshev Type II 

(Inverse Chebyshev) 
No Yes Tight cheby2 

Eliptic Yes Yes Tightest ellip 

In Summary 
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How to Beat the Noise? 
 

Idea 2:  Modulation 
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Modulation 

Analog Methods: 

• AM - Amplitude modulation 

– Amplitude of a (carrier) is 

modulated to the (data) 

 

• FM - Frequency modulation 

– Frequency of a (carrier) signal 

is varied in accordance to the 

amplitude of the (data) signal 

 

• PM – Phase Modulation 

Source: http://en.wikipedia.org/wiki/Modulation 
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Start with a “symbol” & place it on a channel  

• ASK (amplitude-shift keying) 

 

 

• FSK (frequency-shift keying) 

 

 

 

• PSK (phase-shift keying) 

• QAM (quadrature amplitude modulation) 

𝑠 𝑡 = 𝐴 ⋅ 𝑐𝑜𝑠 𝜔𝑐 + 𝜙𝑖 𝑡  
= 𝑥𝑖 𝑡 cos 𝜔𝑐𝑡 + 𝑥𝑞 𝑡 sin 𝜔𝑐𝑡  

Modulation [Digital Methods] 

Source: http://en.wikipedia.org/wiki/Modulation |  http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation_diagram 
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Modulation [Example – V.32bis Modem] 

Source: Computer Networks and Internets, 5e,  Douglas E. Comer 
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• Send multiple signals on 1 to N channel(s) 
– Frequency-division multiple access (FDMA) 

– Time-division multiple access (TDMA) 

– Code division multiple access (CDMA) 

– Space division multiple access (SDMA) 

•  CDMA: 
– Start with a pseudorandom code (the noise doesn’t know your code)  

 

 

 

Multiple Access (Channel Access Method) 

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access 
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• Digital Filters 

 

 

 

• Review:  
– Chapter 10 of Lathi  

 

 

• A signal has many signals  

[Unless it’s bandlimited.  Then there is the one ω] 

 

 

Next Time… 
 
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𝒵 Transform 
(Extra Review3! –  

Another Way to L◉ ◉k at it) 
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Flashback    :   Euler’s approximation (L7, p.26) 

27 March 2019 ELEC 3004: Systems 65 

Discrete transfer function 
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Discrete transfer function [2] 
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Discrete transfer function [3] 
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Discrete transfer function [4] 

27 March 2019 ELEC 3004: Systems 69 

Discrete transfer function [5] 
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Properties of the the z-transform 
• Some useful properties 

– Delay by 𝒏 samples: 𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

 

– Linear: 𝒵 𝑎𝑓 𝑘 + 𝑏𝑔(𝑘) = a𝐹 𝑧 + 𝑏𝐺(𝑧) 

 

– Convolution: 𝒵 𝑓 𝑘 ∗ 𝑔(𝑘) =  𝐹 𝑧 𝐺(𝑧) 

 
So, all those block diagram manipulation tools you know and love 

will work just the same! 
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The 𝓏-Transform 
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The 𝓏-Transform 
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The 𝓏-Transform 
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The 𝓏-Transform 
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The 𝓏-Transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 
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The 𝓏-Transform 
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Pulse Response 
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Pulse Response [2] 
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∴ Eigenfunctions of Discrete-Time LTI Systems 

Source: Jackson, Chap. 6 
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∴ Eigenfunctions of Discrete-Time LTI Systems 

Source: Jackson, Chap. 6 
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∴ Eigenfunctions of Discrete-Time LTI Systems 

Source: Jackson, Chap. 6 
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∴ Eigenfunctions of Discrete-Time LTI Systems 

Source: Jackson, Chap. 6 
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The z-Plane 
z-domain poles and zeros can be plotted just  

like s-domain poles and zeros (of the ℒ): 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

• S-plane:  

 

 

 

 

 

 

 

 
–  λ – Plane  

• 𝒛 = 𝒆𝒔𝑻  Plane 

 

 

 

 

 

 

 

 
– γ – Plane  
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The z-Plane & Stability 
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The z-Plane & Stability 
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• Causality: 

 
 

»    or    

 

•  Input is Causal if: 

 

• Then output is Causal: 

 

 

• And, DT LTI is BIBO stable if: 

 

 

 

DT Causality  & BIBO Stability 
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Impulse Response (Graphically) 

∞ matrix ×  ∞ vector? 
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Linear Difference Equations 
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zk :  

• k: “order of difference”  

• k: delay 

Assume a form of the solution  
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