AC LABOR	http://elec3004.com
Discrete Time Analysis & Z-Transforms	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 7 (Revised)	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	March 20, 2019

Locturo	Sch	مطيباه	.	
Lecture	JU	Deta		1
	week	Date 27 Eab	Lecture little	
	1	2/-reo	Systems Overview	
2		6 Mar	Systems of Mans & Signals as Vactors	
	2	8-Mar	Systems: Linear Differential Systems	
		13-Mar	Systems: Entern Directential Systems	
	3	15-Mar	Aliasing & Antialiasing	
	4	20-Mar	Discrete Time Analysis & Z-Transforms	
	-	22-Mar	Second Order LTID (& Convolution Review)	
	5	27-Mar	Frequency Response	
	3	29-Mar	Filter Analysis	
	6	3-Apr	Digital Filters (IIR) & Filter Analysis	
	0	5-Apr	Digital Filter (FIR)	
	7	10-Apr	Digital Windows	
	'	12-Apr	FFT	
	8	17-Apr	Active Filters & Estimation & Holiday	
		19-Apr		
		24-Apr	Holiday	
		26-Apr		
	9	1-May	Introduction to Feedback Control	
		3-May	Servoregulation/PID	
	10	8-May	PID & State-Space	
		10-May	State-Space Control	
	11	15-May	Digital Control Design	
		17-May 22 May	Stability State Space Control System Design	
	12	22-May	State Space Control System Design	
		24-May 20 May	Sustem Identification & Information Theory	
	13	29-May 31 May	System ruentification & mornation r fleory	
	L	51-May	Summary and Course Review	1

Discrete-Time Signal Analysis

ELEC 3004: Systems

So Why Is this a Concern? Difference equations Difference equations arise in problems where the independent variable, usually time, is assumed to have a discrete set of possible values. The nonlinear difference equation $y(k+n) = f[y(k+n-1), y(k+n-2), \dots, y(k+1), y(k), u(k+n), u(k+n-1), \dots, u(k+1), u(k)]$ (2.1)with forcing function u(k) is said to be of order *n* because the difference between the highest and lowest time arguments of y(.) and u(.) is n. The equations we deal with in this text are almost exclusively linear and are of the form $y(k+n) + a_{n-1}y(k+n-1) + \dots + a_1y(k+1) + a_0y(k)$ (2.2) $= b_n u(k+n) + b_{n-1} u(k+n-1) + \dots + b_1 u(k+1) + b_0 u(k)$ We further assume that the coefficients a_i , b_i , i = 0, 1, 2, ..., are constant. The difference equation is then referred to as linear time invariant, or LTI. If the forcing function u(k) is equal to zero, the equation is said to be homogeneous. Difference equations can be solved using classical methods analogous to those available for differential equations. Alternatively, z-transforms provide a convenient approach for solving LTI equations, as discussed in the next section.

ELEC 3004: Systems

Discrete-Time **System Analysis**

ELEC 3004: Systems

Linear Differential Systems $\frac{d^n y}{dt^n} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_1\frac{dy}{dt} + a_0y(t) =$ $b_m \frac{d^m f}{dt^m} + b_{m-1} \frac{d^{m-1} f}{dt^{m-1}} + \dots + b_1 \frac{df}{dt} + b_0 f(t)$ (2.1a)where all the coefficients a_i and b_i are constants. Using operational notation D to represent d/dt, we can express this equation as $(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0})y(t)$ $= (b_m D^m + b_{m-1} D^{m-1} + \dots + b_1 D + b_0) f(t)$ (2.1b)OF Q(D)y(t) = P(D)f(t)(2.1c)where the polynomials Q(D) and P(D) are $Q(D) = D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}$ (2.2a) $P(D) = b_m D^m + b_{m-1} D^{m-1} + \dots + b_1 D + b_0$ (2.2b)ELEC 3004: Systems

	BREAK	
ELEC 2004 Surfaces		20 March 2010

z Transforms (Digital Systems Made eZ)

Review and Extended Explanation

ELEC 3004: Systems

The z-Transform

• It is defined by:

$$z = re^{j\omega}$$

- Or in the Laplace domain: $z = e^{sT}$
- Thus: $Y(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$ $y[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)$
- That is \rightarrow it is a discrete version of the Laplace: $f(kT) = e^{-akT} \Rightarrow \mathcal{Z}{f(k)} = \frac{Z}{Z - e^{-aT}}$

ELEC 3004: Systems

The z-transform								
• In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the <i>z</i> -transform of your functions								
	F(s)	F(kt)	F(z)					
	$\frac{1}{s}$	1	$\frac{z}{z-1}$					
	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$					
	$\frac{1}{s+a}$	e ^{-akT}	$\frac{z}{z - e^{-aT}}$					
	$\frac{1}{(s+a)^2}$	kTe ^{-akT}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$					
	$\frac{1}{s^2 + a^2}$	sin(<i>akT</i>)	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$					
ELEC 3004: Systems 20 March 2019 - 44								

An example!

• Back to our difference equation: y(k) = x(k) + Ax(k-1) - By(k-1)becomes

$$Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z) (z + B)Y(z) = (z + A)X(z)$$

which yields the transfer function:

$$\frac{Y(z)}{X(z)} = \frac{z+A}{z+B}$$

Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

ELEC 3004: Systems

$$\begin{array}{c} \begin{array}{c} \hline \text{Transfer function of Zero-order-hold (ZOH)} \\ \dots & \text{Continuing the } \mathcal{L} \text{ of } h(t) \dots \\ \mathcal{L}[h(t)] = \mathcal{L}[\sum\limits_{k=0}^{\infty} x(kT)[1(t - kT) - 1(t - (k + 1)T)]] \\ = \sum\limits_{k=0}^{\infty} x(kT)\mathcal{L}[1(t - kT) - 1(t - (k + 1)T)] = \sum\limits_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}] \\ = \sum\limits_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum\limits_{k=0}^{\infty} x(kT)\frac{1 - e^{-Ts}}{s}e^{-kTs} = \frac{1 - e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \rightarrow X(s) = \mathcal{L}\left[\sum\limits_{k=0}^{\infty} x(kT)\delta(t - kT)\right] = \sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \therefore H(s) = \mathcal{L}[h(t)] = \frac{1 - e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1 - e^{-Ts}}{s}X(s) \\ \Rightarrow \text{ Thus, giving the transfer function as:} \\ \left[\int_{\text{ZOH}} G_{\text{ZOH}}(s) = \frac{H(s)}{X(s)} = \frac{1 - e^{-Ts}}{s} \right] \xrightarrow{\textbf{Z}} \left[\int_{\text{ZOH}} G_{\text{ZOH}}(z) = \frac{(1 - e^{-aT})}{z - e^{-aT}} \right] \\ \end{array}$$

