AC TABLE	http://elec3004.com
<i>Z</i> -Transforms (Take 2) Linear Time Invariant Discrete Sy	stems
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 8	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u>	March 22, 2019

Week	Date	Lecture Title	
	27-Feb	Introduction	1
1	1-Mar	Systems Overview	1
2	6-Mar	Systems as Maps & Signals as Vectors	1
2	8-Mar	Systems: Linear Differential Systems	
2	13-Mar	Sampling Theory & Data Acquisition	
3	15-Mar	Aliasing & Antialiasing	
	20-Mar	Discrete Time Analysis & Z-Transform	
4	22-Mar	Second Order LTID (& Convolution Review)	1
5	27-Mar	Frequency Response	
5	29-Mar	Filter Analysis	
6	3-Apr	Digital Filters (IIR) & Filter Analysis	
0	5-Apr	Digital Filter (FIR)	
7	10-Apr	Digital Windows	
/	12-Apr	FFT	
8	17-Apr	Active Filters & Estimation & Holiday	
	19-Apr		
	24-Apr	Holiday	
	26-Apr		
9	1-May	Introduction to Feedback Control	
	3-May	Servoregulation/PID	
10	8-May	PID & State-Space	
	10-May	State-Space Control	
11	15-May	Digital Control Design	
	17-MayStability 22-May State Space Control System Design 22-May State Space Control System Design 24 May Charging the Dumping Reserves		
12			
	24-May 29-May	System Identification & Information Theory	
13	2.1 May	System dentification & mormation Theory	1

r

The z-Transform

• It is defined by:

$$z = re^{j\omega}$$

- Or in the Laplace domain: $z = e^{sT}$
- Thus: $Y(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$ $y[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)$
- That is \rightarrow it is a discrete version of the Laplace: $f(kT) = e^{-akT} \Rightarrow \mathcal{Z}{f(k)} = \frac{z}{z - e^{-aT}}$

ELEC 3004: Systems

The z-tra • In practic to find the	ansform e, you'll use lool e z-transform of	k-up tables or co your functions	omputer tools (ie. I	Matlab)
	F(s)	F(kt)	F(z)	
	<u>1</u> <u>s</u>	1	$\frac{z}{z-1}$	
	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$	
	$\frac{1}{s+a}$	e ^{-akT}	$\frac{z}{z - e^{-aT}}$	
	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$	
	$\frac{1}{s^2 + a^2}$	sin(<i>akT</i>)	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$	
ELEC 3004: System	s		2	2 March 2019 - 12

An example!
• Back to our difference equation:
y(k) = x(k) + Ax(k-1) - By(k-1)
becomes
$Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)$ (z + B)Y(z) = (z + A)X(z)
which yields the transfer function: $\frac{Y(z)}{X(z)} = \frac{z+A}{z+B}$
Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}
ELEC 3004: Systems 22 March 2019 - 20

Г

	BREAK	
ELEC 3004: Systems		22 March 2019 - 21

LTI(D) Systems Properties

Region of Convergence

• For the convergence of X(z) we require that

 $\sum_{n=0}^{\infty} \left| a z^{-1} \right|^n < \infty$

• Thus, the ROC is the range of values of z for which $|az^{-1}| < 1$ or, equivalently, |z| > |a|. Then

Step Response

the step response or step matrix is given by

$$s(t) = \int_0^t h(\tau) \; d\tau$$

interpretations:

- $s_{ij}(t)$ is step response from *j*th input to *i*th output
- $s_{ij}(t)$ gives y_i when $u = e_j$ for $t \ge 0$

for invertible A, we have

$$s(t) = CA^{-1} \left(e^{tA} - I \right) B + D$$

Ref: Boyd, EE263, 13-10

ELEC 3004: Systems

	Convolution	
ELEC 3004: Systems		22 March 2019 - 4 1

Discre	te-	Time	e Sys [.]	tems	& C	Discret	e Convolution [2]
Will consid	Will consider <u>causal</u> systems						
iff for al	iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0						
Impulse r	espq	onse				K=0	
input	,0,0,	1,0,0,0	,> 0	utput	.,0,0, <mark>h</mark>	<mark>[0]</mark> ,h[1],	n[2],h[3],
General in	nput	: u[0],u[[1],u[2]	,u[3]	(cfr	linearity	& shift-invariance!)
_	_	-				_	
y[0]]	h[0]	0	0	0		
y[1]		h[1]	<i>h</i> [0]	0	0	$\left[u[0] \right]$	
y[2]]	h[2]	<i>h</i> [1]	<i>h</i> [0]	0	<i>u</i> [1]	
y[3]]	0	<i>h</i> [2]	<i>h</i> [1]	<i>h</i> [0]	u[2]	
v[4	1	0	0	<i>h</i> [2]	<i>h</i> [1]	u[3]	this is called a
v[5]	1	0	0	0	h[2]		`Toeplitz' matrix
	1]	LŬ		Ŭ	···[-]	7 🖌	1
ELEC 3004: Sy:	stems						22 March 2019 - 57

ELEC 3004: Systems

22 March 2019 - 66

Discrete-time transfer function
take \mathcal{Z} -transform of system equations
x(t+1) = Ax(t) + Bu(t), $y(t) = Cx(t) + Du(t)$
yields
zX(z) - zx(0) = AX(z) + BU(z), $Y(z) = CX(z) + DU(z)$
solve for $X(z)$ to get
$X(z) = (zI - A)^{-1}zx(0) + (zI - A)^{-1}BU(z)$
(note extra z in first term!)
hence $V(z) = H(z)U(z) + C(zI - A)^{-1}zz(0)$
where $H(z) = C(zI - A)^{-1}B + D$ is the discrete-time transfer function
where $\Pi(x) = O(x - \Pi) - D + D$ is the unservice time transfer function
note power series expansion of resolvent:
$(zI - A)^{-1} = z^{-1}I + z^{-2}A + z^{-3}A^2 + \cdots$ Source: Boyd, Lecture Notes for EE263, 13-39
ELEC 3004: Systems 22 March 2019 - 80

