Aliasing & Antialiasing

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh

Lecture 6

http://elec3004.com

elec3004@itee.uq.edu.au
http://robotics.itee.ug.edu.au/~elec3004/

© 2019 School of Information Technology and Electrical Engineering at The University of Queensland

March 15, 2019

Lecture Schedule:

Week Date Lecture Title
! 27-Feb|Introduction
1-M Overview
) 6-Mar|Systems as Maps & Signals as Vectors
8-MarnSystems: Linear Differential Systems
13-M ling Theory & Data Acquisition
3 15-MarAliasing & Antialiasing
4 20-MarDiscrete Time Analysis & Z-Transform
22-MarSecond Order LTID (& Convolution Review)
5 27-MarFrequency Response
29-MarFilter Analysis
6 3-AprDigital Filters (IIR) & Filter Analysis
S-AprDigital Filter (FIR)
7 10-AprDigital Windows
12-ApnFFT
8 17-ApnActive Filters & Estimation & Holida
19-Ap
24-Apr| Holiday
26-Api|
9 1-May|Introduction to Feedback Control
3-May|Servoregulation/PID
10 8-May|PID & State-Space
10-May|State-Space Control
m 15-May|Digital Control Design
17-May|Stability
12 22-May/State Space Control System Design
24-May|Shaping the Dynamic Response
13 29—May‘Syslcm Identification & Information Theory
3 I-May‘Summary and Course Review



http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/

Follow Along Reading:

.« B.P.Lathi
a Signal processing * Chapter 5:
: and linear systems Sampllng
1998
TK5102.9.1 381998 — §5.1 The Sampling Theorem

— §5.2 Numerical Computation of
Fourier Transform: The Discrete
Fourier Transform (DFT)

Also:
— § 4.6 Signal Energy

Recap: Sampling Theorem

« The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

—W, > 2Wpg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter



http://library.uq.edu.au/record=b2013253~S7

Sampling & The Fourier Transform

» Samples are like snacks — You don’t just take one ©

« Thus, by definition, sampling is a sequence

* And if we assume a fixed sample Period “T”
Then it is a periodic sequence

» Any periodic sequence has a frequency

» A nice tool for mathematically modelling frequencies is the

Fourier Transform

Recall: Fourier Transform & Fourier Transform Tables
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Table 4.1

A Short Table of Fourier Transforms

4 Continuous-Time Signal Analysis: The Fourier Transform
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Fourier Transform Pairs [2]

Time Domain Frequency Domain
e T
¥ (¥
Trnge | 2 S squued
TR I
3 HES H
Gonsin b
'IEJ"- T i ﬁ'-.
Al
-‘Lm o w 1 3 o1
- R L s - Ref: Analog Devices, DSP Book, Ch. 11, p. 217
Fourier Transform Pairs [3]
« 6(t) & 1(f)
8(r) - 1
lo t 0 ©
- Shifted & -
&(t —10) NS [ N
= Y SR f
R YR
ID o i .'u: ‘\/. ‘\ \/
« 1(8) & 6()
1« 6(f)
—1 P 2md(w)
0 t lo ]




Fourier Transform Pairs [4]

« Shifted 6

‘ 6(f—’0)= A A N AN

o cos(2mfyt) =>%[5(f_fo) +6(f + fo)l

1 cos(mgf) Td(w + wg) Fﬁﬁ(m —wp)

[t —wp 10 wo w

* Duality:

Duality Theorem: If x(t) < X(f), then X(1) < x(—f).
In other words, F [F [x(t)]] = x(—t).

Pulse width t = 1 Time limited
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Pulse width t = 2
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osl rect(t/2)
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Pulse width t =8
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rect(t/8)
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Time Domain Analysis of Reconstruction

» Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w,)
— removes replica spectrums, leaves original

» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample

*  Normally, w, = w2

T

X (t) = i X(NAL) AW, sinc(wj

N=—o0




Reconstruction

» Whittaker—Shannon interpolation formula

z(t) =20 a[n] -sinc(

t—nT)
T

AX(f)

Why sinc?

Time Domain Analysis of Reconstruction

* Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w,)
— removes replica spectrums, leaves original

» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample

*  Normally, w, = w2

X, (t) = i X(NAt) Atw, sinc(M

T

N=—o0

J




Zero Order Hold (ZOH)

;'"zoa(r)
1
ZOH impulse response
0 At t
| Hyg (@)
ZOH amplitude response
_4n n 0 n 4n @
S H,, (@)
ZOH phase response P s
ar on : ? o

Reconstruction

» Zero-Order Hold [ZOH]
¢
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Reconstruction

» Whittaker—Shannon interpolation formula

o I ... |

| I?szuzz:s
45678‘.\1

Ideal sinc Interpolation of sample values [0 0 0.75 1 0.5 0 0]

T T T T

\
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\
\l e reconstructed signal x,(t)
\ ‘X

S |
ample
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"staircase” output from D/A converter (ZOH)
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Example: error due to signal quantisation
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Matlab Example

%% Sample PSD

%% Set Values
f=1;

phi=0;
fs=1le2;

t0=0;

tf=1;

%% Generate Signal
t=linspace(t@,tf, (fs*(tf-t0)));
x1=cos(2*pi*f*t + phi);
figure(10); plot(t, x1);

%% PSD

[p_x1, f_x1] = pwelch(x1,[],[1,[1,fs);
figure(20); plot(f_x1, pow2db(p_x1));
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)");

%% PSD (Centered)

[p_x1, f x1] = pwelch(x1,[],[]1,[],fs, 'centered', 'power');
figure(30); plot(f_x1, pow2db(p_x1));

xlabel('Frequency (Hz)');

ylabel('Magnitude (dB)");

13



Hello World




Prefiltering
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Sampling & Aliasing

ELEC 3004: Systems I5March 2019 - 33

Overview (i.e. today we are going to learn ...)

« Aliasing + Anti-Aliasing
— Lowe-pass filtering of

signals so as to keep things

« Spectral Folding band limited

/,

16



Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f|k] = cos(Qk,) Q= wT:

The period has to be less than F,, (highest frequency): 7 < e
h

5

Thus: 0<7< “g
oy aliased frequency: w1 = w;T + 2am

LGl

Ex: Moire Effects

Source: Wikimedia https://en.wikipedia.org/wiki/Aliasing#/media/File:Moire_pattern_of_bricks.jpg (and aliased)
7

17
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Aliasing: Another view of this

4 ‘ |
OI"I!‘IZ 31/ 3\}\/” l.!“?‘__
\.I \, | / \l Hl \;f \\“4 | \,\}.
\ \j \ \j \1 V v/ / A\
Spectrum Overlap un
=2
-E ' BT ,é I3 1 f :2B
= if f.<2B
=» then “Folding” or “aliasing”:
fﬂ?ﬂ.’]f
*Q:fs *:fs o fs 2fb frequency
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Original Spectrum

Wy, Wp w

Fourier transform of impulse train (sampling signal)

0 2n/At  4m/At 6m/At w
Amplitude spectrum of sampled signal

Replica spectrums
overlap with origina

—
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Another way to see Aliasing Too!

Rotating wheel and peg

N

Need both top and front
view to determine rotation

= TTFHLLEEET
= FHEEFEETTE

=

Temporal Aliasing

90° clockwise rotation/frame  270° clockwise rotation/frame
clockwise rotation perceived  (90°) anticlockwise rotation
perceived i.e., aliasing

Require LPF to ‘blur’ motion

L
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Practical Anti-aliasing Filter

* Non-ideal filter
>w, = %
« Filter usually 4th — 6th order (e.g., Butterworth)

— so frequencies > w, may still be present
— not higher order as phase response gets worse

 Luckily, most real signals

— are lowpass in nature
« signal power reduces with increasing frequency

— e.g., speech naturally bandlimited (say < 8KHz)
— Natural signals have a ~% spectrum

— S0, in practice aliasing is not (usually) a problem

Amplitude %pectrum of sampled signal _ sampled signal

7 ™ YA YA / SpeCtrum
/7 |\ /7 N\ /7 N\ /7 N\
/ \ / \ / \ / \
/ N7 N/ N/ \
/ v A A \
/ /\ /7 N\ /7 N\ \
Original Replica 1 Replica 2 ...
Reconstruction filter (ideal lowpass filter)
W, W, =W, w
Spectrum of reconstructed signal Due to overlapping

The effect of aliasing is | replicas (aliasing)
that higher frequencies ;_Te reconstruction
Of nalias tou (appear aS) ilter cannot recover

. the original spectrum
lower frequencies
M Wiy w




Mathematics of Sampling and Reconstruction

sampling reconstruction
x(t) (t)
Y hsp Ideal y(t)
LPF
Impulse train Gain

8r()= T5(t - nAt)

T —

Sampling frequency f, = 1/At Cut-off frequency = f,

0 f

Frequency Domain Analysis of Sampling

 Consider the case where the DSP performs no filtering
operations
— i.e., only passes X,(t) to the reconstruction filter

» To understand we need to look at the frequency domain

« Sampling: we know
— multiplication in time = convolution in frequency
— F{x(0)} = X(w)
— F{oT(t)} = 28(w - 27n/At),
— i.e., an impulse train in the frequency domain

22



Frequency Space

Signal Time domain Transform
Impulse &[n] ]
d[n 1)
Unit step uln) r 6(Q), 1Q ==
1
—t[—n — 1) = a(Q 1R =x
1 [ "
. - " 1
Exponential a"uln] a] < 1
1
a"uf-n —1 la|
| ae
Weighted exponential (n + Va"uln] —— ] 1
DC signal 1, for all n 2 6(52) Ql=nxn
Complex sinusoid gl 2m H({ L 1€24, |92
Sine wave sin £2,n Ja[a(Q — Q) — 8(2 + Q)]
II | [§)
Cosine wave cos L2n

Frequency Domain Analysis of Sampling

* In the frequency domain we have

X. (W)= i{x (W)*Z_ﬂz5(w_2—ﬂnD Remember
2r A At ))| convolution with
1 X( ij an impulse?
Same idea for an
' impulse train

Let’s look at an example
= where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency wg rad/s




Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

+ Consider an example where the sampling frequency w; is
reduced
— i.e., At is increased

Fourier transform of original signal X(w)

(signal spectrum)
Fourier transform of impulse train 6(w/2n) (sampling signal)

FL87(0]

wg = 2m/At 41/At W

0
Fourier transform of sampled signal

X ()

Original spectrum
convolved with

VAt spectrum of
**+ | impulse train
W

Original Replica 1 Replica 2

24



Spectrun x«f sampled signal

1/At

Original Replica 1 Replica 2

Reconstruction filter (ideal lowpass filter)

H(w)

At

W, W, =W,
Spectrum of reconstructed signal

X(w)=H;(0) X (@)

w

Reconstruction filter
removes the replica
spectrums & leaves

only the original

W W W
Sampled Spectrum w, > 2wm
LPFE 3
'Wm W‘m Wy W
Y .
orignal replica 1

original freq recovered

Sampled Spectrum wg < 2w,
LPF \

Original and replica
spectrums overlap
Lower frequency
recovered (Wg — W)

orignal %f—)

replica 1
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Taking Advantage of the Folding

5.1 The Sampling Theorem

We now show that a real signal whose spectrum is bandlimited to B Hz
[F(w) = 0 for |w| > 27 B] can be reconstructed exactly (without any error) from its
samples taken uniformly at a rate 7, > 2B samples per second. In other words,
the minimum sampling frequency is F, = 2B Hz.{

To prove the sampling theorem, consider a signal f(t) (Fig. 5.1a) whose spec-
trum is bandlimited to B Hz (Fig. 5.1b).} For convenience, spectra are shown as
functions of w as well as of F (Hz). Sampling f(t) at a rate of F, Hz (F, samples
per second) can be accomplished by multiplying f(t) by an impulse train ép(t)(Fig.
5.1c), consisting of unit impulses repeating periodically every T seconds, where
T = 1/F,. The result is the sampled signal f(t) resented in Fig. 5.1d. The sampled
signal consists of impulses spaced every T seconds (the sampling interval). The nth
impulse, located at ¢t = nT, has a strength f(nT), the value of f(t) at t = nT.

F(t) = £(0)6r(t) =Y f(nT)6(t — nT) (5.1)

{The theorem stated here (and proved subsequently) applies to lowpass signals. A bandpass signal
whose spectrum exists over a frequency band F. — %— <|Fl< Fe+ % has a bandwidth of B Hz.
Such a signal is uniquely determined by 2B samples per second. In general, the sampling scheme
is a bit more complex in this case. It uses two interlaced sampling trains, each at a rate of B
samples per second (known as second-order sampling). See, for example, the references.!?

{The spectrum F(w) in Fig. 5.1b is shown as real, for convenience. However, our arguments are
valid for complex F(w) as well.

319

Next Time...

 Digital Systems

Review:
— Chapter 8 of Lathi

« A signal has many signals ©
[Unless it’s bandlimited. Then there is the one o]

26



Data Acquisition
(A/D Conversion)

ELEC 3004: Systems
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Representation of Signal

Time Discretization

Coarse time discretization

B a D
[=} o (=}
(=] (=] (=}

Expected signal (mV)
8
o

200
100 p
True signal
— Discrete time sampled points
oL | | 777
0 5 10 15
time (s)

+ Digitization

Expected signal (mV)
w
o
(=]

Coarse signal digitization

True signal

— Digitization

5
time (s)

10

15
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Quantisation

» Analogue to digital converter (A/D)

— output modeled as x,[n] = x(nAt) + e[n]
»  Approximation process

— known as ‘quantisation noise’ (e[n])

* i.e., AX, quantisation step size reduces

le[n] < X

— Calculates nearest binary number to x(nAt)
* %4[n] = q(x(nAt)), where q() is non-linear rounding fctn

— therefore, loss of information (unrecoverable)

— error reduced as number of bits in A/D increased

2

(two’s compliment)

Input-output tor 4-bit quantiser

Diaital

2A
AX=—
2" -1
where A = max amplitude
m = no. quantisation bits

'Y IJIgILuI

0111

0110

0101 -

0100 !
010

#OHI\)OOAU'IO)\I

0001

0000 quantisation
1111  step size
1110

1101

Analogue

1100
1011
1010
1000
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Signal to Quantisation Noise

* To estimate SQNR we assume
— e[n] is uncorrelated to signal and is a
— uniform random process
+ assumptions not always correct!
— not the only assumptions we could make...
* Also known a ‘Dynamic range’ (Rp)
— expressed in decibels (dB)
— ratio of power of largest signal to smallest (noise)

=3
R, =10log, | =™

noise

Dynamic Range

Need to estimate:

1. Noise power
—  uniform random process: P, ;. = Ax%/12

2. Signal power 1 extra bit halves Ax
- (at least) two possible assumptions i -
I sinusoidal: Pywrs A2 i.e., 20log10(1/2) = 6dB

2. zero mean Gaussian process: Pggny = o?
Note: as o = A/3: Pggny =~ A%9
« where o2 = variance, A = signal amplitude

Regardless of assumptions: R increases by 6dB
for every bit that is added to the quantiser

29



Derivatives magnify noise!

e sin(10xt) , o 10 cos(10qt pewon

s sin(10mt) + 0.1sir

1
05
of

=S

>
~
-

007t) *10 cos(10xt) + 10 cos(100xt)

D/A Converter

Analogue output y(t) is
— convolution of output samples y(nAt) with hqy(t)

y(t) =D y(nAt)hg, (t—nAt)

1, 0<t<At
0, otherwise
—~ ijtj sin(wAt/ 2)
2 WAL /2
D/A is lowpass filter with sinc type frequency response

It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required

hZOH (t) = {

H,on (W) = At exp(

30



Finite Width Sampling

» Impulse train sampling not realisable
— sample pulses have finite width (say nanosecs)

This produces two effects,

Impulse train has sinc envelope in frequency domain
— impulse train is square wave with small duty cycle
— Reduces amplitude of replica spectrums
- smaller replicas to remove with reconstruction filter ©
« Averaging of signal during sample time

— effective low pass filter of original signal
« can reduce aliasing, but can reduce fidelity ®
* negligible with most S/H ©

Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, X(nAt)

sample instant

f/rﬁl — X(nAt)

— t

hold for At




Practical Reconstruction

Two stage process:

« Digital to analogue converter (D/A)
— zero order hold filter
— produces ‘staircase’ analogue output

» Reconstruction filter
— non-ideal filter: w, = %
— further reduces replica spectrums

— usually 4th — 6th order e.g., Butterworth
« for acceptable phase response

Summary

» Theoretical model of Sampling
— bandlimited signal (wB)
— multiplication by ideal impulse train (ws > 2wB)
« convolution of frequency spectrums (creates replicas)
— ldeal lowpass filter to remove replica spectrums
s WC=Ws/2
+ Sinc interpolation
* Practical systems
— Anti-aliasing filter (wc <ws /2)
— A/D (S/H and quantisation)

— DI/A (ZOH) Don’t confuse
— Reconstruction filter (wc = ws /2) theory and
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Next Time...

 Z-Transform

* Review:
— Chapter 5 of Lathi

+ A ssignal has many signals ©
[Even if it bandlimited]
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