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Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 6-Mar Systems as Maps & Signals as Vectors 
8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 
27-Mar Frequency Response 

29-Mar Filter Analysis 

6 
3-Apr Digital Filters (IIR) & Filter Analysis 

5-Apr Digital Filter (FIR) 

7 
10-Apr Digital Windows 

12-Apr FFT 

8 17-Apr Active Filters & Estimation & Holiday 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation/PID 

10 
8-May PID & State-Space 

10-May State-Space Control 

11 
15-May Digital Control Design 

17-May Stability 

12 
22-May State Space Control System Design 

24-May Shaping the Dynamic Response 

13 
29-May System Identification & Information Theory 

31-May Summary and Course Review 

http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 1: 

Introduction to Signals  

and Systems 

– § 1.7 Classification of Systems 

 

 

• Chapter 3: 

Signal Representation By 

Fourier Series 

– § 3.1 Signals and Vectors  

– § 3.3 Signal Representation by 

Orthogonal Signal Set 
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Linearity (Superposition) Recap 
(from Lecture 2) 
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http://library.uq.edu.au/record=b2013253~S7
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• Given input 𝑥1(𝑡) produces output 𝑦1(𝑡)  
and input 𝑥2(𝑡)  produces output 𝑦2(𝑡) 

 

• Then: The linearly combined input 

𝑥 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡  

 must produce the linearly combined output 

𝑦 𝑡 = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡  

 for arbitrary 𝑎 and 𝑏 

 

• Generalizing: 

– Input: 𝑥 𝑡 =  𝑎𝑘𝑥𝑘(𝑡)𝑘  |  Output: 𝑦 𝑡 =  𝑎𝑘𝑦𝑘(𝑡)𝑘  

 

 

Linear Systems: Superposition 
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Consequences: 

• Zero input for all time yields a zero output.  
– This follows readily by setting 𝑎 = 0, then 0 ⋅ 𝑥 𝑡 = 0 

 

• For an invertible system,  

Zero output for all time means yields that there was zero input  

 

• DC output/Bias  Incrementally linear  

• Ex: 𝑦 𝑡 = 2𝑥 𝑡 + 1  

• Set offset to be added offset [Ex: 𝑦0(𝑡)=1] 

 

Linear Systems: Superposition Consequences 
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Example:  Is it Linear?   

ELEC 3004: Systems 6 March 2019 - 7 

Source: (s.3-42) 

∴ (Therefore) : 

• Voltage (or current) superposition may be employed  

• Zero output, means Zero input (?) 

✓ 

Example:  Is it First-Order?  

ELEC 3004: Systems 6 March 2019 - 8 

If Vi =0 : 

 

• “Autonomous System” 

• Natural (or unforced) response 

 

•  T=a/b=RC 

• Time Constant: 𝜏 =
1

𝑇
=

1

𝑅𝐶
 

• Solution: 

 

http://web.mit.edu/6.003/F11/www/handouts/lec01.pdf
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Signals as Vectors 
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𝑥 𝑡 = 𝐴𝑒𝜆𝑡 

• A and 𝜆 are generally complex numbers.  

 

• If A and 𝜆 are, in fact, real-valued numbers, 𝑥 𝑡  is  

itself real-valued and is called a real exponential 

Complex Exponential Signals 
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• Back to the beginning! 

Signals as Vectors 

F(x) 
signal  

(input) 

F(…)=system 

signal  

(output) 
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• There is a perfect analogy between signals and vectors … 

 

Signals are vectors!  

 

• A vector can be represented as a sum of its components in a 

variety of ways, depending upon the choice of coordinate 

system. A signal can also be represented as a sum of its 

components in a variety of ways.  

Signals as Vectors 

F(x) 
signal  

(input) 

F(…)=system 

signal  

(output) 

6 March 2019 - ELEC 3004: Systems 12 
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• Represent them as Column Vectors 

Signals as Vectors 
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• Can represent phenomena of interest in terms of signals 

 

 

• Natural vector space structure (addition/substraction/norms) 

 

 

 

• Can use norms to describe and quantify properties of signals 

Signals as Vectors 
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Signals as vectors 

6 March 2019 - ELEC 3004: Systems 15 

• Audio signal (sound pressure on microphone) 

• B/W video signal (light intensity on 

• photosensor) 

• Voltage/current in a circuit (measure with 

• multimeter) 

• Car speed (from tachometer) 

• Robot arm position (from rotary encoder) 

• Daily prices of books / air tickets / stocks  

• Hourly glucose level in blood (from glucose monitor) 

• Heart rate (from heart rate sensor) 

Various Types 
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• Length:  

 

• Decomposition: 

 

• Dot Product of  ⊥ is 0:  

Vector Refresher  

6 March 2019 - ELEC 3004: Systems 17 

• Magnitude and Direction 

 

 

 

 

• Component (projection) of a vector along another vector 

 

 

 

 

Vectors [2] 

 Error Vector 
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• ∞ bases given x 

 

 

 

 

 

• Which is the best one? 

 

 

 

 

• Can I allow more basis vectors than I have dimensions? 

 

Vectors [3] 
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• A Vector / Signal can represent a sum of its components  

 

 

Signals Are Vectors 
 

 

 

 Remember (Lecture 5, Slide 10): 

 Total response = Zero-input response + Zero-state response 

 

 

 

• Vectors are Linear 
– They have additivity and homogeneity 

 

 

Initial conditions External Input 

6 March 2019 - ELEC 3004: Systems 20 
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• A signal is a quantity that varies as a function of an index set 

 

• They can be multidimensional: 
– 1-dim, discrete index (time): x[n] 

– 1-dim, continuous index (time): x(t) 

– 2-dim, discrete (e.g., a B/W or RGB image): x[j; k] 

– 3-dim, video signal (e.g, video): x[j; k; n] 

Vectors / Signals Can Be Multidimensional 
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• y[n]=2u[n-1] is a linear map 

• BUT y[n]=2(u[n]-1) is NOT  Why? 

 

• Because of homogeneity! 

 T(au)=aT(u) 

It’s Just a Linear Map 

6 March 2019 - ELEC 3004: Systems 22 
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Norms of signals 
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Examples of Norms 
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Properties of norms 
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• Orthogonal Vector Space 

 

 

 

 

 

 

 

 

 

 

 A signal may be thought of as having components. 

 

Signal representation by Orthogonal Signal Set 
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Linear combinations of signals 
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Application Example: Active Noise Cancellation 
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• Let’s take an example: 

 

Component of a Signal 
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Basis Spaces of a Signal 

6 March 2019 - ELEC 3004: Systems 30 
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• Observe that the error energy Ee generally decreases as N, the 

number of terms, is increased because the term Ck
2Ek is 

nonnegative. Hence, it is possible that the error Energy → 0 as 

𝑁 → ∞. When this happens, the orthogonal signal set is said to 

be complete.  

 

• In this case, it’s no more an approximation but an equality 

Basis Spaces of a Signal 

6 March 2019 - ELEC 3004: Systems 31 

• A fundamental idea of linear algebra 

• One basis maybe better suited for a particular problem 

For vectors 𝑤1, … , 𝑤𝑛 to be a basis for ℝ𝒏, this means: 

1. The 𝑤𝑖’s are linearly independent 

2. A 𝑛 × 𝑛 matrix W with these columns is invertible 

3. Every vector v in ℝ𝒏 can be written in exactly one was as a 

combination of the 𝑤𝑖’s  

 

𝒗 = 𝑐1𝒘1 + 𝑐2𝒘2 +⋯𝑐𝑛𝒘𝑛 

This (and Other) Basis for ℝ𝑛 

ELEC 3004: Systems 6 March 2019 - 32 
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BREAK 
 
  

6 March 2019 - ELEC 3004: Systems 33 

 

Systems as Maps 
 
  

6 March 2019 - ELEC 3004: Systems 34 
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Then a System is a MATRIX 

6 March 2019 - ELEC 3004: Systems 35 

 

 

 

• Linear & Time-invariant (of course - tautology!) 

• Impulse response: h(t)=F(δ(t)) 

• Why? 
– Since it is linear the output response (y) to any input (x) is: 

 

 

 

 

• The output of any continuous-time LTI system is the convolution of 

input u(t) with the impulse response F(δ(t)) of the system. 

 

Linear Time Invariant  

LTI 

h(t)=F(δ(t)) u(t) y(t)=u(t)*h(t) 

6 March 2019 - ELEC 3004: Systems 36 
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≡ LTI systems for which the input & output are linear ODEs 

 

 

 

 

 

 

 

• Total response = Zero-input response + Zero-state response 

Linear Dynamic [Differential] System 

Initial conditions External Input 

6 March 2019 - ELEC 3004: Systems 37 

• Linear system described by differential equation 

Linear Systems and ODE’s 

• Which using Laplace Transforms can be written as 

0 1 0 1

n m

n mn m

dy d y dx d x
a y a a b x b b

dt dt dt dt
      

)()()()(

)()()()()()( 1010

sXsBsYsA

sXsbssXbsXbsYsassYasYa m

m

n

n



 

where A(s) and B(s) are polynomials in s 
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• δ(t): Impulsive excitation 

• h(t): characteristic mode terms 

Unit Impulse Response 

LTI 

F(δ(t)) δ(t) h(t)=F(δ(t)) 

Ex: 
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More Examples  
(Elaborating from Lecture 2) 

 
  

6 March 2019 - ELEC 3004: Systems 40 
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Another 2nd Order System: 
Accelerometer or Mass Spring Damper (MSD) 

• General accelerometer: 
– Linear spring (k)  (0th order w/r/t o) 

– Viscous damper (b)  (1st order) 

– Proof mass (m) (2nd order) 

 

 Electrical system analogy: 
– resistor (R) : damper (b) 

– inductance  (L) : spring (k) 

– capacitance (C) : mass (m) 
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Measuring Acceleration:  
Sense a by measuring spring motion Z 

• Start with Newton’s 2nd Law: 

 

 

• Substitute: 

 

 

 

•  

 

• Solve ODE: 

The “displacement”  

measured by the unit  

(the motion of m relative the 

accelerometer frame) 

6 March 2019 - ELEC 3004: Systems 42 
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Measuring Acceleration [2] 
• Substitute candidate solutions: 

 

 

 

• Define Natural Frequency (ω0)  

& Simplify for Z0  
(the spring displacement “magnitude”): 
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Acceleration: 2nd Order System 

• Plot for a “unit” mass, etc…. 

 

 

 

 

• For ω<<ω0: 

 

 
  it’s an 

Accelerometer 

• For ω~ω0 

– As: b 0,  Z  ∞ 

– Sensitivity ↑ 

• For ω>>ω0: 

 

  it’s a Seismometer 
Accelerometer Seismometer 

6 March 2019 - ELEC 3004: Systems 44 
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Cascades of Linear Systems:  
Ex 6: Quarter-Car Model 

6 March 2019 - ELEC 3004: Systems 45 

REF: FPE, Feedback Control of Dynamic Systems, 6th Ed, p.25 

Example: Quarter-Car Model (2) 
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• We’ll talk about Other System Properties  

 

• We will introduce this via the lens of: 

 “Systems as Maps.  Signals as Vectors” 

• Review:  
– Phasers, complex numbers, polar to rectangular, and general 

functional forms.   

– Chapter B and Chapter 1 of Lathi  

(particularly the first sections on signals & classification thereof) 

 

• Register on Platypus 

 

• Try the practise assignment 

Next Time… 
 
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