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5-ApnDigital Filter (FIR)
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Follow Along Reading:

e _ » Chapter 1:
,,ﬁ SB_' P. Lathi Introduction to Signals
Lear Ignal processing
.~ andlinear systems and Systems
%M — §1.7 Classification of Systems
» Chapter 3:

Signal Representation By
Fourier Series

— §3.1 Signals and Vectors

— 8§ 3.3 Signal Representation by
Orthogonal Signal Set

Linearity (Superposition) Recap
(from Lecture 2)
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http://library.uq.edu.au/record=b2013253~S7

Linear Systems: Superposition

» Given input x4 (t) produces output y,(t)
and input x, (t) produces output y, (t)

» Then: The linearly combined input
x(t) = ax;(t) + bx,(t)
must produce the linearly combined output
y(©) = ay1(t) + by, (t)
for arbitrary a and b

» Generalizing:
— Input: x(t) = X arxk(t) | Output: y(t) = X aryx(t)

Linear Systems: Superposition Consequences

Consequences:

« Zero input for all time yields a zero output.
— This follows readily by setting a = 0,then 0 - x(t) = 0

« For an invertible system,
Zero output for all time means yields that there was zero input

» DC output/Bias = Incrementally linear

o Exiy(®) = [2x(®)] + [1]
» Set offset to be added offset [Ex: y,(t)=1]




Example: Is it Linear?

=

Vi(t)

LdVo(t)  Vilt) — Vo(t)
dt R
C (Vo)) = () (M) Vo))

C

(RCs +1) (Vo () =Vi(s)

[y] = [A] [=]

Vo N ()| o)

o (Therefore) -

 Voltage (or current) superposition may be employed ©

 Zero output, means Zero input (?)

Source: ELEC6.003 (s.3-42)

Example: Is it First-Order?

Vi(t)

“(%(y(f)))-s-by(t):w(t)
— e,
G’y’ + b’t] =

Ty +y= (%)w, T=

a

b
=T (Ys—y(0)+Y = (3) W(s)

[aY (s)-s+bY (s)=0]

IfV,=0:
' aYsFbY =0

* “Autonomous System”

e Natural (or unforced) response
(RC) (Vo -s=Vp(0))+Vp =0
= T=a/b=RC

* Time Constant: 7 =

11
T RC

« Solution: v, (1) = (v, (0)] e o



http://web.mit.edu/6.003/F11/www/handouts/lec01.pdf

Signals as Vectors
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Complex Exponential Signals

x(t) = Aet
« Aand A are generally complex numbers.

« If Aand A are, in fact, real-valued numbers, x(t) is
itself real-valued and is called a real exponential

x(t) (1)

1A =0)




Signals as Vectors

 Back to the beginning!

F(.. .)=Tystem

signal i
m— F(x)  ——mh

Signals as Vectors

F(.. .)=Tystem

signal i
imm—> F(X) —%ﬁaﬁlo

» There is a perfect analogy between signals and vectors ...
Signals are vectors!

A vector can be represented as a sum of its components in a
variety of ways, depending upon the choice of coordinate
system. A signal can also be represented as a sum of its
components in a variety of ways.




Signals as Vectors

* Represent them as Column Vectors

Signals as Vectors

 Can represent phenomena of interest in terms of signals

 Natural vector space structure (addition/substraction/norms)

 Can use norms to describe and quantify properties of signals




Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

e Can add two signals: = [n] + xa[n]
e Can multiply a signal by a scalar number: C' - x:[n]
e Form linear combinations: Cy - x1[n] + Cy - xa[n]

Various Types

 Audio signal (sound pressure on microphone)
« B/W video signal (light intensity on
 photosensor)

» Voltage/current in a circuit (measure with

« multimeter)

 Car speed (from tachometer)

» Robot arm position (from rotary encoder)

» Daily prices of books / air tickets / stocks

* Hourly glucose level in blood (from glucose monito\{ ']

 Heart rate (from heart rate sensor)




Vector Refresher

X-y=|x||y|cos # (6.46)

e

» Length: I =x-x
» Decomposition: x=ayte=ayte
* Dot Product of Lis0: xy=0

Vectors [2]

» Magnitude and Direction

f-a = |fllzl cos(6)

« Component (projection) of a vector along another vector

< Error Vector




Vectors [3]

* oo bases given X

' (a)

« Which is the best one?

fr~ex
clx| = |f cos 8
elx|? = |fl[x] cos 8 = f- x

Px_ 1
Txx e ¥
f-x=0

« Can | allow more basis vectors than | have dimensions?

Signals Are Vectors

« A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):
Total response = Zero-input response + Zero-state response

Initial conditions External Input

 Vectors are Linear
— They have additivity and homogeneity




Vectors / Signals Can Be Multidimensional

» Assignal is a quantity that varies as a function of an index set

» They can be multidimensional:
— 1-dim, discrete index (time): x[n]

— 1-dim, continuous index (time): x(t)
— 2-dim, discrete (e.g., a B/W or RGB image): x[j; k]
— 3-dim, video signal (e.g, video): x[j; k; n]

Discrete 1D

W oW ®m = w4 &

Continuous 1D

Disc:re]_lte 2D

-

It’s Just a Linear Map

u[n]

-rITITII[

up = [1,2.3,4,..,10)7

* y[n]=2u[n-1] is a linear map

y[n]

.rlllll

y = 1[0.2.4,6,....18]T

« BUT y[n]=2(u[n]-1) is NOT Why?

» Because of homogeneity!

T(au)=aT(u)

11



Norms of signals

Can introduce a notion of signals being "nearby.”

This is characterized by a metric (or distance function).

d(x,y)

o

If compatible with the vector space structure, we have a norm.

X—¥

Examples of Norms

Can use many different norms, depending on what we want to do.

The following are particularly important:
@ /5 (Euclidean) norm:

||lz]|2 = (Z ;c[h’]|2) norm(x,2)
k=1

[~

@ {1 norm:
n
Il]|1 =Z|.LL]| norm(x,1)
k=1
@ /.. norm:
I)|oo = mf?x|;t:[k]| norm(x,inf)

What are the differences?

12



Properties of norms

For any norm | - ||, and any signal x, we have:
@ Linearity: if C' is a scalar,
C-x|=|C]|x
© Subadditivity (triangle inequality):
[+ ¥l < lIx[ + ¥l
Can use norms:

@ To detect whether a signal is (approximately) zero.
@ To compare two signals, and determine if they are “close.”

X—y[|=0

Signal representation by Orthogonal Signal Set

» Orthogonal Vector Space

= A signal may be thought of as having components.

13



Linear combinations of signals

x[n]

¥in]

wqn}+yIn]

Application Example: Active Noise Cancellation

A “noise” signal, that we want to get rid of.

@ At subject location, signal is

x[n]

@ Microphone picks up signal

x.[n]

A= o

@ Subtract the two signals:

y(t} = _L(‘f;] — ;(:C[f) : g < 7 -

Notice careful synchronization is needed!

14



Component of a Signal

fltyczlt) t<t<ty

t2
f(t)a(t)dt )
t1

cm M= — [ f(0)2(t)dt
j 22 (t) dt Bz Ju
i1

thMﬂ&=0

ty

* Let’s take an example:

f(t)~ecsint O0<t<2n

¥id
z{t)=sint and E.,:f sin’(t)dt =7
o

T e,

\.\-“
& r—
0 = E P

R
Fig. 8.3 Approximation of square signal in terms of a single sinusoid.

Thus .
Flt) = Zaint

(3.14)

Basis Spaces of a Signal

ta 0 m#n
m n(t)dt =
[I zm(t)ea(t) dt {Eﬂ men

F(t) = erxy(t) + egzaft) + -+ + enzn(t)

N
= Z enZnl(t)

n=1

N
e(t) = f(t) - Zc:nzn(t)
n=1

[ * Fe)ealt) at

PR S—
f z,2(t)dt
ty

1 f=
=— F(t)zalt)dt n=12....N
En ty

f(t) = c1malt) + eqma(t) + - +enznlt) +---

oo
= zcﬂwﬂ(t) t1 St <ty

n=1
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Basis Spaces of a Signal

@) = exza(t) +eaza(t) + - +epzn(t) +---

o
=D earalt)  hi<t<i

n=1

» Observe that the error energy Ee generally decreases as N, the
number of terms, is increased because the term C,2E, is
nonnegative. Hence, it is possible that the error Energy — 0 as
N — oo. When this happens, the orthogonal signal set is said to
be complete.

* In this case, it’s no more an approximation but an equality

This (and Other) Basis for R"

« A fundamental idea of linear algebra

» One basis maybe better suited for a particular problem
For vectors wy, ..., w,, to be a basis for R™, this means:
1. The w;’s are linearly independent

2. A n xn matrix W with these columns is invertible

3. Every vector v in R™ can be written in exactly one was as a
combination of the w;’s

V=Wt Coowy oWy,
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Then a System is a MATRIX

uln y[n
[l
y = Du.
y[l] DM D12 ... DLN u[l}
y[2] B Doy Dy --- Doy ul2]
y[M] Dyiy Dap -+ Dun| [u[N]

yli] = Z Djulj].

Linear Time Invariant

LTI
u(t) | h(t)=F((t)) y(t?zu(t)*h(t)

Linear & Time-invariant (of course - tautology!)

Impulse response: h(t)=F(5(t))

Why?

— Since it is linear the output response (y) to any input (X) is:

z(t) = [z (7)o (t —T)dr '

y(t) =F [[2z ()3 (t —7)dr| Hnsar 100 4 (7Y F[6 (t — )] dr
ht—7) 2 F[5(t—7)]

=y) =[S x(r)h(t—T)dr =z (t)*h(t)

The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(8(t)) of the system.

18



Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

dMz

dy dy dx
, . .y ST A S TS M et
aoy+r11dt+ +an qen OL+?1dt+ “+bm o

Laplace:

agY (s) + a1sY(s) + -+ 4+ ans"Y (s) = bgX (5) + b1sX(s) + -+ + bins™ X (s)
A(8)Y (s) = B(s)X(s)

» Total response = Zero-input response + Zero-state response

Initial conditions External Input

Linear Systems and ODE’s

Linear system described by differential equation

d’y :b0x+b1%+---+bm d”x
dt" dt dt™

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s) +b,sX(s)+---+b,s"X(s)
A(S)Y (s) =B(s) X(s)

where A(s) and B(s) are polynomials in s

19



Unit Impulse Response

LTI 3
8(t) | FOM®) | h=F(@&()

Ex:

EXAMPLE 2.4
Deter

+ o(t): Impulsive excitation
 h(t): characteristic mode terms

Therefore

More Examples ©
(Elaborating from Lecture 2)
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Another 2™ Order System:

Accelerometer or Mass Spring Damper (MSD)

» General accelerometer:
— Linear spring (k) (0™ order w/r/t 0)
— Viscous damper (b) (1t order)
— Proof mass (m) (2" order)

=>» Electrical system analogy:
— resistor (R) : damper (b)
— inductance (L) : spring (k)
— capacitance (C) : mass (m)

Measuring Acceleration:
Sense a by measuring spring motion Z

 Start with Newton’s 2" Law:

« Solve ODE:

X (t) = Xge™t  Z(t) = Zge?

21



Measuring Acceleration [2]

» Substitute candidate solutions:

d2 Xoeiwt d2 ZOeiwt . d Zoeiwt
m (dtz ) —m (dt2 )ﬂ_k(zoezwo_l_b ( o )
—muw2Xget = —mw2Zgelt+kZget+ (iw) bZge?

* Define Natural Frequency (®,)
& Simplify for Z,

(the spring displacement “magnitude”):

_ |k
2
_ mw<Xg 1 Xo
Zo = mw?—k—iwb | \/ w02 b2
=22

Acceleration: 2" Order System

¢ For o<<aoy:

" Plot for a .umt mass, etc.... 7 w?Xg _ a
. 0~ "2 w2
, 0 0
2 r —a= Zowg
L N = it’s an
2 2 Accelerometer
* For o~m,
%; Asib>0, Z> w
i - : ,
L0 "
~—l : — Sensitivit
y
. . >>@:
r_ w a0 | 0 to o e For o>>ay:
- ZO ~ XO

Accelerometer

= it’sa

22



Cascades of Linear Systems:
Ex .: Quarter-Car Model

k(y — x)I I b(y — %)

y
my

X
. l

O

l k(x — 1) k(y — x) l l b(y — x)

REF: FPE, Feedback Control of Dynamic Systems, 6% Ed, p.25

Example: Quarter-Car Model (2)

o bk
y+—0 =)+ —(-x)=0
(&) Hiy

k

w w
—Xx = —r,

el TR
I+ —@ -+ —x-y+
mi my m

1 my

b y ,
s2X(5) +5—(X(5) — Y (s)) + E(X(-Y) —Y(s) + = X(s) = —=R(s),
mq mq nmy my

b
Y () + 52— (F(5) = X()) + (¥ () — X(5)) =0,
ma mp

kywb
Y (s) mums \

+ ks
b

mq mp mq my

RG) b b k&
) s“+<—+—>s3+(——+—+

kuwks

) ()
— )54 s+
mq mimy

mimy
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Next Time...

« We’ll talk about Other System Properties ©

We will introduce this via the lens of:
“Systems as Maps. Signals as Vectors”
Review:
— Phasers, complex numbers, polar to rectangular, and general
functional forms.
— Chapter B and Chapter 1 of Lathi
(particularly the first sections on signals & classification thereof)

Register on Platypus

Try the practise assignment
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