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Follow Along Reading:

— Today
,,e?‘ B. P. Lathi » Chapter 11 (Discrete-Time System
. i;\%”ﬁ:\g;f?yﬁ';ﬁs Analysis Using the z-Transform)
o 1998 — 8§ 11.1 The Z-Transform
TK5102.9.1.381998 A
— 8§ 11.2 Some Properties of the Z-
Transform

i+ Chapter 9 (Time-Domain Analysis
of Discrete-Time Systems)
— 89.4 System Response to External Input
— §9.6 System Stability

z Transforms
(Digital Systems Made eZ)

Extended Explanation ©
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http://library.uq.edu.au/record=b2013253~S7

Back to the Zero-order Hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero f
h(t) is related to x(t) as follows:

e output

h(t) = z(0)[1(t) — 1(t = T)] + =(T)[1(t - T) — 1(t —2T7)] + -

= i x(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

=>»The “hold” adds a delay. The delay leads to difference equations

Coping with Complexity

Transfer functions help control complexity
— Recall the Laplace transform:

LF) = f F(Oe=stdt = F(s)
0

where

L{f(t)} = sF(s)

X(t) ——  H(is) — y(b)

* Is there a something similar for sampled systems?




The z-Transform

* ltis defined by:

z =rel¥

 Orin the Laplace domain:

z=e"T

> Akt uln] <% ¥ (2)
k=—oc

e Thus: Y(2)

» Thatis - itis a discrete version of the Laplace:
Z
fkT) = e~ = Z{f(k)} = e

The z-transform

« The discrete equivalent is the z-Transformf:
20} = )[Rz =F(2)
k=0

and

Z{f(k - D}=z"'F(2)

XK) —— F@@ — y(K

Convenient!

+This is not an approximation, but approximations are easier to derive




The z-Transform [2]

+ Thus: .
Y(2)= Z h[k]2* y[n] PN Y(z)

« z-Transform is analogous to other transforms:
[ee]

2} = ) f)z = F(2)
k=0

and
Z{f(k =1} =z"1F(2)
~ Giving:
XK) —— F@) —— vk

z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n]

h[n]

W] = {ba n =0,

0 otherwise.

H(z}Zibakz_kzbi(g)k— b when 2| > |al.




z-Transforms for Difference Equations

yln] = ayln — 1] + bu[r]

First-order linear constant coefficient difference equation:

y[n] — ay[n — 1] = bu|n]

A
-+

Y(z) —az 'Y (2) = bU(2)

b .
7, When does it converge?

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTe~ 9T
(s +a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 22— (2cosaT)z + 1




The z-Plane
z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):
+ S-plane: o z= €T Plane
Img(s) Img(2)
X
X
Re(s) » X 1 Re(2)
X
— A —Plane — v —Plane
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Discrete-Time Exponential y*

sT

Recall we defined z = e
Thus, this is the y plane =

(a) (b)

ELEC 3004: Systems 22 March 2019 - 14



Discrete-Time Exponential y*

o e =k

e y=etori=Iny

« In discrete-time systems, unlike the continuous-time case,
the form y* proves more convenient than the form e**

Why?

« Consider e/ (1 = jQ - constant amplitude oscillatory)
o e/ D Yk fory = /@

e |e/Y =1, hencely| =1

L

Discrete-Time Exponential y*

« Consider etk
When A: LHP

* Then
[ ] ’y = e)]'
o y= el = eatib — gapjb

e |yl = |eaejb| = |e?| ...|ejb| =1

L




Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!

More Z-Transform Properties

« Time Reversal « Multiplication by n (or
Differentiation in z):

x[n] < X(z) ROC =R

x[n] == X(z) ROC =R

1 1
([—n] e X|— R=—
x[—n] (2) =

g - dX(z) .
nx[n] .z—-dZ R

I
=

 Multiplication by z"

xn] «>X(z)  ROC=R « Convolution

( x,[n] « X\(z) ROC = R,
zgxln] = XJ .i) R =|z,|R x,[n] < X,(2) ROC =R,
\%0 )
x,[n] * x,[n] <> X,(2)X,(z) R'DR NR,




Z-Transform Properties: Time Shifting

1 =z — T . ya[n] =y[n — ng)
y[n - nﬂ- 2 . } Lz} Ya(e’) = Z [k —nglzF

k=—o0

o
_ Z y'i]z—([+nu}
I=—c0

=2""0Y(2)

Two Special Cases:
z°%: the unit-delay operator:

xn— 1] = z71X(z) R=RN{0< f?-|}

Z: unit-advance operator:

x[(n+ 1] = zX(2) R'=RN{|z] <=}

An example!

+ Back to our difference equation:
y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes
Y(z) =X(z) + Az71X(2) — Bz7'Y(2)
(z+B)Y(2) =(z+A)X(2)

which yields the transfer function:
Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™"

10



ELEC 3004: Systems

ELEC 3004: Systems

LTI(D) Systems Properties

22 March 2019 - 21

22 March 2019 - 22

11



System Stability

Real =

stable

marginally stable —
Red=0

Fig. 2.15 Characteristic roots location and system stability.

Lathi, p. 149
System Stability [II]
Characterisic Root Characterisic Root
Location Zero-Input Response Location Zero-Input Response
" I o T l Ol pe
(a) (b)
0 e . Mz\_’
{©) (d)
Lathi, p. 150
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System Stability [lll]

(&) h

Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.

v-plane Stability

» For ay-Plane (e.g. the one the z-domain is embedded in)
the unit circle is the system stability bound

Img(s) Img(2)

Re(s) i 1 Re(2)

.

unit circle




v-plane Stability

e That is, in the z-domain,

the unit circle is the system stability bound

Img(s)

"
=

Re(s)

v Img(2) @

-
N

>
} . Re(z)

z-plane stability

« The z-plane root-locus in closed loop feedback behaves just

like the s-plane:

Img(s)

Re(s)

Img(2) @ |

X

Re(2)

14



Region of Convergence

+ For the convergence of X(z) we require that
iﬂ}az_]r<m

+ Thus, the ROC is the range of values of z for which |az|< |
or, equivalently, |z| > |a|. Then

7/, z-plane
7

7 Im@)

An Example Circuit...

AVAVAY, AVAvAY
A, R3 R4
/ R1 C3— C4——
AvAvAY
R2
V(1) C) Cl— C2 —

Ref: Boyd, EE263, 13-14

15



Frame as a LDS =»LTI LTS =LTID LTS

o
{D)
N

i(t)

./

175 28 N u(t)
D

N

x = Ax + Bu
y =Cx+ Du

e Ax is the drift term (of x)
e Bu is the input term (of x)

Ref: Boyd, EE263, 13-4

Transfer Function

Take the Laplace transform of x = Ax + Bu
sX(s) — x(0) = AX(s) + BU(s)

X(s) = (sI — A~ 1x(0) + (sI — A)*—1BU(s)

t
= x(t) = ex(0) +f et=D4. By(7) dr
0
etx(0): unforced or autonomous response

e B: input-to-state = impulse response matrix
(sI — A)~1B: transfer function or transfer matrix

Ref: Boyd, EE263, 13-6
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Transfer Function [2]

withy = Cx + Du we have:

Y (s) = C(sI — A)~x(0) + (€(sI — A)~IB + D)U(s)

t
= y(t) = Ce'x(0) + f Ce(t=4. Byu(1) dr + Du(t)
0

o Cetx(0):initial condition
e H(s) = C(sI — A)~1B + D :transfer function/matrix
o h(t) =Ce™ - B + D&(t): impulse response

With zero initial conditions we have:

e Y(s) = H(s)U(s),y = h xu

Ref: Boyd, EE263, 13-7

Impulse Response

impulse response h(t) = Cet“ B + Di(t)

with z(0) =0, y = hx u, i.e.,
m
yi(t) = Z/D hij(t — 7)u; (1) dr
j=1

interpretations:
e h;;(t) is impulse response from jth input to ith output
e N;;(t) gives y; when u(t) = e;d

® h;;(7) shows how dependent output 7 is, on what input j was, 7
seconds ago

e i indexes output; j indexes input; 7 indexes time lag

Ref: Boyd, EE263, 13-9
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Step Response

the step response or step matrix is given by
t
s(t) = / h(t) dr
Jo

interpretations:
e s;;(t) is step response from jth input to ith output
e s5;;(t) gives y; when u =e; fort > 0
for invertible A, we have
s(t)y=CA™ (e —=I)B+D

Ref: Boyd, EE263, 13-10

Static (DC) Gain Matrix

e transfer function at s =0 is[H(O) =-CA'B+DeR™P }

e DC transfer function describes system under static conditions, i.e., z,
u, y constant:

0= = Ax + Bu, y=Czx+ Du

eliminate = to get y = H(0)u

e if system is stable,
o0
H(0)= / h(t) dt = {]im s(t)
Jo =00

00 t
(recall: H(s) = / e~ h(t) dt, s(t) = / h(T) dr)
Jo

JO

if u(t) — s € R™, then y(t) — Yoo € RY where y,o = H(0)u

Ref: Boyd, EE263, 13-18
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Back to the Example

v

/FW

Cl——

> eig(A)

> -3.9563
-2.2091
-0.6617

1 0 1
0 0 . 0
2 1|*"|o
1 -1 0

Step Respanse (s(t)):

Ref: Boyd, EE263, 13-15
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Discretization with piecewise constant inputs

linear system & = Az + Bu, y = Cz + Du

suppose ug : Z, — R™ is a sequence, and

u(t) = ual(k) for kh<t<(k+1)h, k=0,1,...

define sequences

z4(k) = z(kh), ya(k) = y(kh), E=0,1,...

¢ 1 > 0 is called the sample interval (for x and y) or update interval (for

w)
e u is piecewise constant (called zero-order-hold)

e 1, 14 are sampled versions of z, y

Ref: Boyd, EE263, 13-20

Discretization with piecewise constant inputs [2]

z(k+1) = a((k+1)h) called discretized system

h
e"Az(kh) + / e Bu((k+1)h — ) dr if A is invertible, we can express integral as
Jo

, ke " TA g A=l hA
= e ‘J'd\}\'\‘(/ :"‘vlr) B uq(k) [ ertdr = AT (e )
Jo

4, ug, and yq satisfy discrete-time LDS equations "

stability: if eigenvalues of A are Ay, ..., A, then eigenvalues of A are
B e

e

za(k + 1) = Agza(k) + Baua(k), ya(k) = Caza(k) + Daua(k)
where discretization preserves stability properties since

~h
Ag=etd By = (/ e Adr | B, Cu=C.  Dy=D
/0 for h >0

RA <0 & "<

Ref: Boyd, EE263, 13-22




Convolution

ELEC 3004: Systems 22 March 2019 - 41

Convolution Definition

The convolution of two functions f,(t) and
f,(t) is defined as:

f(t) = j“; f,(x) f,(t—1)dr
— fl (t) * fz (t)

Source: URI ELE436

21



Convolution Properties

£1(8) * folt) = fm 1) falt — 7) dr

Properties:
« Commutative: f;(t)«fo(t) = fo(t)* f1(t)
» Distributive: £, (t) « [2(t) + fa(t)] = f1(¢) * fo(t) + f1(2) * f(t)

* ASSOCIAlIVE: () x [£o(t) x f3(t)] = [£1(2) * F2(t)] * f3(2)
* Shift:

if f,()*f,(t)=c(t), then f,(t-T)*f,(t)= f,()*,(t-T)=c(t-T)
+ Identity (Convolution with an Impulse):

F) 66 = 7O
+ Total Width:

Based on Lathi, SPLS, Sec 2.4-1

Convolution Properties [ll]

« Convolution systems are linear:
h# (g + Bus) = alh *uy) + B(h *ua)

 Convolution systems are causal: the output y(t) at time t
depends only on past inputs

 Convolution systems are time-invariant
(if we shift the signal, the output similarly shifts)

- 0 t <1
-> u(t) = { Wt —T) t>0

. [0 t<T
yt) = { y(t—1) t>0




Convolution Properties [llI]

« Composition of convolution systems corresponds to:
— multiplication of transfer functions
— convolution of impulse responses

e Thus:

composition

u BA Y

— We can manipulate block diagrams with transfer functions as if
they were simple gains
— convolution systems commute with each other

Properties of Convolution: Distributive Property

[ U1(8) £ (O] * f3() = (1) * [fo(8) * F5()]

= 1) b () b D) o
L s e

» The two systems are identical!

Source: URI ELE436
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Properties of Convolution: Commutative Property

{ 10 % fo(t) = folt) + fl(t)}

1@O® = [~ p@pt-ndir= [T p@-ndr

= [t:;:j; fit — 1) folt — (¢ — 7)]d(t — 7)
== ‘/:::O;OO f1(t — 1) fa(7)dr
= [7 nt=Dp@dr = £ < f1(0)

Source: URI ELE436

Properties of Convolution: LTI System Response

| B@ O = h®) + H©) |

) e |_fQh0
h(t)

h (t) Impulse Response h (t) *f(t)

f(t)

Source: URI ELE436
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Properties of Convolution

f(0)*3(t) = f@©)] () f()

f(1)*(t) = j“; f (1)8(t - t)dt
= f‘; f(t—1)8(t)dt
- f(t)

Properties of Convolution

f(0)*3) = f@)] ) ()

f)*o(t-T)=f(1t-T)

f)*S(t—T) = fi f(0)S(t—T —)de
= j“; f(t—T —1)8(x)de
— f(t-T)

Source: URI ELE436

25



Properties of Convolution

f)*o(t-T)=1f(1t-T)

o(t-T)
f(t) mah | f(t -T)
0 T
~J0 o
0 — oT

Source! - URI ELE436

Properties of Convolution

() * f,() <> F (jo)F, (jo)|
FILO* LO1=[ | [ L@ fE-adfd
[ fl(r)[ [ .0 —r)e-iwtdtJdr
=" (R (jo)e e

~F(jo)] f,@e*dr = F(jo)F,(jo)

Time Domain Frequency Domain
convolution multiplication

Source: URI ELE436
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Properties of Convolution

() * f, (1) <> F (jo)F, (jo)|

Fi(jo)
ff“‘\’kq

"0

O

Q)

H(jo)

—,

p

0(%

An ldeal Low-Pass Filter

Source! - URI ELE436

Properties of Convolution

f,(®)* f,() «——F(jo) Fz(jw)l

Fi(jw)
AL-'

0

o

Q)

1

H(jo) Fo(lo)
™
0 o 0

—

P

p

An Ideal High-Pass Filter

Source: URI ELE436
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Discrete Convolution

oo

y[n] =z [n]xh [n] = Z x[m]-h[n—m]= Z h[m] -z [n —m]

m=—0oc m=—0o0

Consider this for the discrete case:

1. Rename the independent variable as m. You now have x[m] and h[m].

Flip h[m] over the origin. This is h[-m]

Shift h[-m] as far left as possible to a point “n”, where the two signals

barely touch. This is h[n-m]

Multiply the two signals and sum over all values of m. This is the

convolution sum for the specific “n” picked above.

Shift / move h[-m] to the right by one sample, and obtain a new h[n-m].

Multiply and sum over all m.

5. 5. Repeat 2~4 until h[n-m] no longer overlaps with x|m], i.e., shifted out
of the x[m] zone.

A woN

= The “n” dependency of y[n] deserves some care:
For each value of “n” the convolution sum must be computed separately over
all values of a dummy variable “m”.

Discrete-Time Systems & Discrete Convolution [1]

Will consider linear time-invariant (LTI) systems

M [

Linear :
input ul[k] -> output y1[K]
input u2[k] -> output y2[K]
hence a.ul[k]+b.u2[k]-> a.y1[k]+b.y2[K]

Time-invariant (shift-invariant)
input u[k] -> output y[K]
hence input u[k-T] -> output y[k-T]

28



Discrete-Time Systems & Discrete Convolution [2]

Will consider causal systems
iff for all input signals with u[k]=0,k<0 -> output y[Kk]=0,k<0

Impulse response o
input ...,0,0, 1 ,0,0,0,...=> output ...,0,0, h[0] ;h[1],h[2],h[3],...
General input u[0],u[1],u[2],u[3] (cfr. linearity & shift-invariance!)

"y[0]] [h[0] O™ O 0 ]
y[l hil] K0} © 0 || u[o]

y[2]| | h(2] ‘] h[o] O || ufi]

y[3] 0 [h[2] h[] h[o] || ul2]

y[4] 0 0 h[2] h[1] || u[3] this is called a
y[5] 0 0 0 h[2] [~ TOEPIitZ’ Matrix

Discrete-Time Systems & Discrete Convolution [3]

u[O,u[1],u[2],u[3] y[0l.y[1]....

_—

"y[0]] [h[0] O 0 0 |
vl |h[ ho] o o |[@@y] POIhL1A(2100...
y[2]| (h[2] h[] h[0] O || uf
y[3] 0 h[2] h[] h[O]||u[2]
y[4] 0 0 h[2] h[] | ufs]
| Y[5] | 0 0 0 h[2]]

D ~ - ‘
— 1, F1= * = “convolution sum
y[k] - Zh[k - k ] u[k] - h[k] u[k] (=more convenient than Toeplitz matrix notation
]; when considering (infinitely) long input and impulse
response sequences

29



Discrete-Time Systems & Discrete Convolution [4]

Z-Transform of system h[k] and signals u[k],y[K]
Definition:

HE=Y MKz U= ulk]=" Y@= k.=

Input/output relation:

yI0] O] o o0 0
y[] h[] h[0] O 0 ufo]
AR | e N N C I
Y3l 0 h2 h ho] | u2]
y[4] 0 0 h[2] h[1] || u[3]
yi5] 0 0 o0 h
Y(2) H(z) {1 z1 72 723

=Y (Z) =H (Z).U (Z) H(z) is “transfer function’

Matrix Formulation of Convolution

y = HX

-
311 2300000 0]|0
8 0123000001
141 /0 01 2 3 0 00 0}|2
200=0 0 01 2 3 00 0}|3
26| |0 00012 30 0/|4
141 /0 0 0 0 0 1 2 3 0}|5
5] (000000 12 30

0

Toeplitz Matrix

30



Graphical Understanding of Convolution

= For c(z)=U+aw= [ fmngt-rar :

1. Keep the function f (z) fixed

2. Flip (invert) the function g(z) about the vertical axis (t=0)
= thisis g(-7)

3. Shift this frame (g(-7)) along t (horizontal axis) by t,.
= this is g(t,-7)

=> For c(ty):
4. c(ty) = the area under the product of f (z) and g(t,-7)

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.

Graphical Understanding of Convolution (Ex)

31



Another View

e.g. convolution

x(nN)=12345
h(n)=321
x(kly 0012345 0012345 0012345
h(nk) 1230000 0123000 0012300 h(n-k)
y(n,k) ﬂ 26\ 14@
y(n) 3 8 14

™

\ I / Notice the
gain

Sum over all k

Convolution & Systems

+ Convolution system with input u (u(t) = 0, t <0) and output y:
1 = h(T)u(t — 1) dr = h(t — )u(7) dr
1) = [ hryute =) dr = [ b= yutr)

« abbreviated:

y=nh=xu
* in the frequency domain:

Yi(s) = H(s)U(s)

32



Convolution & Feedback

* |In the time domain:

* In the frequency domain:
— Y=G(U-Y)

=2 Y(s) = H(s)U(s) N G(s)

2" Order LTID

ELEC 3004: Systems

22 March 2019 - 66
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2" Order System Response

 Response of a 2" order system to increasing levels of damping:

1 T T T
_—¢=0
181 e i
0.2
1.6 / -
\\ 04
ol /\ '
\ 0.6
12} ¢
21
0.8f
=08 :
: 10
0.4+ . . i
0.2+
0 - 1 L 1
0 2 6 8 10 12
w, !

2" Order System Specifications

Characterizing the step response:
N e —

+ Risetime (10% -> 90%): tr = %8 + Steady state error to unit step:
«o
e~ ¢ €ss
« Overshoot: A=

Phase margin:

\’fl—CQ '

o 46 ¢pyp =~ 100¢
* Settling time (t0 1%): ¢, = '~

»W0

34



2" Order System Specifications

Characterizjng the step response:

> 1%
e __ i__

0.1

Rise time (10% -> 90%) & Overshoot:
t, M, 2 {, o, : Locations of dominant poles
Settling time (to 1%):
t, = radius of poles: |- <co1%
Steady state error to unit step:
e, > final value theorem ¢, = lim (=~ 1) F(2)}

The z-plane [ for all pole systems |

« We can understand system response by pole location in the z-

plane

[Adapted from Franklin, Powell and Emami-Naeini]

Re(2)

35



Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

« We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAN NN N

VVVVVVI[ VY™™

Re(z)
Pole positions in the z-plane
« Poles inside the unit circle
are stable
Im(z)

« Poles on the unit circle
are oscillatory

Poles outside the unit circle -
unstable W
_~

Real polesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

Lower apparent damping
for larer and r
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Damping and natural frequency

z=eSTwheres = —(w, + jw, /1 — {2

10~ s z ] : o e !
0.8 N | A/ |
0.6 T EEVA S AN Ny oo
0a - Ao AN
| o | SO\ T
| \\ | AN
L , Re(2)

-1.b -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1\0
[Adapted from Franklin, Powell and Emami-Naeini]

Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e cos(bt) U(t) (U (t) = unit step)
+ sample:  y(kT) = r* cos(k#) U(kT) with r = e~ & = bT
1 z 1 z
-2 (z —red?) + 2 (z—rei%)

B z(z —rcos#)
T (2 —rei?)(z — re—i9)

* transform: Y'(z)

Im(z)A
* e.g. Y is the pulse response of G(z): ) -
Glz) = 3(3_7 rcosé) _ . X '
(z —rei?)(z — re—if) Pt
2 — pel® I 0{,'\‘8 & > Re(z)
poles { z=re 1° I
X
zeros { 2=0 .
z =rcosf
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Response of 2nd order system [1/3]

Responses for varying 7:

r=0.7
s P ] st N
L r< 1 - 6=m/4
+ 0 . e ——p
exponentially decaying T
envelope 03 2 4 6 8 10
sample k
Bor=1 = ' S
054 \
sinusoidal response = 0r
. r=1.0
with 27 /6 samples 05| 1
. P f=m/4
per period 4 . S~ . .
0 2 4 6 8 10
sample k
& > 1 10
o
I s SN
exponentially increasing . / \\\
envelope of T ) r=1.3%4
[ 0=m/4
K 2 2 6 8 10
samplz K
Response of 2nd order system [2/3]
Responses for varying 8: 1
r=0.7
> =0 =05 S =0 |
h T
decaying exponential 0 ‘ ‘ T — |
0 2 4 6 8 10
sample k
. - I+ ‘ ‘ : ‘
> 0= ' 2 \._\.. r=0.7
U ) 05 \\ 0=m/2]
27 /6 = 4 samples ol /\\‘L T
per period -
03 2 2 6 8 10
sample k
B> f=m 1 i
05 * 1
. A\ / .y .
2 samples per period = o N/ e "'*~+-*"""’""‘6““
\ /S r=0.7
051 Vi 1
¥ 0=m
o 2 2 3 8 10
sample k
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Response of 2nd order system [3/3]

Some special cases:
r for 8 =0, Y (z) simplifies to:

Y(z) =

— exponentially decaying response

> whent# =0and r=1:

— unit step

> when r =0:

— unit pulse

> when#=0and -1 <r <0

samples of alternating signs

Discrete-time transfer function

take Z-transform of system equations

r(t + 1) = Ax(t) + Bu(t), y(t) = Ca(t) + Du(t)

yields

=X (2) —zx(0) = AX (2) + BU(=), Y(2) = CX{(2)+ DU(z)

solve for X (z) to get
X(2) = (2 — Ay '2(0) + (2] — A)"'BU(2)

(note extra = in first term!)

hence
Y(z)= H(z)U(z) + C(zI — A)7Lzz(0)
where H(z) = C'(z] — A)=YB + D is the discrete-time transfer function

note power series expansion of resolvent:

ST Ayl -1 =2 =3 A2
(”I A) =2+ AL TAR Source: Boyd, Lecture Notes for EE263, 13-39
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Ex: System Specifications = Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: G (s) =
« Addiscrete ZOH sampler
« Sampling time (T): T,=1s
« Controller:
UL — —O.S’U,k_l —|— 13 (6k - 0.88€k_1)

0.1
s(s+0.1)

The closed loop system is required to have:
* M, <16%
*+ t,<10s

B<1

Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

7 e | u(t } 0] 5y
S s e e i

+
- : G(2) i

G(z)=(1- 271)2{@} =L : 1)2{5%0:0.1}}

e.g. look up Z{a/s*(s +a)} in tables:

(0.1—1+e "Nzt (1—e = ().1<f0-1))
0.1(z —1)2(z — e 01)

. z—1) %
G(z) = ( - ) (
_0.0484(z + 0.9672)

T (2 —1)(2 — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-0882"")  (x—0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13
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Ex: System Specifications =2 Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

ess = lim e, = lim (2 — 1)E(z)
k—o0 z—1

R E U Y B(z) _ ! ;
+7\T D) G(z) > R(z) 1+ D(2)G(z)
- Tz
R(z) =
. . 1z 1 ) T
o =l N T b | - M e nomee
li T 10g- - e
= 111m =
= .0484(= + 0.96T: .
Uy Q080 £ 0.9672) by gy g g
(z —1)(z — 0.9048) g
B 6}
1 — 0.9048 =
= = 0.96 g
0.0484(1 + 0.9672)D(1) 0-96 S S
£ 2
—> ess <1 (as required) ©
O

5
Time (sec)

Ex: System Specifications =2 Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5
settling time ¢, < 10 = |z| < 0.01%* = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
4, (2 —0.88) 0.0484(z + 0.9672)
1+13 - =0
+ (z40.5) (z—1)(z — 0.9048)
— 2z = 0.88, —0.050 & 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
r=2031,0=1.73

z = —0.050 £ j0.304 = et — { ]
¢ =0.56

T
1

Output y and input u/10
@

all specs satisfied!

5
Time (sec)
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Next Time...

+ Frequency Response

* Review:
— Chapter 10 of Lathi

 Nothing like a filter to smooth a rough signals ©
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