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Lecture Schedule: 
Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 
6-Mar Systems as Maps & Signals as Vectors 

8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 
27-Mar Frequency Response 

29-Mar Filter Analysis 

6 
3-Apr Digital Filters (IIR) & Filter Analysis 

5-Apr Digital Filter (FIR) 

7 
10-Apr Digital Windows 

12-Apr FFT 

8 17-Apr Active Filters & Estimation & Holiday 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation/PID 

10 
8-May PID & State-Space 

10-May State-Space Control 

11 
15-May Digital Control Design 

17-May Stability 

12 
22-May State Space Control System Design 

24-May Shaping the Dynamic Response 

13 
29-May System Identification & Information Theory 

31-May Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 11 (Discrete-Time System 

Analysis Using the z-Transform) 

– § 11.1 The 𝒵-Transform  

– § 11.2 Some Properties of the Z-

Transform 

 

• Chapter 9 (Time-Domain Analysis 

of Discrete-Time Systems) 

– § 9.4 System Response to External Input 

– § 9.6 System Stability 

 

 

 

 

Today 
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z Transforms 
(Digital Systems Made eZ) 

 
Extended Explanation  
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• Assume that the signal x(t) is zero for t<0, then the output 

h(t) is related to x(t) as follows: 

 

 

 

 

The “hold” adds a delay. The delay leads to difference equations 

Back to the Zero-order Hold (ZOH) 

x(t) x(kT) h(t) Zero-order 

Hold 
Sampler 
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Transfer functions help control complexity 
– Recall the Laplace transform: 

ℒ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝐹 𝑠  

where 

ℒ 𝑓 𝑡 = 𝑠𝐹(𝑠) 

 

 

 

 

• Is there a something similar for sampled systems? 

Coping with Complexity 

H(s) y(t) x(t) 
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• It is defined by: 

 

 

• Or in the Laplace domain: 

𝑧 = 𝑒𝑠𝑇 

 

• Thus: 

 

 

• That is  it is a discrete version of the Laplace: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 

 

 

The z-Transform 
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The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 
 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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• Thus: 

 

 

• z-Transform is analogous to other transforms: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 ∴  Giving: 

 

 

The z-Transform [2] 

F(z) y(k) x(k) 
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• First-order linear constant coefficient difference equation: 

 

 

z-Transforms for Difference Equations 
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z-Transforms for Difference Equations 
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The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
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The z-Plane 
z-domain poles and zeros can be plotted just  

like s-domain poles and zeros (of the ℒ): 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

• S-plane:  

 

 

 

 

 

 

 

 
–  λ – Plane  

• 𝒛 = 𝒆𝒔𝑻  Plane 

 

 

 

 

 

 

 

 
– γ – Plane  
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Recall we defined 𝑧 = 𝑒𝑠𝑇 
Thus, this is the 𝛾 plane  

𝑒𝜆𝑘 = 𝛾𝑘 

 

Discrete-Time Exponential  𝛾𝑘 
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• 𝑒𝜆𝑘 = 𝛾𝑘 

• 𝛾 = 𝑒𝜆 or 𝜆 = ln 𝛾 

 

• In discrete-time systems, unlike the continuous-time case,  

the form 𝛾𝑘 proves more convenient than the form 𝑒𝜆𝑘 

 

Why? 

• Consider 𝑒𝑗Ω𝑘 (𝜆 = 𝑗Ω ∴ constant amplitude oscillatory)  

• 𝑒𝑗Ω𝑘  𝛾𝑘, for 𝛾 ≡ 𝑒𝑗Ω 

• 𝑒𝑗Ω = 1, hence 𝛾 = 1 

Discrete-Time Exponential  𝛾𝑘 
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• Consider 𝑒𝜆𝑘 

When 𝜆: LHP 

• Then  

• 𝛾 = 𝑒𝜆 

• 𝛾 = 𝑒𝜆 = 𝑒𝑎+𝑗𝑏 = 𝑒𝑎𝑒𝑗𝑏 

• 𝛾 = 𝑒𝑎𝑒𝑗𝑏 = 𝑒𝑎  ∵ 𝑒𝑗𝑏 = 1 

 

Discrete-Time Exponential  𝛾𝑘 
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Properties of the the z-transform 
• Some useful properties 

– Delay by 𝒏 samples: 𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

– Linear: 𝒵 𝑎𝑓 𝑘 + 𝑏𝑔(𝑘) = a𝐹 𝑧 + 𝑏𝐺(𝑧) 
– Convolution: 𝒵 𝑓 𝑘 ∗ 𝑔(𝑘) =  𝐹 𝑧 𝐺(𝑧) 

 
So, all those block diagram manipulation tools you know and love 

will work just the same! 
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More Z-Transform Properties 

• Time Reversal 

 

 

 

 

• Multiplication by zn 

• Multiplication by n (or 

Differentiation in z):  

 

 

 

 

• Convolution 

22 March 2019 - ELEC 3004: Systems 18 
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• Two Special Cases: 

• z-1: the unit-delay operator: 

 

 

• z: unit-advance operator:  

 

Z-Transform Properties: Time Shifting 

22 March 2019 - ELEC 3004: Systems 19 

An example! 
• Back to our difference equation: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 
Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 

22 March 2019 - ELEC 3004: Systems 20 
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BREAK 
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LTI(D) Systems Properties 
 

22 March 2019 - ELEC 3004: Systems 22 
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System Stability 

Lathi, p. 149 

22 March 2019 - ELEC 3004: Systems 23 

System Stability [II] 

Lathi, p. 150 
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System Stability [III] 
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γ-plane Stability 
• For a γ-Plane (e.g. the one the z-domain is embedded in) 

the unit circle is the system stability bound 

 

 
Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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γ-plane Stability 
• That is, in the z-domain,  

the unit circle is the system stability bound 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 
• The z-plane root-locus in closed loop feedback behaves just 

like the s-plane: 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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• For the convergence of X(z) we require that 

 

 

• Thus, the ROC is the range of values of z for which |az-1|< l 

or, equivalently, |z| > |a|. Then  

Region of Convergence 
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An Example Circuit… 

V(t)

R1

C1

R2

C2

C3 C4

R3 R4

Ref: Boyd, EE263, 13-14 

22 March 2019 - ELEC 3004: Systems 30 



16 

 

 
 

 
 

 
𝑥 = 𝑨𝑥 + 𝑩𝑢 

𝑦 = 𝑪𝑥 + 𝑫𝑢 

 

• 𝑨𝑥 is the drift term (of 𝑥 ) 

• 𝑩𝑢 is the input term (of 𝑥 ) 

 

Frame as a LDS LTI LTS LTID LTS 

Ref: Boyd, EE263, 13-4 
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Take the Laplace transform of 𝑥 = 𝑨𝑥 + 𝑩𝑢 

 

𝑠𝑋(𝑠)  −  𝑥(0)  =  𝑨𝑋(𝑠)  +  𝑩𝑈(𝑠) 

 

𝑋(𝑠)  =  𝑠𝐼 −  𝑨 −𝟏𝑥(0)  + 𝑠𝐼 −  𝐴 ^ − 1𝑩𝑈(𝑠) 

 

⇒  𝑥(𝑡)  =  𝑒𝑡𝑨𝑥(0)  +  𝑒 𝑡−𝜏 𝑨 ⋅ 𝐵𝑢 𝜏  𝑑𝜏
𝑡

0

 

• 𝑒𝑡𝑨𝑥(0): unforced or autonomous response 

• 𝑒𝑡𝑨𝐵: input-to-state  impulse response matrix 

• 𝑠𝐼 −  𝐴 −1𝑩: transfer function or transfer matrix 

Transfer Function 

Ref: Boyd, EE263, 13-6 
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with 𝑦 =  𝑪𝑥 +  𝑫𝑢 we have: 

𝑌 (𝑠)  =  𝑪 𝑠𝑰 −  𝑨 −1𝑥(0)  + 𝑪 𝑠𝑰 −  𝑨 −1𝑩 +  𝐷 𝑈(𝑠) 

 

⇒ 𝑦(𝑡)  =  𝑪𝑒𝑡𝑨𝑥(0) +  𝑪𝑒 𝑡−𝜏 𝑨 ⋅ 𝑩𝑢 𝜏  𝑑𝜏
𝑡

0

+ 𝑫𝑢(𝑡) 

• 𝐶𝑒𝑡𝐴𝑥(0):initial condition 

• 𝐻(𝑠)  =  𝑪 𝑠𝑰 −  𝑨 −1𝑩 +  𝑫 :transfer function/matrix 

• ℎ 𝑡 = 𝑪𝑒𝑡𝑨 ⋅ 𝐵 +  𝐷𝛿(𝑡): impulse response 
 

With zero initial conditions we have: 

• 𝑌 (𝑠)  =  𝐻(𝑠)𝑈(𝑠), 𝑦 =  ℎ ∗  𝑢 

 

Transfer Function [2] 

Ref: Boyd, EE263, 13-7 
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Impulse Response 

Ref: Boyd, EE263, 13-9 
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Step Response 

Ref: Boyd, EE263, 13-10 
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Static (DC) Gain Matrix 

Ref: Boyd, EE263, 13-18 
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Back to the Example 

 

 

 
> eig(A)  

>  -3.9563 

   -2.2091 

   -0.6617 

   -0.1729 

Step Response (𝑠(𝑡)): V(t)

R1

C1

R2

C2

C3 C4

R3 R4

Ref: Boyd, EE263, 13-15 
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BREAK 
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Discretization with piecewise constant inputs 

Ref: Boyd, EE263, 13-20 
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Discretization with piecewise constant inputs [2] 

Ref: Boyd, EE263, 13-22 
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Convolution 
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Convolution Definition 

 



dtfftf )()()( 21

The convolution of two functions f1(t) and 

f2(t) is defined as: 

)(*)( 21 tftf

Source: URI ELE436 
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Properties: 

• Commutative:  

• Distributive: 

• Associative: 

• Shift: 

if f1(t)*f2(t)=c(t), then  f1(t-T)*f2(t)= f1(t)*f2(t-T)=c(t-T) 

• Identity (Convolution with an Impulse): 
 

• Total Width: 

 

Convolution Properties  

Based on  Lathi, SPLS, Sec 2.4-1 
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• Convolution systems are linear: 

 

 

• Convolution systems are causal: the output y(t) at time t 

depends only on past inputs 

 

• Convolution systems are time-invariant 

(if we shift the signal, the output similarly shifts) 

 

  

 

 

 

 

 

 

 

Convolution Properties [II] 
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• Composition of convolution systems corresponds to: 
– multiplication of transfer functions 

– convolution of impulse responses 

 

 

 

 

 

 

• Thus: 
– We can manipulate block diagrams with transfer functions as if 

they were simple gains 

– convolution systems commute with each other 

 

 

Convolution Properties [III] 
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• The two systems are identical! 

 

Properties of Convolution: Distributive Property 

h1(t) h2(t) h3(t) 

h2(t) h3(t) h1(t) 

Source: URI ELE436 
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Properties of Convolution: Commutative Property 

Source: URI ELE436 

22 March 2019 - ELEC 3004: Systems 47 

Impulse Response 

LTI System 

h(t) 

f(t) f(t)*h(t) 

Properties of Convolution: LTI System Response 

)(*)()(*)( 1221 tftftftf 

Impulse Response 

LTI System 

f(t) 

h(t) h(t)*f(t) 

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

 



dtfttf )()()(*)(

 



dtf )()(

)(tf

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

)()(*)( TtfTttf 

 



dTtfTttf )()()(*)(

 



dTtf )()(

)( Ttf 

Source: URI ELE436 
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Properties of Convolution 

f(t) f(t T) 

)()(*)( TtfTttf 

 

 
0 T 

(tT) 

t 
f (t) 

0 

t 
f (t) 

0 T 

Source: URI ELE436 
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Source: URI ELE436 

Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

dtedtfftftfF tj






  



  )()()](*)([ 2121






   









 ddtetff tj)()( 21

 




 dejFf j)()( 21

 




 defjF j)()( 12
)()( 21  jFjF

Time Domain Frequency Domain 
convolution multiplication 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal Low-Pass Filter 

0 

Fi(j) 

 
0 

Fo(j) 

 

 

 
0 

H(j) 

p p 

1 

Source: URI ELE436 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal High-Pass Filter 

0 

Fi(j) 

 

 

 
0 

H(j) 

p p 

1 

0 

Fo(j) 

 

Source: URI ELE436 
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Consider this for the discrete case: 
 
1. Rename the independent variable as m. You now have x[m] and h[m]. 

Flip h[m] over the origin. This is h[-m] 
2. Shift h[-m] as far left as possible to a point “n”, where the two signals 

barely touch. This is h[n-m] 
3. Multiply the two signals and sum over all values of m. This is the 

convolution sum for the specific “n” picked above. 
4. Shift / move h[-m] to the right by one sample, and obtain a new h[n-m]. 

Multiply and sum over all m. 
5. 5. Repeat 2~4 until h[n-m] no longer overlaps with x[m], i.e., shifted out 

of the x[m] zone.  
 

 The “n” dependency of y[n] deserves some care:  
For each value of “n” the convolution sum must be computed separately over 
all values of a dummy variable “m”.  

Discrete Convolution 
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Will consider linear time-invariant (LTI) systems 

 

 

 

     Linear :  

       input u1[k] -> output y1[k] 

      input u2[k] -> output y2[k] 

      hence a.u1[k]+b.u2[k]-> a.y1[k]+b.y2[k] 

 

     Time-invariant (shift-invariant) 

       input u[k] -> output y[k] 

      hence input u[k-T] -> output y[k-T] 

 

Discrete-Time Systems & Discrete Convolution [1] 

u[k] y[k] 
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


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




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
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
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
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







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



]3[

]2[

]1[

]0[

.

]2[000

]1[]2[00

]0[]1[]2[0

0]0[]1[]2[

00]0[]1[

000]0[

]5[

]4[

]3[

]2[

]1[

]0[

u

u

u

u

h

hh

hhh

hhh

hh

h

y

y

y

y

y

y

this is called a  

`Toeplitz’ matrix 

Discrete-Time Systems & Discrete Convolution [2] 

K=0 

Will consider causal systems  

     iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0 

Impulse response  

     input …,0,0, 1 ,0,0,0,...-> output …,0,0, h[0] ,h[1],h[2],h[3],... 

General input u[0],u[1],u[2],u[3]       (cfr. linearity & shift-invariance!) 

K=0 
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Discrete-Time Systems & Discrete Convolution [3] 
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y[k]= h[k - k ]
k

å .u[k ]=
D

h[k]*u[k] = `convolution sum‘ 
(=more convenient than Toeplitz matrix notation 

when considering (infinitely) long input and impulse 
response sequences 
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Discrete-Time Systems & Discrete Convolution [4] 
Z-Transform of system h[k] and signals u[k],y[k]  
Definition:  

     
Input/output relation:  
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H (z)=
D

h[k].z-k

k

å Y (z)=
D

y[k].z-k

k

åU(z)=
D

u[k].z-k

k

å

)().()( zUzHzY  H(z) is `transfer function’ 
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Matrix Formulation of Convolution 
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 For c(τ)=              : 

1. Keep the function f (τ) fixed  

2. Flip (invert) the function g(τ) about the vertical axis (τ=0) 

 =  this is g(-τ) 

3. Shift this frame (g(-τ)) along τ (horizontal axis) by t0.  

  = this is g(t0 -τ)  

 

 For c(t0): 

4.  c(t0) = the area under the product of f (τ) and g(t0 -τ)  

 

5. Repeat this procedure, shifting the frame by different values 

(positive and negative) to obtain c(t) for all values of t. 

Graphical Understanding of Convolution 
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Graphical Understanding of Convolution (Ex) 
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Another View 

x(n) = 1 2 3 4 5  

h(n) = 3 2 1 

0 0 1 2 3 4 5 

1 2 3 0 0 0 0 

0 0 1 2 3 4 5 

0 1 2 3 0 0 0 

0 0 1 2 3 4 5 

0 0 1 2 3 0 0 

x(k) 

h(n,k) 

3 2 6 1 4 9 y(n,k) 

e.g. convolution 

y(n) 3 8 14 

Sum over all k 

Notice the  

gain 

h(n-k) 
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• Convolution system with input u (u(t) = 0, t < 0) and output y: 

 

 

• abbreviated: 

 

 

• in the frequency domain: 

 

Convolution & Systems 
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• In the time domain: 

 

 

 

• In the frequency domain: 
– Y=G(U-Y) 

Y(s) = H(s)U(s) 

 

 

Convolution & Feedback 
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2nd Order LTID 
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• Response of a 2nd order system to increasing levels of damping: 

2nd Order System Response  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%): 

 

• Overshoot:  

 

• Settling time (to 1%):  

 

• Steady state error to unit step:  

ess 

• Phase margin:  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%)  & Overshoot:  

   tr, Mp  ζ, ω0 : Locations of dominant poles 

• Settling time (to 1%):  

   ts  radius of poles: 

• Steady state error to unit step:  

ess  final value theorem  
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The z-plane [ for all pole systems ] 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

!! 
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• Poles inside the unit circle 

are stable 

 

• Poles outside the unit circle 

unstable 

 

• Poles on the unit circle 

are oscillatory 

 

• Real poles at 0 < z < 1 

give exponential response 

 

• Higher frequency of 

oscillation for larger  

 

• Lower apparent damping 

for larer  and r 

Pole positions in the z-plane 
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Second Order Digital Systems 
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Response of 2nd order system [1/3] 
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Response of 2nd order system [2/3] 
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Response of 2nd order system [3/3] 
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Discrete-time transfer function 

Source: Boyd, Lecture Notes for EE263, 13-39 
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Design a controller for a system with: 

• A continuous transfer function: 

• A discrete ZOH sampler  

• Sampling time (Ts):  Ts= 1s 

• Controller:  

 

 

The closed loop system is required to have: 

• Mp < 16% 

• ts < 10 s 

• ess < 1 

 

Ex: System Specifications  Control Design [1/4] 
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Ex: System Specifications  Control Design [2/4] 
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Ex: System Specifications  Control Design [3/4] 
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Ex: System Specifications  Control Design [4/4] 
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• Frequency Response 

 

 

 

• Review:  
– Chapter 10 of Lathi  

 

 

• Nothing like a filter to smooth a rough signals  

 

Next Time… 
 
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