http://elec3004.com

Signals as Vectors Systems as Maps

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh
Lecture 3
elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
March 6, 2019

Lecture Schedule:

Follow Along Reading:

- Chapter 1:

Introduction to Signals and Systems

- § 1.7 Classification of Systems
- Chapter 3:

Signal Representation By Fourier Series

- § 3.1 Signals and Vectors
- § 3.3 Signal Representation by Orthogonal Signal Set

Linearity (Superposition) Recap

 (from Lecture 2)
Linear Systems: Superposition

- Given input $x_{1}(t)$ produces output $y_{1}(t)$ and input $x_{2}(t)$ produces output $y_{2}(t)$
- Then: The linearly combined input

$$
x(t)=a x_{1}(t)+b x_{2}(t)
$$

must produce the linearly combined output

$$
y(t)=a y_{1}(t)+b y_{2}(t)
$$

for arbitrary a and b

- Generalizing:
- Input: $x(t)=\sum_{k} a_{k} x_{k}(t) \mid$ Output: $y(t)=\sum_{k} a_{k} y_{k}(t)$

Linear Systems: Superposition Consequences

Consequences:

- Zero input for all time yields a zero output.
- This follows readily by setting $a=0$, then $0 \cdot x(t)=0$
- For an invertible system,

Zero output for all time means yields that there was zero input

- DC output/Bias $\boldsymbol{\rightarrow}$ Incrementally linear
- Ex: $y(t)=[2 x(t)]+[1]$
- Set offset to be added offset [Ex: $\left.y_{0}(t)=1\right]$

Example: Is it Linear?

$$
C\left(V_{O}(s) \cdot s\right)=\left(\frac{1}{R}\right)\left(V_{i}(s)-V_{O}(s)\right)
$$

$$
(R C s+1)\left(V_{O}(s)\right)=V_{i}(s)
$$

$$
\begin{gathered}
{[y] \stackrel{?}{=}[A][x]} \\
{\left[V_{O}(s)\right] \stackrel{\neq}{=}\left[\left(\frac{1}{R C s+1}\right)\right]\left[V_{i}(s)\right]}
\end{gathered}
$$

$C \frac{d V_{o}(t)}{d t}=\frac{V_{i}(t)-V_{o}(t)}{R}$

$$
V_{O}(s)=\left(\frac{1}{R C s+1}\right) V_{i}(s)
$$

\therefore (Therefore):

- Voltage (or current) superposition may be employed \odot
- Zero output, means Zero input (?)

Example: Is it First-Order?

$$
\begin{gathered}
\Rightarrow \quad \overbrace{a y^{\prime}+b y=w}^{a\left(\frac{d}{d t}(y(t))\right)+b y(t)=w(t)} \\
T y^{\prime}+y=\left(\frac{1}{b}\right) w, T \equiv \frac{a}{b} \\
\Rightarrow T(Y s-y(0))+Y=\left(\frac{1}{b}\right) W(s)
\end{gathered}
$$

If $\mathrm{V}_{\mathrm{i}}=0: \quad \overbrace{a Y s+b Y=0}^{[a Y(s) \cdot s+b Y(s)=0]}$

- "Autonomous System"
- Natural (or unforced) response $(R C)\left(V_{O} \cdot s-V_{O}(0)\right)+V_{O}=0$
- $\rightarrow \mathrm{T}=\mathrm{a} / \mathrm{b}=\mathrm{RC}$
- Time Constant: $\tau=\frac{1}{T}=\frac{1}{R C}$
- Solution: $V_{O}(t)=\left[V_{O}(0)\right] e^{-\frac{t}{R C}}$

Signals as Vectors

Complex Exponential Signals

$$
x(t)=A e^{\lambda t}
$$

- A and λ are generally complex numbers.
- If A and λ are, in fact, real-valued numbers, $x(t)$ is itself real-valued and is called a real exponential

(a)

(b)

Signals as Vectors

- Back to the beginning!

Signals as Vectors

- There is a perfect analogy between signals and vectors ...

Signals are vectors!

- A vector can be represented as a sum of its components in a variety of ways, depending upon the choice of coordinate system. A signal can also be represented as a sum of its components in a variety of ways.

Signals as Vectors

- Represent them as Column Vectors

$$
x=\left[\begin{array}{c}
x[1] \\
x[2] \\
x[3] \\
\vdots \\
x[N]
\end{array}\right] .
$$

Signals as Vectors

- Can represent phenomena of interest in terms of signals
- Natural vector space structure (addition/substraction/norms)
- Can use norms to describe and quantify properties of signals

Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

- Can add two signals: $x_{1}[n]+x_{2}[n]$
- Can multiply a signal by a scalar number: $C \cdot x[n]$
- Form linear combinations: $C_{1} \cdot x_{1}[n]+C_{2} \cdot x_{2}[n]$

Various Types

- Audio signal (sound pressure on microphone)
- B/W video signal (light intensity on
- photosensor)
- Voltage/current in a circuit (measure with

- multimeter)
- Car speed (from tachometer)
- Robot arm position (from rotary encoder)
- Daily prices of books / air tickets / stocks
- Hourly glucose level in blood (from glucose monitor)
- Heart rate (from heart rate sensor)

Vector Refresher

- Length:

$$
|\mathbf{x}|^{2}=\mathbf{x} \cdot \mathbf{x}
$$

- Decomposition:

$$
\mathbf{x}=c_{1} \mathbf{y}+\mathbf{e}_{1}=c_{2} \mathbf{y}+\mathbf{e}_{\mathbf{2}}
$$

- Dot Product of \perp is 0 : $\quad x \cdot y=0$

ELEC 3004: Systems

Vectors [2]

- Magnitude and Direction

$$
f \cdot x=|f||x| \cos (\theta)
$$

- Component (projection) of a vector along another vector

$$
\mathbf{f}=c \mathbf{x}+\mathbf{e} \quad \leftarrow \text { Error Vector }
$$

Vectors [3]

- ∞ bases given $\overrightarrow{\mathbf{x}}$

(a)

- Which is the best one?

$$
\begin{gathered}
\mathbf{f} \simeq c \mathbf{x} \\
c|\mathbf{x}|=|\mathbf{f}| \cos \theta \\
c|\mathbf{x}|^{2}=|\mathbf{f}||\mathbf{x}| \cos \theta=\mathbf{f} \cdot \mathbf{x} \\
c=\frac{\mathbf{f} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}=\frac{1}{|\mathbf{x}|^{2}} \mathbf{f} \cdot \mathbf{x} \\
\mathbf{f} \cdot \mathbf{x}=0
\end{gathered}
$$

- Can I allow more basis vectors than I have dimensions?

Signals Are Vectors

- A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):
Total response $=$ Zero-input response + Zero-state response

- Vectors are Linear
- They have additivity and homogeneity

Vectors / Signals Can Be Multidimensional

- A signal is a quantity that varies as a function of an index set
- They can be multidimensional:
- 1-dim, discrete index (time): x[n]
- 1-dim, continuous index (time): $\mathrm{x}(\mathrm{t})$
- 2-dim, discrete (e.g., a B/W or RGB image): $\mathrm{x}[\mathrm{j} ; \mathrm{k}]$
- 3-dim, video signal (e.g, video): $\mathrm{x}[\mathrm{j} ; \mathrm{k} ; \mathrm{n}]$

It's Just a Linear Map

- $y[n]=2 u[n-1]$ is a linear map
- BUT y[n]=2(u[n]-1) is NOT Why?
- Because of homogeneity!

$$
\mathrm{T}(\mathrm{au})=\mathrm{aT}(\mathrm{u})
$$

Norms of signals

Can introduce a notion of signals being "nearby."
This is characterized by a metric (or distance function).

$$
d(\mathbf{x}, \mathbf{y})
$$

If compatible with the vector space structure, we have a norm.

$$
\|x-y\|
$$

Examples of Norms

Can use many different norms, depending on what we want to do.
The following are particularly important:

- ℓ_{2} (Euclidean) norm:

$$
\|x\|_{2}=\left(\sum_{k=1}^{n}|x[k]|^{2}\right)^{\frac{1}{2}} \quad \operatorname{norm}(\mathrm{x}, 2)
$$

- ℓ_{1} norm:

$$
\|x\|_{1}=\sum_{k=1}^{n}|x[k]| \quad \operatorname{norm}(\mathrm{x}, 1)
$$

- ℓ_{∞} norm:

$$
\|x\|_{\infty}=\max _{k}|x[k]| \quad \operatorname{norm}(\mathrm{x}, \text { inf })
$$

What are the differences?

Properties of norms

For any norm $\|\cdot\|$, and any signal x , we have:
(1) Linearity: if C is a scalar,

$$
\|C \cdot \mathrm{x}\|=|C| \cdot\|\mathrm{x}\|
$$

(2) Subadditivity (triangle inequality):

$$
\|\mathrm{x}+\mathrm{y}\| \leq\|\mathrm{x}\|+\|\mathrm{y}\|
$$

Can use norms:

- To detect whether a signal is (approximately) zero.
- To compare two signals, and determine if they are "close."

$$
\|x-y\| \approx 0
$$

Signal representation by Orthogonal Signal Set

- Orthogonal Vector Space

\rightarrow A signal may be thought of as having components.

Linear combinations of signals

Application Example: Active Noise Cancellation

A "noise" signal, that we want to get rid of.

- At subject location, signal is

$$
x[n]
$$

- Microphone picks up signal

$$
x_{c}[n]
$$

- Subtract the two signals:

$$
y(t)=x(t)-x_{c}(t)
$$

- Microphone pick up

Notice careful synchronization is needed!

Component of a Signal

$$
\begin{aligned}
& f(t) \simeq c x(t) \quad t_{1} \leq t \leq t_{2} \\
& c=\frac{\int_{t}^{12} f(t) x(t) d t}{\int_{t_{1}}^{12} x^{2}(t) d t}=\frac{1}{E_{x}} \int_{t_{1}}^{t_{1}} f(t) x(t) d t
\end{aligned}
$$

- Let's take an example:
$\int_{t_{1}}^{t_{2}} f(t) x(t) d t=0$

Fig. 3.3 Approximation of square signal in terms of a single sinusoid.
Thus

$$
f(t) \simeq \frac{4}{\pi} \sin t
$$

Basis Spaces of a Signal

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}(t) d t= \begin{cases}0 & m \neq n \\
E_{n} & m=n\end{cases} \\
& f(t) \simeq c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{N} x_{N}(t) \\
& =\sum_{n=1}^{N} c_{n} x_{n}(t) \\
& e(t)=f(t)-\sum_{n=1}^{N} c_{n} x_{n}(t) \\
& c_{n}=\frac{\int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t}{\int_{t_{1}}^{t_{2}} x_{n}{ }^{2}(t) d t} \\
& =\frac{1}{E_{n}} \int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t \quad n=1,2, \ldots, N \\
& f(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{n} x_{n}(t)+\cdots \\
& =\sum_{n=1}^{\infty} c_{n} x_{n}(t) \quad t_{1} \leq t \leq t_{2}
\end{aligned}
$$

Basis Spaces of a Signal

$$
\begin{aligned}
f(t) & =c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{n} x_{n}(t)+\cdots \\
& =\sum_{n=1}^{\infty} c_{n} x_{n}(t) \quad t_{1} \leq t \leq t_{2}
\end{aligned}
$$

- Observe that the error energy Ee generally decreases as N, the number of terms, is increased because the term $C_{k}{ }^{2} E_{k}$ is nonnegative. Hence, it is possible that the error Energy $\rightarrow 0$ as $N \rightarrow \infty$. When this happens, the orthogonal signal set is said to be complete.
- In this case, it's no more an approximation but an equality

This (and Other) Basis for \mathbb{R}^{n}

- A fundamental idea of linear algebra
- One basis maybe better suited for a particular problem

For vectors w_{1}, \ldots, w_{n} to be a basis for $\mathbb{R}^{\boldsymbol{n}}$, this means:

1. The w_{i} 's are linearly independent
2. A $n \times n$ matrix W with these columns is invertible
3. Every vector v in $\mathbb{R}^{\boldsymbol{n}}$ can be written in exactly one was as a combination of the w_{i} 's

$$
\boldsymbol{v}=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots c_{n} \boldsymbol{w}_{n}
$$

[^0]
BREAK

Systems as Maps

Then a System is a MATRIX

$$
\begin{aligned}
& \xrightarrow{u[n]} \xrightarrow{D} \\
& y=D u . \\
& {\left[\begin{array}{c}
y[1] \\
y[2] \\
\vdots \\
y[M]
\end{array}\right]=\left[\begin{array}{cccc}
D_{11} & D 12 & \cdots & D_{1 N} \\
D_{21} & D_{22} & \cdots & D_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
D_{M 1} & D_{M 2} & \cdots & D_{M N}
\end{array}\right]\left[\begin{array}{c}
u[1] \\
u[2] \\
\vdots \\
u[N]
\end{array}\right]} \\
& y[i]=\sum_{j} D_{i j} u[j] .
\end{aligned}
$$

Linear Time Invariant

- Linear \& Time-invariant (of course - tautology!)
- Impulse response: $\mathbf{h}(\mathrm{t})=\mathbf{F}(\boldsymbol{\delta}(\mathrm{t}))$
- Why?
- Since it is linear the output response (\mathbf{y}) to any input (\mathbf{x}) is:

$$
\begin{aligned}
& x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau \\
& y(t)=F\left[\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right] \xrightarrow{\text { linear }} \int_{-\infty}^{\infty} x(\tau) F[\delta(t-\tau)] d \tau \\
& h(t-\tau) \equiv \\
& \Rightarrow y(t)=\int_{-\infty}^{\infty} x(\delta(t-\tau)] \\
& \Rightarrow y(t-\tau) d \tau=x(t) * h(t)
\end{aligned}
$$

- The output of any continuous-time LTI system is the convolution of input $\mathbf{u}(\mathrm{t})$ with the impulse response $\mathbf{F}(\boldsymbol{\delta}(\mathrm{t})$) of the system.

Linear Dynamic [Differential] System

\equiv LTI systems for which the input \& output are linear ODEs

$$
a_{0} y+a_{1} \frac{d y}{d t}+\cdots+a_{n} \frac{d^{n} y}{d t^{n}}=b_{0} x+b_{1} \frac{d x}{d t}+\cdots+b_{m} \frac{d^{m} x}{d t^{m}}
$$

Laplace:
$a_{0} Y(s)+a_{1} s Y(s)+\cdots+a_{n} s^{n} Y(s)=b_{0} X(s)+b_{1} s X(s)+\cdots+b_{m} s^{m} X(s)$ $A(s) Y(s)=B(s) X(s)$

- Total response $=$ Zero-input response + Zero-state response Initial conditions External Input

Linear Systems and ODE's

- Linear system described by differential equation

$$
a_{0} y+a_{1} \frac{d y}{d t}+\cdots+a_{n} \frac{d^{n} y}{d t^{n}}=b_{0} x+b_{1} \frac{d x}{d t}+\cdots+b_{m} \frac{d^{m} x}{d t^{m}}
$$

- Which using Laplace Transforms can be written as
$a_{0} Y(s)+a_{1} s Y(s)+\cdots+a_{n} s^{n} Y(s)=b_{0} X(s)+b_{1} s X(s)+\cdots+b_{m} s^{m} X(s)$ $A(s) Y(s)=B(s) X(s)$
where $A(s)$ and $B(s)$ are polynomials in s

Unit Impulse Response

Ex:

- $\boldsymbol{\delta}(\mathrm{t})$: Impulsive excitation
- $\mathrm{h}(\mathrm{t})$: characteristic mode terms

EXAMPLE 2.4
EXAMPLE 2.4
Determine the unit impulse response $h(t)$ for a system specified by the equation
$\left(D^{2}+3 D+2\right) y(t)=D x(t)$

The characteristic roots of this system are $\lambda=-1$ and $\lambda=-2$. Therefore
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2}$
Differentiation of this equation yields
$\dot{y}_{\mathrm{n}}(t)=-c_{1} e^{-t}-2 c_{2} e^{-e^{t}}$
(2.26b)

Setting $t=0$ in Eqs. (2.26a) and (2.26b), and substituting the intial conditions just given, we obtain
$0=c_{1}+c_{2}$
$1=-c_{1}-2 c_{2}$
Solution of these two simutaneous equations yields
$c_{1}=1$
Therotore
$y_{k}(t)=e^{-t}-e^{-2}$
Moreover, according to Eq $(2.25), P(D)=0$, so that
$P(D) y_{n}(t)=D y_{n}(t)=y_{n}(t)=-e^{-t}+2 e^{-2}$
Also in this case, $b_{0}=0$ [the second-order term is absent in $P(D)$. Therefore
$h(t)=\left[P(D) y_{n}(t)\right] u(t)=\left(-e^{-1}+2 e^{-2}\right) u(t)$

> More Examples ©
> (Elaborating from Lecture 2)

\section*{Another $2^{\text {nu }}$ Order System: Accelerometer or Mass Spring Damper (MSD)
 | \square ADXL202 |
| :---: |
| | |
 }

- General accelerometer:
- Linear spring (k) ($0^{\text {th }}$ order $\mathrm{w} / \mathrm{r} / \mathrm{t}$ o)
- Viscous damper (b) ($1^{\text {st }}$ order)
- Proof mass (m) (2 $2^{\text {nd }}$ order)
\rightarrow Electrical system analogy:
- resistor (R) : damper (b)
- inductance (L) : spring (k)
- capacitance (C) : mass (m)

(axd ELEC 3004: Systems

Measuring Acceleration:

Sense \boldsymbol{a} by measuring spring motion \mathbf{Z}

- Start with Newton's $2^{\text {nd }}$ Law:

Measuring Acceleration [2]

- Substitute candidate solutions:

$$
\begin{aligned}
& m \frac{d^{2}\left(X_{0} e^{i \omega t}\right)}{d t^{2}}=m \frac{d^{2}\left(Z_{0} e^{i \omega t}\right)}{d t^{2}}+k\left(Z_{0} e^{i \omega t}\right)+b \frac{d\left(Z_{0} e^{i \omega t}\right)}{d t} \\
& -m \omega^{2} X_{0} e^{i \omega t}=-m \omega^{2} Z_{0} e^{i \omega t}+k Z_{0} e^{i \omega t}+(i \omega) b Z_{0} e^{i \omega t}
\end{aligned}
$$

- Define Natural Frequency $\left(\omega_{0}\right)$
\& Simplify for Z_{0}
(the spring displacement "magnitude"):

$$
\begin{aligned}
\omega_{0} & \equiv \sqrt{\frac{k}{m}} \\
Z_{0} & =\frac{m \omega^{2} X_{0}}{m \omega^{2}-k-i \omega b}=\frac{X_{0}}{\sqrt{1-\frac{\omega_{0}{ }^{2}}{\omega^{2}}-\frac{b^{2}}{m^{2} \omega^{2}}}}
\end{aligned}
$$

Acceleration: $2^{\text {nd }}$ Order System

- For $\omega \ll \omega_{0}$:

$Z_{0} \approx \frac{\omega^{2} X_{0}}{\omega_{0}^{2}}=\frac{a}{\omega_{0}^{2}}$
$\rightarrow a=Z_{0} \omega_{0}^{2}$
\rightarrow it's an
Accelerometer
- For $\omega \sim \omega_{0}$
- As: $\mathrm{b} \rightarrow 0, \mathrm{Z} \rightarrow \infty$
- Sensitivity \uparrow
- For $\omega \gg \omega_{0}$:
$Z_{0} \approx X_{0}$
\rightarrow it's a Seismometer

Cascades of Linear Systems:

Ex ${ }_{6}$: Quarter-Car Model

Example: Quarter-Car Model (2)

$$
\begin{gathered}
\ddot{x}+\frac{b}{m_{1}}(\dot{x}-\dot{y})+\frac{k_{s}}{m_{1}}(x-y)+\frac{k_{w}}{m_{1}} x=\frac{k_{w}}{m_{1}} r, \\
\ddot{y}+\frac{b}{m_{2}}(\dot{y}-\dot{x})+\frac{k_{s}}{m_{2}}(y-x)=0 . \\
s^{2} X(s)+s \frac{b}{m_{1}}(X(s)-Y(s))+\frac{k_{s}}{m_{1}}(X(s)-Y(s))+\frac{k_{w}}{m_{1}} X(s)=\frac{k_{w}}{m_{1}} R(s), \\
s^{2} Y(s)+s \frac{b}{m_{2}}(Y(s)-X(s))+\frac{k_{s}}{m_{2}}(Y(s)-X(s))=0,
\end{gathered}
$$

$$
\frac{Y(s)}{R(s)}=\frac{\frac{k_{w} b}{m_{1} m_{2}}\left(s+\frac{k_{s}}{b}\right)}{s^{4}+\left(\frac{b}{m_{1}}+\frac{b}{m_{2}}\right) s^{3}+\left(\frac{k_{s}}{m_{1}}+\frac{k_{s}}{m_{2}}+\frac{k_{w}}{m_{1}}\right) s^{2}+\left(\frac{k_{w} b}{m_{1} m_{2}}\right) s+\frac{k_{w} k_{s}}{m_{1} m_{2}}}
$$

Next Time...

- We'll talk about Other System Properties ©

- We will introduce this via the lens of:
"Systems as Maps. Signals as Vectors"
- Review:
- Phasers, complex numbers, polar to rectangular, and general functional forms.
- Chapter B and Chapter 1 of Lathi
(particularly the first sections on signals \& classification thereof)
- Register on Platypus
- Try the practise assignment

[^0]: 開
 ELEC 3004: Systems

