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1 -
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6-MarSystems as Maps & Signals as Vectors

2 8-MarSystems: Linear Differential Systems

13-MarjSampling Theory & Data Acquisition

15-MarjAliasing & Antialiasin;

20-MarDiscrete Time Analysis & Z-Transform

22-MarSecond Order LTID (& Convolution Review)

27-Mar|Frequency Response

29-MarlFilter Analysis

3-AprDigital Filters (IIR) & Filter Analysis

5-AprDigital Filter (FIR)

10-AprDigital Windows

12-ApfFFT

8 17-AprActive Filters & Estimation & Holiday

19-Apr|
24-Apr| Holiday
26-Apr

1-May|Introduction to Feedback Control

3-May|Servoregulation/PID

8-May|PID & State-Space

10-May|State-Space Control

15-May|Digital Control Design

17-May|Stabilit:

22-May|State Space Control System Design

24-May|Shaping the Dynamic Response

29»May‘System Identification & Information Theory

31-Ma ‘Summa and Course Review
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Follow Along Reading:

"\ﬁé B. P. Lathi  Chapter 2:

Signal processing

[ 2ndlinear systems Time-Domain Analysis of
1998 . .
TK5102.9.1 381998 Continuous-Time Systems

— §2.1 Introduction
— §2.3 The Unit Impulse Response
— § 2.6 System Stability

— §2.7 Intuitive Insights
into System Behaviour

— §2.9 Summary

Systems as Maps
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http://library.uq.edu.au/record=b2013253~S7

Then a System is a MATRIX

uln y[n
[l
y = Du.
y[l] DM D12 ... DLN u[l}
y[2] B Doy Dy --- Doy ul2]
y[M] Dyiy Dap -+ Dun| [u[N]

yli] = Z Djulj].

Linearity: Linear Equations
+ Consider system of linear equations:

y1 = anry +  apprz +cf Qipty
Y2 = azry  +  agery  Fee- o agpty
Ym = Qm1I] + amer2 + -+ AmaTa

 This can be written in a matrix form as y = Ax, where

{51 ap;p  aipp -+t dip ry

2 A 31 azp ot d2p I
y=1 " A= . _ . =

Ym Aml Gm2 *** Omn In

Source: Boyd, EE263, Slide 2-2




Linearity: Linear Functions

« A function f R™ - R™ is linear if:
o flx+y)=f(r)+ fly), Yo,y € R"
o flaxr)=af(xr), Vr € R" Va € R

* That is, Superposition holds: ,
ety

y

Linearity: Linear functions and Matrix Multiplication

Considera f: R™" - R™
given by f(x) = Ax, where A € R™*"

As matrix multiplication function if f is linear, we may now say:
 converse is true: any linear function f: R™ — R™ can be
written as f(x) = Ax, forall A € R™"

* Representation via matrix multiplication is unique:
for any linear function f there is only one matrix

A for which f(x) = Ax forall x

e y = Ax isaconcrete representation of a generic linear function




Linearity: Interpretations

= of y = Ax:
e y is measurement or observation; x is unknown to be determined

e x is an “input” or “stated action”; y is “output” or “result”
— In controls this “x” is sometimes “separated” into x and u
such that x is the state and the w is the action done by the controller

« A function/transformation that maps x € R™ intoy € R™

= of 4 (Or ai]'):
a is a gain factor from ;" input (x;) to i*" output (y;)
it" row of A concerns i*" output (“row-out 1o sea”)
o jt" column of A concerns jt" input  (“corin o tana”)
e az, = 0 means 3" output (y3) doesn’t depend on 41" input (x,)
o lazs| > |asj| for j # 4 means y3 depends mainly on x,
o |aza|l » |ai| fori # 3 means x, affects mainly y;
« If Ais diagonal, then it"* output depends only on i"* input
« If Alis lower triangular fie.,a; = ofori < j1, then the y; only depends on x;

=> Nothing tells you something:

.....

* The sparsity pattern of A [i.e, zero/nonzero entries], shows which x; affect which y;

+ Matlab: spy(A) [orjusttry spy]

Linear Differential Systems
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Linear Time Invariant

LTI
u(t) | h(t)=F(3(t)) y(tE:u(t)*h(t)

 Linear & Time-invariant (of course - tautology!)
» Impulse response: h(t)=F(8(t))
+ Why?
— Since it is linear the output response (y) to any input (x) is:
z(t) = [, x(r)d(t—T)dr
y(t)=F Uffx z(r)8(t—7) df} Hngar 100 4 (7Y F 6 (t — 1)) dr

h(t-)ZF[(t—7)
=y(t)= [ x(T)h(t—71)dr =2 (t) * h ()

« The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(a(t)) of the system.

Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

d™z
dtm

d'y

dy
GO'H"I‘“I%"F' ~tap din

dx
= boatbim g - by,
o0+ 1{if+ +bm

Laplace:

agY (s) +a1sY(s) + -+ ans"Y (s) = bgX (s} + b1sX(s) + - + bns™ X (s)
A(8)Y (s) = B(s)X(s)

« Total response = Zero-input response + Zero-state response

Initial conditions External Input




Linear Systems and ODFE’s

Linear system described by differential equation

d d"

dx

dt

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s) +b,sX(s) +
A(S)Y (s) =B(s)X(s)

where A(s) and B(s) are polynomials in s

byX+b, —+--

+b d"x
dt™

---+b s"X(s)

First Order Systems

First order systems

ay' + by =0 (with a #0)
righthand side is zero:

e called autonomous system

e solution is called natural or unforced response
can be expressed as
Ty +y=0 or y +ry=0
where

e ['=a/bis a time (units: seconds)

e r=10/a=1/TIs a rate (units: 1/sec)




First Order Systems

Solution by Laplace transform

take Laplace transform of Ty’ + y = 0 to get

T(sY(s)—y(0)+Y(s)=0
D

L(y")

solve for Y'(s) (algebral)

'y(0) y(0)

YO =T +1= s+ 1/T

and so y(t) = y(0)e /7

First Order Systems

solution of Ty' 41y = 0: y(t) = y(0)e= /T

if ' > 0, y decays exponentially

e T gives time to decay by e~! ~ 0.37
e 0.6937 gives time to decay by half (0.693 = log 2)
e 4.6T gives time to decay by 0.01 (4.6 = log 100)

if T'< 0, y grows exponentially

e |T'| gives time to grow by e ~ 2.72;
e 0.693|T| gives time to double

e 4.6|T| gives time to grow by 100




First Order Systems

Examples

simple RC circuit:

+ - .

circuit equation: RCv'+v =0
v

solution: v(t) = 11(0)6*'5/(30)

population dynamics:

e y(t) is population of some bacteria at time t

e growth (or decay if negative) rate is y' = by — dy where b is birth rate,
d is death rate

o y(t) = y(0)eP=Dt (grows if b > d; decays if b < d)

Second Order Systems

Second order systems

ay’ +by' +ey=0

assume a > () (otherwise multiply equation by —1)

solution by Laplace transform:

a(s2Y (s) — sy(0) — y'(0)) + b(sY (s) — y(0)) + Y (s) =0

Liy") L(y)

solve for Y (just algebral)

asy(0) + ay'(0) + by(0) as+ 3

Y(s) = =
(%) as? + bs + ¢ as2 +bs+ ¢

where oo = ay(0) and 3 = ay'(0) + by(0)




Second Order Systems

so solution of ay” + by +cy =0 is

P as + 3
ylt) = £ ((LSQ +bs + (’)

o \(s) = as? +bs + cis called characteristic polynomial of the system
e form of y = £L7(Y) depends on roots of characteristic polynomial

e coefficients of numerator as + 3 come from initial conditions

Second Order Response

R(s) K Cis) K
2T oy o )
R(s) B z K B (B K1
‘__ }.‘JA\l_ 7 2\ 7) fJ
- K ;_B_ B
Unit-Step Response 7= BT VIR
/%, _

2

20 = ) 0
1.8 -
1605 | 02 Normaliz >
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2
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r’_ w0 20 | %0 %0 o e
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Second Order Response
Envelope Curves

elt)

1+ — -

Second Order Response
Unit Step Response Terms

clr)
Allowable tolerance

R A
K

1 1
S e \
I A——
« Delay time, t,: The time required for the response to reach half the final value
» Rise time, t: The time required for the response to rise from 10% to 90%
» Peak time, t :The time required for the response to reach the first peak of the overshoot
»  Maximum (percent) overshoot, Mp:

. ) ‘"(fﬂ) — c(o0) "
Maximum percent overshoot = ~——— —— = x 100%
c(o0)
+ Settling time, t;: The time to be within 2-5% of the final value

11



Sdecond Order Response
Seeing this on the S-plane

) 1

Pt

More Examples ©
(Elaborating from Lecture 2)
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Another 2™ Order System:

Accelerometer or Mass Spring Damper (MSD)

» General accelerometer:
— Linear spring (k) (0™ order w/r/t 0)
— Viscous damper (b) (1t order)
— Proof mass (m) (2" order)

=>» Electrical system analogy:
— resistor (R) : damper (b)
— inductance (L) : spring (k)
— capacitance (C) : mass (m)

Measuring Acceleration:
Sense a by measuring spring motion Z

 Start with Newton’s 2" Law:

« Solve ODE:

X (t) = Xge™t  Z(t) = Zge?

13



Measuring Acceleration [2]

» Substitute candidate solutions:

d2 Xoeiwt d2 ZOeiwt . d Zoeiwt
m (dtz ) —m (dt2 )ﬂ_k(zoezwo_l_b ( o )
—muw2Xget = —mw2Zgelt+kZget+ (iw) bZge?

* Define Natural Frequency (®,)
& Simplify for Z,

(the spring displacement “magnitude”):

_ |k
2
_ mw<Xg 1 Xo
Zo = mw?—k—iwb | \/ w02 b2
=22

Acceleration: 2" Order System

¢ For o<<aoy:

" Plot for a .umt mass, etc.... 7 w?Xg _ a
. 0~ "2 w2
, 0 0
2 r —a= Zowg
L N = it’s an
2 2 Accelerometer
* For o~m,
%; Asib>0, Z> w
i - : ,
L0 "
~—l : — Sensitivit
y
. . >>@:
r_ w a0 | 0 to o e For o>>ay:
- ZO ~ XO

Accelerometer

= it’sa
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Equivalence Across Domains

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

Variable Integrated Variable Integrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, i Charge, q Voltage Flux linkage, Ay,
difference, vy,
Mechanical ~ Force, F Translational Velocity Displacement
translational momentum, P difference, vy difference, y;
Mechanical ~ Torque, T’ Angular Angular velocity Angular
rotational momentum, 2 difference, wy; displacement
difference, 6,
Fluid Fluid Volume, V Pressure Pressure
volumetric rate difference, Py, momentum, sy
of flow, Q
Thermal Heat flow Heat energy, Temperature
rate, q H difference, 75,

Source: Dorf & Bishop, Modern Control Systems, 12" Ed., p. 73

ELEC 3004: Systems 8 March 2019 -

Table 2.2 Summary of Governing Differential Equations for Ideal Elements
of Physical Governing Energy E or
Element Element Power % Symbol
i di p S L i
Electrical inductance vy = LZ E= ELI vl Y Y Y oy,
. . _1dF 1P L
‘Translational spring vy = % di =% v oYY Yy
Inductive storage
Rotational sprin, . E= ety 2
ional spring on = B el 7
Jpn— daQ 1 I
Fluid i O =) 0
uid inertia Py =1 @ E ZIQ2 Pyo Y Y s py .
Electrical capaci i=cdn E=1cu e
pacitance t=c= =3Cvn vy o_._{ l—o v
d
Translational mass F=M22 E=imp  Fog M-
dt 2 = constant
de o |—°
Capacitive storage Rotational mass T=J=2 E= l]a»,’ T o=
dt 2 constant
Fluid 3 _ APy _1 2 0 P,
luid capacitance Q= C/T E= EC/PZ' B, L 1
; d7, o—{C ]
Thermal capacitance a=Ct E=CT R 7, =
constant
Electrical resist i=1 =L A
lectrical resistance i=xv = sz' V3 =AAA——0 V|
‘Translational damper F = byy P = buy? 1
& =l
Energy dissipators Rotational damper T = b P= 2
gy dissip: pe an bany T—ro ]b omy
Fluid resistance 0=1p, p=Lpy K o
Ry Ry Py o AAA—— P,
Thermal resistance q= ‘%M P = l321 R4
3 R, T3 0-AAA—+— T,
Source: Dorf & Bishop, Modern Control Systems, 12" Ed., p. 74
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Thermal Systems

16. Thermal heating system

Jo — B
—a J
uid 1n

Jo

—>
Fluid
Heater

O

T(s) 1 ¢
—_— ———, where
a(s)  Cs + (@S +1/R)
J = J, — J. = temperature difference
due to thermal process

@]
|

= thermal capacitance

Q = fluid flow rate = constant

o)
|

= specific heat of water
R, = thermal resistance of insulation

q(s) = transform of rate of heat flow of
heating element

Cascades of Linear Systems:
Ex .: Quarter-Car Model

o

Road surface

Inertial reference

k(y — x)I Ib(_\'- =X)

X y

l ky(x—1r) k(y — .r)l l[)(_\" -x)

REF: FPE, Feedback Control of Dynamic Systems, 61 Ed, p.25
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Example: Quarter-Car Model (2)

. b . . k ku} kJ
i+ —G-N+—G-n+—x="r,
mi my my mi

ai B ks
Y+ —G -0+ —0O-x)=0
ma m3a
2 b k.«' kli‘ kw
STX() +5—(X(s) =Y (s)) + —(X(5) = Y(s) + —X(5) = —R(s),
my L3 mi mq

b
s2¥(5) +5— (Y (5) — X (s)) + ﬁ(m) - X(s)) =0,
ma ma

kb 4 ks
s m—
Y (9) e mimy b

R(s) b b bk - K kb kuks
) s4+<—+—>s3+(—'+—‘+—’>s2+< >s+ :
mq my mq my mq mimy mimy

Economics: Cost of Production

Materials, parts, labour, etc. (inputs) are combined to make a
number of products (outputs):
 x;: price per unit of production input j
* a;;: input j required to manufacture one unit of product i
e ;. production cost per unit of product i
« Fory = Ax:
o it" row of A is bill of materials for unit of product i

* Production inputs needed:
- q; is quantity of product i to be produced
- 17 is total quantity of production input j needed

r = ATq
& Total production cost is:
rTx = (ATq)Tx = qTAx

Source: Boyd, EE263, Slide 2-18
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Estimation (or inversion)

o y; is i*" measurement or sensor reading (which we have)
* x; is j*" parameter to be estimated or determined
* q; is sensitivity of i** sensor to j** parameter
» sample problems:
o find x, given y
o find all x’s that result in y (i.e., all x’s consistent with measurements)

o ifthereisno xsuchthaty = Ax,findxst y = Ax
(i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Source: Boyd, EE263, Slide 2-26

LGl

Mechanics: Total force/torque on rigid body

e 1, is external force/torque applied at some point/direction/axis

y € RY is resulting total force & torque on body

(1, yo2, ys are X-, y-, z- components of total force,

Y4, Y5, Y are X-, y-, Z- components of total torque)

e we have y = Ax

A depends on geometry

(of applied forces and torques with respect to center of gravity CG)

jth column gives resulting force & torque for unit force/torque j

Source: Boyd, EE263, Slide 2-9
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Next Time...

starting Problem Set 1

» Thank you!

O

« We will talk about sampling

* Please complete the “practice assignment” before

Matlab Fun: Deblurring

perfect image

Moving
Camera
Optics

blurry image

19



Platypus Fun: All Sorts of “Analytics”

T EIEVIEW W e

UGS EE b =

__{._".@%LJI_L.L e o -
DERTIED|

Platypus Fun: less is more (moreis less?)

« Longer answers better?

+ Total Student Feedback Output Characters vs. Total Student
Marks Received

350 Total Student Feedback Output (chars) vs. Student's Total Received Marks

300 &

n
]

[
=)

Student's Total Received Marks
g

=]

=

2 3 4
Total Student Feedback Output (chars) <10%




