http://elec3004.com

## Z-Transforms (Take 2) Linear Time Invariant Discrete Systems

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh

Lecture 8
elec3004@itee.uq.edu.au
March 22, 2019
http://robotics.itee.uq.edu.au/~elec3004/
© 2019 School of Information Technology and Electrical Engineering at The University of Queensland

Lecture Schedule:

| Week | Date | Lecture Title |
| :---: | :---: | :---: |
| 1 | 27-Feb | Introduction |
|  | 1-Mar | Systems Overview |
| 2 | $6-\mathrm{Mar}$ | Systems as Maps \& Signals as Vectors |
|  | $8-\mathrm{Mar}$ | Systems: Linear Differential Systems |
| 3 | 13-Mar | Sampling Theory \& Data Acquisition |
|  | 15-Mar | Aliasing \& Antialiasing |
| 4 | 20-Mar | Discrete Time Analysis \& Z-Transform |
|  | 22-Mar | Second Order LTID (\& Convolution Review) |
| 5 | 27-Mar | Frequency Response |
|  | 29-Mar | Filter Analysis |
| 6 | 3-AprD | Digital Filters (IIR) \& Filter Analysis |
|  | 5-Apr | Digital Filter (FIR) |
| 7 | 10-Apr | Digital Windows |
|  | 12-Apr |  |
| 8 | 17-Apr | Active Filters \& Estimation \& Holiday |
|  | 19-Apr | Holiday |
|  | 24-Apr |  |
|  | 26-Apr |  |
| 9 | 1-May | Introduction to Feedback Control |
|  | 3-May | Servoregulation/PID |
| 10 | 8-May | PID \& State-Space |
|  | 10-May | State-Space Control |
| 11 | 15-May | Digital Control Design |
|  | 17-May | Stability |
| 12 | 22-May | State Space Control System Design |
|  | 24-May | Shaping the Dynamic Response |
| 13 | 29-May | System Identification \& Information Theory |
|  | 31-May | Summary and Course Review |

Follow Along Reading:

B. P. Lathi

Signal processing and linear systems
1998
TK5102.9.L38 1998

## Today

- Chapter 11 (Discrete-Time System Analysis Using the $z$-Transform)
- § 11.1 The Z-Transform
- § 11.2 Some Properties of the $Z$ Transform
- Chapter 9 (Time-Domain Analysis of Discrete-Time Systems)
- § 9.4 System Response to External Input
- § 9.6 System Stability


## z Transforms

(Digital Systems Made eZ)
Extended Explanation ©

## Back to the Zero-order Hold (ZOH)



- Assume that the signal $\mathrm{x}(\mathrm{t})$ is zero for $\mathrm{t} \leqslant \theta$, then the output $\mathrm{h}(\mathrm{t})$ is related to $\mathrm{x}(\mathrm{t})$ as follows:

$$
\begin{aligned}
& h(t)=x(0)[1(t)-1(t-T)]+x(T)[1(t-T)-1(t-2 T)]+\cdots \\
& \quad=\sum_{\mathrm{k}=0}^{\infty} \mathrm{x}(\mathrm{kT})[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]
\end{aligned}
$$

The "hold" adds a delay. The delay leads to difference equations

## Coping with Complexity

Transfer functions help control complexity

- Recall the Laplace transform:

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=F(s)
$$

where

$$
\mathcal{L}\{\dot{f}(t)\}=s F(s)
$$



- Is there a something similar for sampled systems?


## The z-Transform

- It is defined by:

$$
z=r e^{j \omega}
$$

- Or in the Laplace domain:

$$
z=e^{s T}
$$

- Thus: $Y(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k} \quad y[n] \stackrel{Z}{\longleftrightarrow} Y(z)$
- That is $\boldsymbol{\rightarrow} \boldsymbol{i t}$ is a discrete version of the Laplace:

$$
f(k T)=e^{-a k T} \Rightarrow Z\{f(k)\}=\frac{z}{z-e^{-a T}}
$$

## The z-transform

- The discrete equivalent is the $z$-Transform ${ }^{\dagger}$ :

$$
z\{f(k)\}=\sum_{k=0}^{\infty} f(k) z^{-k}=F(z)
$$

and

$$
Z\{f(k-1)\}=z^{-1} F(z)
$$



Convenient!
$\dagger$ This is not an approximation, but approximations are easier to derive

## The z-Transform [2]

- Thus:

$$
Y(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k} \quad y[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)
$$

- z-Transform is analogous to other transforms:

$$
\begin{gathered}
Z\{f(k)\}=\sum_{k=0}^{\infty} f(k) z^{-k}=F(z) \\
\text { and } \\
Z\{f(k-1)\}=z^{-1} F(z)
\end{gathered}
$$

$\therefore$ Giving:


## z-Transforms for Difference Equations

- First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

$$
y[n]=a y[n-1]+b u[n]
$$


$h[n]= \begin{cases}b a^{n} & n \geq 0, \\ 0 & \text { otherwise } .\end{cases}$

$$
H(z)=\sum_{k=0}^{\infty} b a^{k} z^{-k}=b \sum_{k=0}^{\infty}\left(\frac{a}{z}\right)^{k}=\frac{b}{1-a z^{-1}}, \quad \text { when }|z|>|a| .
$$

## z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

$$
y[n]=a y[n-1]+b u[n]
$$



$$
\begin{gathered}
y[n]-a y[n-1]=b u[n] \\
\downarrow \\
Y(z)-a z^{-1} Y(z)=b U(z)
\end{gathered}
$$

$$
H(z)=\frac{Y(z)}{U(z)}=\frac{b}{1-a z^{-1}}, \text { when does it converge? }
$$

## The z-transform

- In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the $z$-transform of your functions

| $\boldsymbol{F}(\boldsymbol{s})$ | $\boldsymbol{F}(\boldsymbol{k} \boldsymbol{t})$ | $\boldsymbol{F}(\mathbf{z})$ |
| :---: | :---: | :---: |
| $\frac{1}{s}$ | 1 | $\frac{z}{z-1}$ |
| $\frac{1}{s^{2}}$ | $k T$ | $\frac{T z}{(z-1)^{2}}$ |
| $\frac{1}{s+a}$ | $e^{-a k T}$ | $\frac{z}{z-e^{-a T}}$ |
| $\frac{1}{(s+a)^{2}}$ | $k T e^{-a k T}$ | $\frac{z T e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$ |
| $\frac{1}{s^{2}+a^{2}}$ | $\sin (a k T)$ | $\frac{z \sin a T}{z^{2}-(2 \cos a T) z+1}$ |

## The z-Plane

$z$-domain poles and zeros can be plotted just
like $s$-domain poles and zeros (of the $\mathcal{L}$ ):

- S-plane:
- $z=e^{s T}$ Plane


- $\lambda$-Plane
$-\gamma$-Plane


## Discrete-Time Exponential $\gamma^{k}$

Recall we defined $z=e^{s T}$
Thus, this is the $\gamma$ plane $\rightarrow$

$$
e^{\lambda k}=\gamma^{k}
$$


(a)

## Discrete-Time Exponential $\gamma^{k}$

- $e^{\lambda k}=\gamma^{k}$
- $\gamma=e^{\lambda}$ or $\lambda=\ln \gamma$

- In discrete-time systems, unlike the continuous-time case, the form $\gamma^{k}$ proves more convenient than the form $e^{\lambda k}$

Why?

- Consider $e^{j \Omega k}$ ( $\lambda=j \Omega \therefore$ constant amplitude oscillatory)
- $e^{j \Omega k} \rightarrow \gamma^{k}$, for $\gamma \equiv e^{j \Omega}$
- $\left|e^{j \Omega}\right|=1$, hence $|\gamma|=1$


## Discrete-Time Exponential $\gamma^{k}$

- Consider $e^{\lambda k}$

When $\lambda$ : LHP

- Then

- $\gamma=e^{\lambda}$
- $\gamma=e^{\lambda}=e^{a+j b}=e^{a} e^{j b}$
- $|\gamma|=\left|e^{a} e^{j b}\right|=\left|e^{a}\right| \because\left|e^{j b}\right|=1$


## Properties of the the $z$-transform

- Some useful properties
- Delay by $n$ samples: $Z\{f(k-n)\}=z^{-n} F(z)$
- Linear: $\mathcal{Z}\{a f(k)+b g(k)\}=a F(z)+b G(z)$
- Convolution: $Z\{f(k) * g(k)\}=F(z) G(z)$

So, all those block diagram manipulation tools you know and love will work just the same!

## More Z-Transform Properties

- Time Reversal

$$
x[n] \leftrightarrow X(z) \quad \mathrm{ROC}=R
$$

$$
x[-n] \leftrightarrow X\left(\frac{1}{z}\right) \quad R^{\prime}=\frac{1}{R}
$$

- Multiplication by n (or Differentiation in $z$ ):

$$
\begin{aligned}
& x[n] \leftrightarrow X(z) \quad \text { ROC }=R \\
& n x[n] \leftrightarrow-z \frac{d X(z)}{d z} \quad R^{\prime}=R
\end{aligned}
$$

- Multiplication by $z^{n}$

$$
x[n] \leftrightarrow X(z) \quad \mathrm{ROC}=R
$$

$$
z_{0}^{n} x[n] \leftrightarrow X\left(\frac{z}{z_{0}}\right) \quad R^{\prime}=\left|z_{0}\right| R
$$

- Convolution

$$
\begin{array}{ll}
x_{1}[n] \leftrightarrow X_{1}(z) & \mathrm{ROC}=R_{1} \\
x_{2}[n] \leftrightarrow X_{2}(z) & \mathrm{ROC}=R_{2}
\end{array}
$$

$$
x_{1}[n] * x_{2}[n] \leftrightarrow X_{1}(z) X_{2}(z) \quad R^{\prime} \supset R_{1} \cap R_{2}
$$

## Z-Transform Properties: Time Shifting

$$
y\left[n-n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_{0}} Y(z)
$$

$$
\begin{aligned}
y_{2}[n] & =y\left[n-n_{0}\right] \\
Y_{2}\left(e^{j w}\right) & =\sum_{k=-\infty}^{\infty} y\left[k-n_{0}\right] z^{-k} \\
& =\sum_{l=-\infty}^{\infty} y[l] z^{-\left(l+n_{0}\right)} \\
& =z^{-n_{0}} Y(z)
\end{aligned}
$$

- Two Special Cases:
- $\mathrm{z}^{-1}$ : the unit-delay operator:

$$
x[n-1] \leftrightarrow z^{-1} X(z) \quad R^{\prime}=R \cap\{0<|z|\}
$$

- z: unit-advance operator:

$$
x[n+1] \leftrightarrow z X(z) \quad R^{\prime}=R \cap\{|z|<\infty\}
$$

## An example!

- Back to our difference equation:

$$
y(k)=x(k)+A x(k-1)-B y(k-1)
$$

becomes

$$
\begin{gathered}
Y(z)=X(z)+A z^{-1} X(z)-B z^{-1} Y(z) \\
(z+B) Y(z)=(z+A) X(z)
\end{gathered}
$$

which yields the transfer function:

$$
\frac{Y(z)}{X(z)}=\frac{z+A}{z+B}
$$

Note: It is also not uncommon to see systems expressed as polynomials in $z^{-n}$

## BREAK

LTI(D) Systems Properties

## System Stability



Fig. 2.15 Characteristic roots location and system stability.

## System Stability [II]



## System Stability [III]



Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.

## ELEC 3004: Systems

## Y -plane Stability

- For a $\gamma$-Plane (e.g. the one the $z$-domain is embedded in) the unit circle is the system stability bound




## $\gamma$-plane Stability

- That is, in the $z$-domain, the unit circle is the system stability bound




## z-plane stability

- The z-plane root-locus in closed loop feedback behaves just like the s-plane:




## Region of Convergence

- For the convergence of $\mathrm{X}(\mathrm{z})$ we require that

$$
\sum_{n=0}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

- Thus, the ROC is the range of values of z for which $\left|\mathrm{az}^{-1}\right|<1$ or, equivalently, $|z|>|a|$. Then

$$
X(z)=\frac{z}{z-a} \quad|z|>|a|
$$




## An Example Circuit...



## Frame as a LDS $\rightarrow$ LTI LTS $\rightarrow$ LTID LTS



- $\boldsymbol{A} x$ is the drift term (of $\dot{x}$ )
- $\boldsymbol{B} u$ is the input term (of $\dot{x}$ )


## Transfer Function

Take the Laplace transform of $\dot{x}=\boldsymbol{A} x+\boldsymbol{B} u$

$$
\begin{gathered}
s X(s)-x(0)=\boldsymbol{A} X(s)+\boldsymbol{B} U(s) \\
X(s)=(s I-\boldsymbol{A})^{-\mathbf{1}} x(0)+(s I-A)^{\wedge}-1 \boldsymbol{B} U(s) \\
\Rightarrow \\
x(t)=e^{t \boldsymbol{A}} x(0)+\int_{0}^{t} e^{(t-\tau) \boldsymbol{A}} \cdot B u(\tau) d \tau
\end{gathered}
$$

- $e^{t \boldsymbol{A}} x(0)$ : unforced or autonomous response
- $e^{t A} B$ : input-to-state $\rightarrow$ impulse response matrix
- $(s I-A)^{-1} \boldsymbol{B}$ : transfer function or transfer matrix


## Transfer Function [2]

with $y=\boldsymbol{C} x+\boldsymbol{D} u$ we have:

$$
\begin{gathered}
Y(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} x(0)+\left(\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+D\right) U(s) \\
\quad \Rightarrow y(t)=\boldsymbol{C} e^{t \boldsymbol{A}} x(0)+\int_{0}^{t} \boldsymbol{C} e^{(t-\tau) \boldsymbol{A}} \cdot \boldsymbol{B} u(\tau) d \tau+\boldsymbol{D} u(t)
\end{gathered}
$$

- $C e^{t A} x(0)$ :initial condition
- $H(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}$ :transfer function/matrix
- $h(t)=\boldsymbol{C} e^{t \boldsymbol{A}} \cdot B+D \delta(t)$ : impulse response

With zero initial conditions we have:

- $Y(s)=H(s) U(s), y=h * u$


## Impulse Response

impulse response $h(t)=C e^{t A} B+D \delta(t)$
with $x(0)=0, y=h * u$, i.e.,

$$
y_{i}(t)=\sum_{j=1}^{m} \int_{0}^{t} h_{i j}(t-\tau) u_{j}(\tau) d \tau
$$

interpretations:

- $h_{i j}(t)$ is impulse response from $j$ th input to $i$ th output
- $h_{i j}(t)$ gives $y_{i}$ when $u(t)=e_{j} \delta$
- $h_{i j}(\tau)$ shows how dependent output $i$ is, on what input $j$ was, $\tau$ seconds ago
- $i$ indexes output; $j$ indexes input; $\tau$ indexes time lag


## Step Response

the step response or step matrix is given by

$$
s(t)=\int_{0}^{t} h(\tau) d \tau
$$

interpretations:

- $s_{i j}(t)$ is step response from $j$ th input to $i$ th output
- $s_{i j}(t)$ gives $y_{i}$ when $u=e_{j}$ for $t \geq 0$
for invertible $A$, we have

$$
s(t)=C A^{-1}\left(e^{t A}-I\right) B+D
$$

## Static (DC) Gain Matrix

- transfer function at $s=0$ is $H(0)=-C A^{-1} B+D \in \mathbf{R}^{m \times p}$
- DC transfer function describes system under static conditions, i.e., $x$, $u, y$ constant:

$$
0=\dot{x}=A x+B u, \quad y=C x+D u
$$

eliminate $x$ to get $y=H(0) u$

- if system is stable,

$$
H(0)=\int_{0}^{\infty} h(t) d t=\lim _{t \rightarrow \infty} s(t)
$$

(recall: $\left.H(s)=\int_{0}^{\infty} e^{-s t} h(t) d t, s(t)=\int_{0}^{t} h(\tau) d \tau\right)$
if $u(t) \rightarrow u_{\infty} \in \mathbf{R}^{m}$, then $y(t) \rightarrow y_{\infty} \in \mathbf{R}^{p}$ where $y_{\infty}=H(0) u_{\infty}$

## Back to the Example

$$
\boldsymbol{\forall} \dot{x}=\left[\begin{array}{rrrr}
-3 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & -2 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u, \quad y=x
$$


$\begin{aligned}> & \text { eig }(A) \\ > & -3.9563 \\ & -2.2091 \\ & -0.6617 \\ & -0.1729\end{aligned}$
Step Response $(s(t))$ :

## BREAK

## Discretization with piecewise constant inputs

linear system $\dot{x}=A x+B u, y=C x+D u$
suppose $u_{d}: \mathbf{Z}_{+} \rightarrow \mathbf{R}^{m}$ is a sequence, and

$$
u(t)=u_{d}(k) \quad \text { for } \quad k h \leq t<(k+1) h, \quad k=0,1, \ldots
$$

define sequences

$$
x_{d}(k)=x(k h), \quad y_{d}(k)=y(k h), \quad k=0,1, \ldots
$$

- $h>0$ is called the sample interval (for $x$ and $y$ ) or update interval (for u)
- $u$ is piecewise constant (called zero-order-hold)
- $x_{d}, y_{d}$ are sampled versions of $x, y$


## Discretization with piecewise constant inputs [2]

$$
\begin{aligned}
x_{d}(k+1) & =x((k+1) h) \\
& =e^{h A} x(k h)+\int_{0}^{h} e^{\tau A} B u((k+1) h-\tau) d \tau \\
& =e^{h A} x_{d}(k)+\left(\int_{0}^{h} e^{\tau A} d \tau\right) B u_{d}(k)
\end{aligned}
$$

$x_{d}, u_{d}$, and $y_{d}$ satisfy discrete-time LDS equations

$$
x_{d}(k+1)=A_{d} x_{d}(k)+B_{d} u_{d}(k), \quad y_{d}(k)=C_{d} x_{d}(k)+D_{d} u_{d}(k)
$$

$A_{d}=e^{h A}, \quad B_{d}=\left(\int_{0}^{h} e^{\tau A} d \tau\right) B, \quad C_{d}=C, \quad D_{d}=D$
called discretized system
if $A$ is invertible, we can express integral as

$$
\int_{0}^{h} e^{\tau A} d \tau=A^{-1}\left(e^{h A}-I\right)
$$

stability: if eigenvalues of $A$ are $\lambda_{1}, \ldots, \lambda_{n}$, then eigenvalues of $A_{d}$ are $e^{h \lambda_{1}}, \ldots, e^{h \lambda_{n}}$
discretization preserves stability properties since
$\Re \lambda_{i}<0 \Leftrightarrow\left|e^{h \lambda_{i}}\right|<1$
for $h>0$

## Convolution

## Convolution Definition

The convolution of two functions $f_{1}(t)$ and $f_{2}(t)$ is defined as:

$$
\begin{aligned}
f(t) & =\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& =f_{1}(t) * f_{2}(t)
\end{aligned}
$$

## Convolution Properties

$$
f_{1}(t) * f_{2}(t) \equiv \int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau
$$

Properties:

- Commutative: $f_{1}(t) * f_{2}(t)=f_{2}(t) * f_{1}(t)$
- Distributive: $f_{1}(t) *\left[f_{2}(t)+f_{3}(t)\right]=f_{1}(t) * f_{2}(t)+f_{1}(t) * f_{3}(t)$
- Associative: $f_{1}(t) *\left[f_{2}(t) * f_{3}(t)\right]=\left[f_{1}(t) * f_{2}(t)\right] * f_{3}(t)$
- Shift:
if $f_{1}(t) * f_{2}(t)=c(t)$, then $f_{l}(t-\mathbf{T}) * f_{2}(t)=f_{l}(t) * f_{2}(t-\mathbf{T})=c(t-\mathbf{T})$
- Identity (Convolution with an Impulse):

$$
f(t) * \delta(t)=f(t)
$$

- Total Width:



## Convolution Properties [II]

- Convolution systems are linear:

$$
h *\left(\alpha u_{1}+\beta u_{2}\right)=\alpha\left(h * u_{1}\right)+\beta\left(h * u_{2}\right)
$$

- Convolution systems are causal: the output $y(t)$ at time $t$ depends only on past inputs
- Convolution systems are time-invariant (if we shift the signal, the output similarly shifts)

$$
\begin{aligned}
\rightarrow & \widetilde{u}(t)
\end{aligned}=\left\{\begin{array}{ll}
0 & t<T \\
u(t-T) & t \geq 0
\end{array}\right\}
$$

## Convolution Properties [III]

- Composition of convolution systems corresponds to:
- multiplication of transfer functions
- convolution of impulse responses

- Thus:

- We can manipulate block diagrams with transfer functions as if they were simple gains
- convolution systems commute with each other


## Properties of Convolution: Distributive Property

$$
\left[f_{1}(t) * f_{2}(t)\right] * f_{3}(t)=f_{1}(t) *\left[f_{2}(t) * f_{3}(t)\right]
$$



- The two systems are identical!


## Properties of Convolution: Commutative Property

$$
f_{1}(t) * f_{2}(t)=f_{2}(t) * f_{1}(t)
$$

$$
\begin{aligned}
f_{1}(t) * f_{2}(t) & =\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau=\int_{\tau=-\infty}^{\tau=\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau \\
& =\int_{t-\tau=-\infty}^{t-\tau=\infty} f_{1}(t-\tau) f_{2}[t-(t-\tau)] d(t-\tau) \\
& =-\int_{\tau=-\infty}^{\tau=-\infty} f_{1}(t-\tau) f_{2}(\tau) d \tau \\
& =\int_{-\infty}^{\infty} f_{1}(t-\tau) f_{2}(\tau) d \tau=f_{2}(t) * f_{1}(t)
\end{aligned}
$$

## Properties of Convolution: LTI System Response

$$
f_{1}(t) * f_{2}(t)=f_{2}(t) * f_{1}(t)
$$



## Properties of Convolution

$$
\begin{aligned}
f(t) * \delta(t)=f(t) & f(t) \Rightarrow \delta(t) \Rightarrow f(t) \\
f(t) * \delta(t) & =\int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} f(t-\tau) \delta(\tau) d \tau \\
& =f(t)
\end{aligned}
$$

## Properties of Convolution

$$
\begin{aligned}
& f(t) * \delta(t)=f(t) \quad f(t) \Rightarrow \delta(t) \Rightarrow f(t) \\
& f(t) * \delta(t-T)=f(t-T) * \delta(t-T)=\int_{-\infty}^{\infty} f(\tau) \delta(t-T-\tau) d \tau \\
& =\int_{-\infty}^{\infty} f(t-T-\tau) \delta(\tau) d \tau \\
& =
\end{aligned}
$$

## Properties of Convolution

$f(t) * \delta(t-T)=f(t-T)$


## Properties of Convolution

$$
\begin{aligned}
& f_{1}(t) * f_{2}(t) \stackrel{F}{\longleftrightarrow} F_{1}(j \omega) F_{2}(j \omega) \\
& F\left[f_{1}(t) * f_{2}(t)\right]=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau\right] e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} f_{1}(\tau)\left[\int_{-\infty}^{\infty} f_{2}(t-\tau) e^{-j \omega t} d t\right] d \tau \\
& =\int_{-\infty}^{\infty} f_{1}(\tau) F_{2}(j \omega) e^{-j \omega \tau} d \tau \\
& =F_{2}(j \omega) \int_{-\infty}^{\infty} f_{1}(\tau) e^{-j \omega \tau} d \tau=F_{1}(j \omega) F_{2}(j \omega)
\end{aligned}
$$

Time Domain convolution

Frequency Domain multiplication

## Properties of Convolution

$$
f_{1}(t) * f_{2}(t) \stackrel{{ }_{\tau}}{\longleftrightarrow} F_{1}(j \omega) F_{2}(j \omega)
$$



An Ideal Low-Pass Filter

## Properties of Convolution

$$
f_{1}(t) * f_{2}(t) \stackrel{F}{\longleftrightarrow} F_{1}(j \omega) F_{2}(j \omega)
$$



An Ideal High-Pass Filter

## Discrete Convolution

$$
y[n]=x[n] * h[n]=\sum_{m=-\infty}^{\infty} x[m] \cdot h[n-m]=\sum_{m=-\infty}^{\infty} h[m] \cdot x[n-m]
$$

Consider this for the discrete case:

1. Rename the independent variable as $\mathbf{m}$. You now have $\mathbf{x}[\mathbf{m}]$ and $\mathbf{h}[\mathbf{m}]$.

Flip $\mathbf{h}[\mathbf{m}]$ over the origin. This is $\mathbf{h}[-\mathbf{m}]$
2. Shift $\mathbf{h}[-\mathbf{m}]$ as far left as possible to a point " $\mathbf{n}$ ", where the two signals barely touch. This is $\mathbf{h}[\mathbf{n}-\mathbf{m}]$
3. Multiply the two signals and sum over all values of $\mathbf{m}$. This is the convolution sum for the specific " $\mathbf{n}$ " picked above.
4. Shift / move $\mathbf{h}[-\mathbf{m}]$ to the right by one sample, and obtain a new $\mathbf{h}[\mathbf{n}-\mathbf{m}]$. Multiply and sum over all $\mathbf{m}$.
5. 5. Repeat $2 \sim 4$ until $\mathbf{h}[\mathbf{n}-\mathbf{m}]$ no longer overlaps with $\mathbf{x}[\mathbf{m}]$, i.e., shifted out of the $\mathbf{x}[\mathbf{m}]$ zone.

The " $n$ " dependency of $y[n]$ deserves some care:
For each value of " $n$ " the convolution sum must be computed separately over all values of a dummy variable " $m$ ".

## Discrete-Time Systems \& Discrete Convolution [I]

Will consider linear time-invariant (LTI) systems


## Linear :

input u1[k] -> output y1[k]
input u2[k] -> output y2[k]
hence a.u1 $[\mathrm{k}]+\mathrm{b} . \mathrm{u} 2[\mathrm{k}]->$ a.y1 $[\mathrm{k}]+\mathrm{b} . \mathrm{y} 2[\mathrm{k}]$
Time-invariant (shift-invariant)
input $\mathrm{u}[\mathrm{k}]$-> output $\mathrm{y}[\mathrm{k}]$
hence input $u[k-T]$-> output $\mathrm{y}[\mathrm{k}-\mathrm{T}]$

## Discrete-Time Systems \& Discrete Convolution [2]

Will consider causal systems
iff for all input signals with $u[k]=0, k<0->$ output $y[k]=0, k<0$
Impulse responnse
input $\ldots, 0,0,1,0,0,0, \ldots->$ output $\ldots, 0,0, \mathrm{~h}[0], \mathrm{h}[1], \mathrm{h}[2], \mathrm{h}[3], \ldots$
General input $\mathrm{u}[0], \mathrm{u}[1], \mathrm{u}[2], \mathrm{u}[3] \quad$ (cfr. linearity \& shift-invariance!)
\(\left[$$
\begin{array}{c}y[0] \\
y[1] \\
y[2] \\
y[3] \\
y[4] \\
y[5]\end{array}
$$\right]=\left[$$
\begin{array}{cccc}h[0] & 0 & 0 & 0 \\
h[1] & h[0] & 0 & 0 \\
h[2] & h[1] & h[0] & 0 \\
0 & h[2] & h[1] & h[0] \\
0 & 0 & h[2] & h[1] \\
0 & 0 & 0 & h[2]\end{array}
$$\right] \cdot\left[\begin{array}{l}u[0] <br>
u[1] <br>
u[2] <br>

u[3]\end{array}\right] \quad\)\begin{tabular}{l}
<br>

$\quad$

<br>
this is called a
\end{tabular}

## Discrete-Time Systems \& Discrete Convolution [3]



## Discrete-Time Systems \& Discrete Convolution [4]

Z-Transform of system h[k] and signals $u[k], y[k]$
Definition:
Input/output relation: $H(z)=\sum_{k} h[k] \cdot z^{k} U(z)=\sum_{k} u[k] \cdot z^{k} \quad Y(z)=\sum_{k} y[k] \cdot z^{k}$
$\underbrace{\left[\begin{array}{llllll}1 & z^{-1} & z^{-2} & z^{-3} & z^{-4} & z^{-5}\end{array}\right]\left[\begin{array}{l}y[0] \\ y[1] \\ y[2] \\ y[3] \\ y[4] \\ y[5]\end{array}\right]}_{Y(z)} \underbrace{\left[\begin{array}{lllll}1 & z^{-1} & z^{-2} & z^{-3} & z^{-4} \\ z^{-5}\end{array}\right]}_{H(z) .\left[\begin{array}{llllll}1 & z^{-1} & z^{-2} & z^{-3}\end{array}\right]}\left[\begin{array}{cccc}h[0] & 0 & 0 & 0 \\ h[1] & h[0] & 0 & 0 \\ h[2] & h[1] & h[0] & 0 \\ 0 & h[2] & h[1] & h[0] \\ 0 & 0 & h[2] & h[1] \\ 0 & 0 & 0 & h[2]\end{array}\right] \cdot\left[\begin{array}{l}u[0] \\ u[1] \\ u[2] \\ u[3]\end{array}\right]$
$\Rightarrow Y(z)=H(z) \cdot U(z) \quad \mathrm{H}(\mathrm{z})$ is 'transfer function'

## Matrix Formulation of Convolution

$$
\begin{gathered}
\mathbf{y}=\mathbf{H x} \\
{\left[\begin{array}{l}
3 \\
8 \\
14 \\
20 \\
26 \\
14 \\
5
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

## Graphical Understanding of Convolution

$\rightarrow$ For $\mathrm{c}(\boldsymbol{\tau})=(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau:$

1. Keep the function $f(\tau)$ fixed
2. Flip (invert) the function $\boldsymbol{g}(\tau)$ about the vertical axis ( $\tau=0$ )

$$
=\text { this is } g(-\tau)
$$

3. Shift this frame $(g(-\tau))$ along $\tau$ (horizontal axis) by $\mathbf{t}_{0}$. $=$ this is $g\left(\mathbf{t}_{0}-\tau\right)$

## $\rightarrow$ For $\mathrm{c}\left(\mathbf{t}_{\mathbf{0}}\right)$ :

4. $\quad \mathbf{c}\left(\mathbf{t}_{0}\right)=$ the area under the product of $f(\tau)$ and $g\left(\mathbf{t}_{0}-\tau\right)$
5. Repeat this procedure, shifting the frame by different values (positive and negative) to obtain $\mathbf{c}(\mathbf{t})$ for all values of $\mathbf{t}$.


## Another View

e.g. convolution

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=12345 \\
& \mathrm{~h}(\mathrm{n})=321
\end{aligned}
$$

| $\mathrm{x}(\mathrm{k})$ | 001 | $2345$ | 0012 | 345 | 00123 | 45 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{h}(\mathrm{n}, \mathrm{k})$ | 123 | 0000 | 0123 | 000 | 00123 | 00 | $h(n-k)$ |
| $y(n, k)$ | 3 |  | 26 |  | 149 |  |  |
| $\mathrm{y}(\mathrm{n})$ | 3 |  |  | er all |  |  | Notice the ain |

## Convolution \& Systems

- Convolution system with input $u(u(t)=0, t<0)$ and output $y$ :

$$
y(t)=\int_{0}^{t} h(\tau) u(t-\tau) d \tau=\int_{0}^{t} h(t-\tau) u(\tau) d \tau
$$

- abbreviated:

$$
y=h * u
$$

- in the frequency domain:

$$
Y(s)=H(s) U(s)
$$

## Convolution \& Feedback



- In the time domain:

$$
y(t)=\int_{0}^{t} g(t-\tau)(u(\tau)-y(\tau)) d \tau
$$

- In the frequency domain:
$-\mathrm{Y}=\mathrm{G}(\mathrm{U}-\mathrm{Y})$
$\rightarrow \mathrm{Y}(\mathrm{s})=\mathrm{H}(\mathrm{s}) \mathrm{U}(\mathrm{s})$

$$
H(s)=\frac{G(s)}{1+G(s)}
$$

## $2^{\text {nd }}$ Order LTID

## 2 ${ }^{\text {nd }}$ Order System Response

- Response of a $2^{\text {nd }}$ order system to increasing levels of damping:



## $2^{\text {nd }}$ Order System Specifications

Characterizing the step response:


- Rise time $(10 \% \rightarrow 90 \%): t_{r} \approx \frac{1.8}{\omega_{0}}$
- Overshoot: $M_{p} \approx \frac{e^{-\pi \zeta}}{\sqrt{1-\zeta^{2}}}$
- Settling time (to $1 \%$ ): $t_{s}=\frac{4.6}{\zeta \omega_{0}}$
- Steady state error to unit step:
$e_{s s}$
- Phase margin:
$\phi_{P M} \approx 100 \zeta$


## $2^{\text {nd }}$ Order System Specifications

Characterizing the step response:


- Rise time ( $10 \% \rightarrow 90 \%$ ) \& Overshoot:
$\mathrm{t}_{\mathrm{r}}, \mathrm{M}_{\mathrm{p}} \rightarrow \zeta, \omega_{0}$ : Locations of dominant poles
- Settling time (to $1 \%$ ):
$\mathrm{t}_{\mathrm{s}} \rightarrow$ radius of poles: $|z|<0.01^{\frac{T}{\%}}$
- Steady state error to unit step:
$e_{s s} \rightarrow$ final value theorem $e_{s s}=\lim _{z \rightarrow 1}\{(z-1) F(z)\}$


## ELEC 3004: Systems

## The z-plane [ for all pole systems ]

- We can understand system response by pole location in the $z$ plane
[Adapted from Franklin, Powell and Emami-Naeini]



## Effect of pole positions

- We can understand system response by pole location in the $z$ plane



## Effect of pole positions

- We can understand system response by pole location in the $z$ plane



## Effect of pole positions

- We can understand system response by pole location in the $z$ plane



## Pole positions in the z-plane

- Poles inside the unit circle are stable
- Poles outside the unit circle unstable
- Poles on the unit circle are oscillatory
- Real poles at $0<z<1$ give exponential response
- Higher frequency of oscillation for larger
- Lower apparent damping for larer and r



## Damping and natural frequency

$$
z=e^{s T} \text { where } s=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
$$



[^0]22 March 2019-75

## Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:

$$
y(t)=e^{-a t} \cos (b t) \mathcal{U}(t) \quad(\mathcal{U}(t)=\text { unit step })
$$

$\star$ sample: $\quad y(k T)=r^{k} \cos (k \theta) \mathcal{U}(k T)$ with $r=e^{-a T}$ \& $\theta=b T$
$\star$ transform: $Y(z)=\frac{1}{2} \frac{z}{\left(z-r e^{j \theta}\right)}+\frac{1}{2} \frac{z}{\left(z-r e^{-j \theta}\right)}$

$$
=\frac{z(z-r \cos \theta)}{\left(z-r e^{j \theta}\right)\left(z-r e^{-j \theta}\right)}
$$

$\star$ e.g. $y_{k}$ is the pulse response of $G(z)$ :
$G(z)=\frac{z(z-r \cos \theta)}{\left(z-r e^{j \theta}\right)\left(z-r e^{-j \theta}\right)}$
poles: $\left\{\begin{array}{l}z=r e^{j \theta} \\ z=r e^{-j \theta}\end{array}\right.$
zeros: $\left\{\begin{array}{l}z=0 \\ z=r \cos \theta\end{array}\right.$


## Response of 2nd order system [1/3]

Responses for varying $r$ :
$\triangleright \quad r<1$
$\Downarrow$
exponentially decaying envelope

$\triangleright \quad r=1$
$\Downarrow$
sinusoidal response with $2 \pi / \theta$ samples per period

$\triangleright \quad r>1$
exponentially increasing envelope


## Response of 2nd order system [2/3]

Responses for varying $\theta$ :
$\triangleright \quad \theta=0$
$\Downarrow$
decaying exponential

$\triangleright \quad \theta=\pi / 2$
$\Downarrow$
$2 \pi / \theta=4$ samples
per period

$\triangleright \quad \theta=\pi$
$\Downarrow$
2 samples per period


ELEC 3004: Systems

## Response of 2nd order system [3/3]

Some special cases:
$\triangleright$ for $\theta=0, Y(z)$ simplifies to:

$$
Y(z)=\frac{z}{z-r}
$$

$\Longrightarrow$ exponentially decaying response
$\triangleright$ when $\theta=0$ and $r=1$ :

$$
Y(z)=\frac{z}{z-1}
$$

$\Longrightarrow$ unit step
$\triangleright$ when $r=0$ :

$$
Y(z)=1
$$

$\Longrightarrow$ unit pulse
$\triangleright$ when $\theta=0$ and $-1<r<0$ :
samples of alternating signs

## Discrete-time transfer function

take $\mathcal{Z}$-transform of system equations

$$
x(t+1)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

yields

$$
z X(z)-z x(0)=A X(z)+B U(z), \quad Y(z)=C X(z)+D U(z)
$$

solve for $X(z)$ to get

$$
X(z)=(z I-A)^{-1} z x(0)+(z I-A)^{-1} B U(z)
$$

(note extra $z$ in first term!)
hence

$$
Y(z)=H(z) U(z)+C(z I-A)^{-1} z x(0)
$$

where $H(z)=C(z I-A)^{-1} B+D$ is the discrete-time transfer function note power series expansion of resolvent:

$$
(z I-A)^{-1}=z^{-1} I+z^{-2} A+z^{-3} A^{2}+\cdots
$$

## Ex: System Specifications $\rightarrow$ Control Design [I/4]

Design a controller for a system with:

- A continuous transfer function: $G(s)=\frac{0.1}{s(s+0.1)}$
- A discrete ZOH sampler
- Sampling time ( $\mathrm{T}_{\mathrm{s}}$ ): $\mathrm{T}_{\mathrm{s}}=1 \mathrm{~s}$
- Controller:

$$
u_{k}=-0.5 u_{k-1}+13\left(e_{k}-0.88 e_{k-1}\right)
$$

The closed loop system is required to have:

- $\mathrm{M}_{\mathrm{p}}<16 \%$
- $\mathrm{t}_{\mathrm{s}}<10 \mathrm{~s}$
- $\mathrm{e}_{\mathrm{ss}}<1$


## Ex: System Specifications $\rightarrow$ Control Design [2/4]

1. (a) Find the pulse transfer function of $G(s)$ plus the $\mathbf{Z O H}$


$$
G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}=\frac{(z-1)}{z} \mathcal{Z}\left\{\frac{0.1}{s^{2}(s+0.1)}\right\}
$$

e.g. look up $\mathcal{Z}\left\{a / s^{2}(s+a)\right\}$ in tables:

$$
\begin{aligned}
G(z) & =\frac{(z-1)}{z} \frac{z\left(\left(0.1-1+e^{-0.1}\right) z+\left(1-e^{-0.1}-0.1 e^{-0.1}\right)\right)}{0.1(z-1)^{2}\left(z-e^{-0.1}\right)} \\
& =\frac{0.0484(z+0.9672)}{(z-1)(z-0.9048)}
\end{aligned}
$$

(b) Find the controller transfer function (using $z=$ shift operator):

$$
\frac{U(z)}{E(z)}=D(z)=13 \frac{\left(1-0.88 z^{-1}\right)}{\left(1+0.5 z^{-1}\right)}=13 \frac{(z-0.88)}{(z+0.5)}
$$

## Ex: System Specifications $\rightarrow$ Control Design [3/4]

2. Check the steady state error $e_{s s}$ when $r_{k}=$ unit ramp

$$
e_{s s}=\lim _{k \rightarrow \infty} e_{k}=\lim _{z \rightarrow 1}(z-1) E(z)
$$


so $\quad e_{s s}=\lim _{z \rightarrow 1}\left\{(z-1) \frac{T z}{(z-1)^{2}} \frac{1}{1+D(z) G(z)}\right\}=\lim _{z \rightarrow 1} \frac{T}{(z-1) D(z) G(z)}$

$$
=\lim _{z \rightarrow 1} \frac{T}{(z-1) \frac{0.0484(z+0.9672)}{(z-1)(z-0.9048)} D(1)}
$$

$$
=\frac{1-0.9048}{0.0484(1+0.9672) D(1)}=0.96
$$

$\Longrightarrow e_{s s}<1 \quad$ (as required)


## Ex: System Specifications $\rightarrow$ Control Design [4/4]

3. Step response: overshoot $M_{p}<16 \% \Longrightarrow \zeta>0.5$

$$
\text { settling time } t_{s}<10 \Longrightarrow|z|<0.01^{1 / 10}=0.63
$$

The closed loop poles are the roots of $1+D(z) G(z)=0$, i.e.

$$
\begin{aligned}
& 1+13 \frac{(z-0.88)}{(z+0.5)} \frac{0.0484(z+0.9672)}{(z-1)(z-0.9048)}=0 \\
\Longrightarrow & z=0.88,-0.050 \pm j 0.304
\end{aligned}
$$

But the pole at $z=0.88$ is cancelled by controller zero at $z=0.88$, and

$$
z=-0.050 \pm j 0.304=r e^{ \pm j \theta} \Longrightarrow\left\{\begin{array}{l}
r=0.31, \theta=1.73 \\
\zeta=0.56
\end{array}\right.
$$



- Frequency Response
- Review:
- Chapter 10 of Lathi
- Nothing like a filter to smooth a rough signals ©


[^0]:    E4. ELEC 3004: Systems

