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Follow Along Reading:

— Today
'ﬁ,‘ B. P. Lathi  Chapter 8 (Discrete-Time Signals
Micar Signal processing
" andlinear systems and Systems)
Y 1098 — §8.1Introduction
TK5102.9.1.38 1998 — §8.2 Some Useful Discrete-Time Signal Models

— 88.3 Sampling Continuous-Time
Sinusoids & Aliasing

— 88.4 Useful Signal Operations
— 88.5 Examples of Discrete-Time Systems

.+ Chapter 11 (Discrete-Time System
:  Analysis Using the z-Transform)
— §11.1 The Z-Transform

— §11.2 Some Properties of the Z-
Transform

. Next Timg =ssssssssssssssssssssssssssannnsssnsnsansnannnnnnnns ,

Data Acquisition
(A/D Conversion)
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Representation of Signal

« Time Discretization « Digitization

Coarse time discretization
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Practical Sampling

« Sample and Hold (S/H)
— takes a sample every At seconds
— holds that value constant until next sample

* Produces ‘staircase’ waveform, x(nAt)

sample instant

f/gﬁ xony

X

— t

hold for At




Practical Reconstruction

Two stage process: 2. Reconstruction filter
1. Digital to analogue « non-ideal filter: w, = %
converter (D/ A)_ « further reduces replica
« zero order hold filter spectrums
» produces ‘staircase’ « usually 4th — 6th order
analogue output (Butterworth)
— 4.6t Order: for acceptable phase response
e s P e
wos] |

Ex,: Sinc

Quantisation

 Analogue to digital converter (A/D)

— Calculates nearest binary number to x(nAt)
* Xg[n] = a(x(nAt)), where () is non-linear rounding fctn
— output modeled as x,[n] = x(nAt) + e[n]

» Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise’ (e[n])

— error reduced as number of bits in A/D increased
* i.e., Ax, quantisation step size reduces

AX
<
‘e[n]‘ - 2




Input-output for 4-bit quantiser
(two’s compliment)
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2A
AX = —
2" -1
where A = max amplitude
m = no. quantisation bits

0100 :
y—'ﬁ
010 '

0111
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0101 -

0001 “y
0000 quantisation
1111 step size
-2| 1110

-3| 1101

-4 1100

-5 1011

-6 1010

-7 1000

|'_\OHI\)OOJ>O"ICD\J

Analogue

D/A Converter

» Analogue output y(t) is
— convolution of output samples y(nAt) with hqy(t)

y(t) =D y(nAt)hg, (t—nAt)

1, 0<t<At
hyon (1) =14
on (1) {0, otherwise
— JwWAt \sin(wAt/2)
H w) =Ate
o ()= terp 1AL SIS

D/Ais lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required




Discrete-Time
Signal Analysis
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Simple Controller Goes Digital
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———» d; = desiredFront

» , = distanceFront
plant: y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]
Complex system behaviors, depending on K

+ }—| controller — plant dy




Digitisation

 Continuous signals sampled with period T

« kth control value computed at t, = kT

re! e(kT) o u(kT hu(t) y(t)
+ S (KT) Difference ( )> DAC S H(s) 5
I r(kT) % equations |
|
|
: |
I |
| l
|
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________ controller ~~ """~
Digitisation
« Continuous signals sampled with period T
« kth control value computed at t, = kT
. T TTTT- T T === ====" 1
r(t) ! e(kT) [ o; u(kT () y(t)
16 N + @ (kT) Difference ( L DAC > H(s) 5
| r(kT) A equations ' :
; i .
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Discrete-Time Signal: f[k]

SLk1l} or f{kT)

2T 'r 5T 0T =

1 i

* Impulse Train Model:

— May be denoted by f(kT), where time t values are specified at t = kT
— OR f[Kk] and viewed as a function of k (k € integer)
 Continuous-time exponential Model:

s f(t) = et sampledat T=0.1=> f(kT) = e ¥ = =01k

Discrete-Time Impulse Function §[k]

5 (k]

{=}

k—n—

B [k=m]

1 W -

The discrete-time counterpart of the continuous-time impulss function §{(¢) is
5[k}, defined by

1 k=0
= 1
ti={y 170 81}
This funetion, also called the unit impulse sequence, is shown in Fig. 8.3a. The time-
shifted impulse sequence §[k—m] is depicted in Fig. 8.3b. Unlike its continuous-time
counterpart £(£), this is a very simple function without any mystery.

Later, we shall express an arbitrary input f{k] iz terms of impulse components.
The (zero-state) system response to input f[&] can then be obtained as the sum of
system responses to impulse components of £[&].




Discrete-Time Unit Step Function u[k]

w [k]

The discrete-time counterpart of the unit step function u(t) is u[k] (Fig. 8.4),

defined by
e 1 for k=0 (8.2)
ufk} = 0 for k<0

Tf we want a signal to start at k = 0 {so that it has a zero velue for all k < 0],
we need only multiply the signal with «[&].

Return to the discrete domain

« Recall that continuous signals can be represented by a
series of samples with period T

X T x(kT)

—

AT T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1




Zero Order Hold

» An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Effect of ZOH Sampling

Lower sample rate ==  more oscillatory response

— Why?
Sampling and reconstruction introduces:

delay in time domain
& phase lag in freq. domain <+ can destabilize the closed loop system

On average u(kT) is delayed by T'/2 relative to u(t) due to the ZOH:

“4 12
4 - ZOH output
/, // = =
e NN u(t)
Vi ,/ \'\\ ™ /

/] g (13
a7 . . v 3T fundamental component
0 T 2T “&— "+ of ZOH output
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Effect of ZOH Sampling

The ZOH delay of T'/2 (sec) causes
phase lag = wT/2 (rad) at w rads™!
phase lag = /2 =90°  at w = «/T [= Nyquist rate]
phase lag = 7/30 =6°  at w = 7/(15T)

+ 90° phase lag could be catastrophic

x M wamp > 30 X Wnax,

then system bandwidth: wmax < 7/(157),

so the maximum phase lag is less than 6°

usually safe to ignore

* Any time needed to compute u; causes additional delay (!)

Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1) —x(k)
T

R

by

 AsT — 0, approximation
error approaches 0

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

11



Difference Equation: Euler’s approximation

de _ . x(t+6t) —x(t) de  @ep1 —
T A, 5t — da T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

U _K( du _-fde
D(S}—E(S)—W — E-f—btt—l&(g‘f'ﬂe)

2. Differential equation — difference equation

eg.
Ukl — U o g Bkt T €k .
— 7 +bhur =K (7T + ﬂ-C}g)
= ukt+1 = (1 = 0T )ur + Kegy1 + K(aT — 1)ex

= —ajuk + boer+1 + brex

So Why Is this a Concern? Difference equations

Difference equations arise in problems where the independent variable, usually
time, is assumed to have a discrete set of possible values. The nonlinear differ-
ence equation

yk+n)=flvk+n—1), yk+n—-2), ..., yk+ 1), y(k), u(k +n),

uk+n—1), ..., wk+1), u(k)] @b

with forcing function u(k) is said to be of order n because the difference between

the highest and lowest time arguments of y(.) and u(.) is n. The equations we deal

with in this text are almost exclusively linear and are of the form
vik+n)+a,—ppk+n—1)+ -« +ayvk+ 1) +apyk)

= bk +n)+ b,_ulk +n— 1)+ - + byu(k + 1) + byu(k) 2.2)

We further assume that the coefficients a;, b, i=0, 1, 2, ..., are constant. The
difference equation is then referred to as linear time invariant, or LTL If the forcing
function u(k) is equal to zero, the equation is said to be homogeneous.

Difference equations can be solved using classical methods analogous to those

available for differential equations. Alternatively, z-transforms provide a convenient
approach for solving LTI equations, as discussed in the next section.

12



Delay is a Derivative & Derivatives magnlfy noise!
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Linear Differential System Order

Q(Dy(t) = P(D)f(2)

Q(D)=D"+6, 1D 4. 421D +ag y(t)=P(D)/Q(D) f(t)
P(D)"—hmem"'bm——le_'l"'"‘+b1D+bo P(D) M
Q(D): N

« Inpractice: m<n (yes, N is deNominator)

wifm>n:
then the system is an
(m - n)th -order differentiator of high-frequency signals!

« Derivatives magnify noise!

Linear Differential Systems

dﬂy dn—ly dy
e + an-1 21 +-- 4+ al'&? + agy(t) =
dmf dm—lf df
bmm‘i'bm_,lzm—_r ++b]£ +b0f(t) (213)

where all the coefficients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(D" + an_JD“‘l +--+aD+ a.o) y(t)

= (bmD™ + b1 D™ Vo £ 51D +bo) f(2)  (2.1D)
or

Q(D)y(t) = P(D)f(t) (2.1c)

where the polynomials Q(D) and P(D) are
QD)=D"+an D" 14 -+ a;D+ag (2.2a)
P(D)=bpD™ + by D™ L 01D +bg (2.2b)

14



Why e ~¥T ?

» Solution to First-Order ODE!

* Ex: “Tank” Fill
 Where: P !

» H=steady-state fluid height in the tank H

* h=height perturbation from the nominal vaIueL h

» Q=steady-state flow rate through the tank

+ g;=inflow perturbation from the nominal value

* (y=outflow perturbation from the nominal value
+ Goal: Maintain H by adjusting Q.
Why e~ ? [2]
« h=Rq,

dc(h+H) —
« —0— = (@+Q) — (g0 + Q) .
L h_a o

dt T Cc B
e 1=RC 1 L
+ Solution:

t=tg 1t t=2
h(t) =e t h(ty) +Ef e © q;(1)dAa
t

0

For a fixed period of time (T) and steps k=0,1,2,...:
-T T
h(k +1) = e 7 hk) + Rl1 — e 7l g, (k)

15
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z Transforms
(Digital Systems Made eZ)

Review and Extended Explanation

ELEC 3004: Systems 20 March 2019 - 36
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Back to the Zero-order Hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero f
h(t) is related to x(t) as follows:

e output

h(t) = z(0)[1(t) — 1(t = T)] + =(T)[1(t - T) — 1(t —2T7)] + -

= i x(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

=>»The “hold” adds a delay. The delay leads to difference equations

Coping with Complexity

Transfer functions help control complexity
— Recall the Laplace transform:

LF) = f F(Oe=stdt = F(s)
0

where

L{f(t)} = sF(s)

X(t) ——  H(is) — y(b)

* Is there a something similar for sampled systems?

17



The z-Transform

* ltis defined by:

z =rel¥

 Orin the Laplace domain:

z=e"T

> Akt uln] <% ¥ (2)
k=—oc

e Thus: Y(2)

» Thatis - itis a discrete version of the Laplace:
Z
fkT) = e~ = Z{f(k)} = e

The z-transform

« The discrete equivalent is the z-Transformf:
20} = )[Rz =F(2)
k=0

and

Z{f(k - D}=z"'F(2)

XK) —— F@@ — y(K

Convenient!

+This is not an approximation, but approximations are easier to derive




The z-Transform [2]

+ Thus: .
Y(2)= Z h[k]2* y[n] PN Y(z)

« z-Transform is analogous to other transforms:
[ee]

2} = ) f)z = F(2)
k=0

and
Z{f(k =1} =z"1F(2)
~ Giving:
XK) —— F@) —— vk

z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n]

h[n]

W] = {ba n =0,

0 otherwise.

H(z}Zibakz_kzbi(g)k— b when 2| > |al.

19



z-Transforms for Difference Equations

yln] = ayln — 1] + bu[r]

First-order linear constant coefficient difference equation:

y[n] — ay[n — 1] = bu|n]

A
-+

Y(z) —az 'Y (2) = bU(2)

b .
7, When does it converge?

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTe~ 9T
(s +a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 22— (2cosaT)z + 1

20



The z-Plane
z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):
+ S-plane: o z= €T Plane
Img(s) Img(2)
X
X
Re(s) » X 1 Re(2)
X
— A —Plane — v —Plane
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Discrete-Time Exponential y*

sT

Recall we defined z = e
Thus, this is the y plane =

(a) (b)

ELEC 3004: Systems 20 March 2019 - 46
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Discrete-Time Exponential y*

o e =k

e y=etori=Iny

« In discrete-time systems, unlike the continuous-time case,
the form y* proves more convenient than the form e**

Why?

« Consider e/ (1 = jQ - constant amplitude oscillatory)
o e/ D Yk fory = /@

e |e/Y =1, hencely| =1

L

Discrete-Time Exponential y*

« Consider etk

When A: LHP
e Then
o Yy = e”‘L
oy = el = eatib — gapjb
R |]/| — |eaejb| — |ea| ...|ejb| =1

22



Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!

More Z-Transform Properties

« Time Reversal « Multiplication by n (or
Differentiation in z):

x[n] < X(z) ROC =R

x[n] == X(z) ROC =R

1 1
([—n] e X|— R=—
x[—n] (2) =

g - dX(z) .
nx[n] .z—-dZ R

I
=

 Multiplication by z"

xn] «>X(z)  ROC=R « Convolution

( x,[n] « X\(z) ROC = R,
zgxln] = XJ .i) R =|z,|R x,[n] < X,(2) ROC =R,
\%0 )
x,[n] * x,[n] <> X,(2)X,(z) R'DR NR,

23



Z-Transform Properties: Time Shifting

1 =z — T . ya[n] =y[n — ng)
y[n - nﬂ- 2 . } Lz} Ya(e’) = Z [k —nglzF

k=—o0

o
_ Z y'i]z—([+nu}
I=—c0

. =27V (z2)
» Two Special Cases:

« z'%: the unit-delay operator:

xn— 1] = z71X(z) R=RN{0< f?-|}

* Z: unit-advance operator:

x[(n+ 1] = zX(2) R'=RN{|z] <=}

z-Transform Example

+ Obtain the z-Transform of the sequence:
x[k] ={3,0,1,4,1,5,...}

 Solution:
X(z2)=34+z244z34+z7z%452z7°

24



An example!

 Back to our difference equation:
y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes
Y(z) =X(2) + Az71X(2) — Bz71Y(2)
(z+B)Y(2) =(z+A)X(2)

which yields the transfer function:
Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™™

s — Z: Pulse Transfer Function Models

E(z) U(z) = D(z) E(z)

e(kT) ? u(kT) =7
 Pulse in Discrete is equivalent to Dirac-6

1 fork=0
€k =
0 fork =10

w—of S O a0 PO

G(2)

>
G(s G(s
G(z2)=1-z"YHz [L‘l{ ( )} ] = (1 — z‘l)Z {Q}
S S
t=kT
Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26
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Relationship with s-plane poles and z-plane
transforms

If F(s)hasapoleat s =a  r(y FOET) F(z)
then F(z) has a pole at z = "7 z
- (kT
s z—1
L KT ( T:”.,
consistent with z = ¢*? ° ] N
—akT %
s+ a ‘ z—e ol
1 Tze—oT
- ETe—okT e
(s+a)? ‘ (z —e—aT)2

What about transfer functions?

(ﬂ(q) a 1 — e—akT 2(1 — e~ 2T
G(z)=(1- z"')Z{—’ - } s(s +a) (2= 1)(z —e=oT)

s
b—1 B Gl S &
€ —€ — —
h (s+a)(s+b) (z — e—9T)(z — e—bT)
If (J'(h‘) has poles s = a; a in ek zsinal’
then G(z) has poles z = e’ 82 + a? B 22 — (2cosal)z + 1
AT pepe
% e Tgin bk T — ZE_J blr“ b1 —
but the zeros are unrelated (s +a)2+ b2 22 — 2e~aT(cos bT)z + e—20T

Hint: Use y to Transform s < z: z=e"T

omiririiinnmag —f L
7
~ splanesplane  Symbol z-plane 2-plane
—jw X X X =1 ——— e
. Aa) L (b
al frequency axis . Unit. circle
s=a20 O00ona z=r>1
s=0%0 000 z=r,0<r<1
5= —(ua+jon/1-(7  LAA z=reffwhere r = exp(—CwnT)
[ =-a+jb =e-oT
! 8 =w,T\/1-(2 =bT
| Constant damping ratio Logarithmic spiral

if ¢ is fixed and wy,
varics
5=%j(m[T) + 0,0 S0 ~mmrrmrmnn 2 .
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S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s=0 4+ jw
o = constanjt S I
I z =
|z| = ¢”T = constant
Alm(s)
0 : I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)

24 Cwos + wd=0

4 0
s =—Cwo£j/1—(Cwo %0 'Re(s)
cosl = ¢

=05 Alm(s)

C=0.7 -

C=05
s = —C(wo + j\/1 — (2wp: ¢ = constant 2 = e~SwoT =i/ 1=¢PwoT




Transfer function of Zero-order-hold (ZOH)

* Recall the Laplace Transforms (£) of:
L)) =1 LIf(t—kT)] = F(S)e—kTs

& e—kTs
Lt —kD)]=e % L1t —kT)] =

» Thus the £ of h(t) becomes:

C[R(2)] = E[i x(KT)[1(t - KT) - 1(t - (k+1)T)]]
k=0

) o0 —kTs  —(k+1)Ts
= S e(KT)LI(t - KT) - 1(t - (k+ D)D) = 3 (kD) e _ DT ]

k=0 k=0 8 5

00 —kT's —(k s [e=] —Ts —Ts oo
= S 2(kT)- o — e Ts 3 2 (kT L= ehrs 1€ S a(kT)e *Ts

k=0 k=0 k=0

Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

C[R()] = L[> x(KT)[1(t - KT) - 1(t - (k+1)T)]]

k=0 o0 e—kTs  o—(k+1)Ts

z(KT)L[1(t - KT) - 1(t - (k4+1)T)] = Z z(kT)[ - ]

0 k=0 8 8

C —kT's —(k+1)Ts 00 —~Ts -Ts o0

.’I‘(k‘T)e e e‘ ) = Z m(kT)ie_kTS — 17; Z x(k’T)e_kTS
s k=0 8 5 k=0

T
gk

e

gk

k

Il
=}

o0

S a(kT)5(t — kT)

k=0

o0
= > z(kT)e *Ts
k=0

- X(s)=L

_Ts oo _ —TIs
CHE) = L] =T Y a(kT)e T = ()
k=0
=» Thus, giving the transfer function as:
H(: 1—eTs
GzoH(s) = ng = 2| Guon(x) =

(1 - e_aT)
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Next Time...

 Digital Systems

* Review:
— Chapter 8 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited. Then there is the one ®]
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