AC DADO	Http://elec3004.com
Signals as Vectors Systems as Maps	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh Lecture 3	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/ © 2019 School of Information Technology and Electrical Engineering at The University of Queensland	March 6, 2019

Lastura Schadular						
Lecture Schedule:						
	Week	Date	Lecture Title			
	1	27-Feb	Introduction			
		1-Mar	Systems Overview			
	2	6-Mar	Systems as Maps & Signals as Vectors			
	-	8-Mar	Systems: Linear Differential Systems			
	2	13-Mar	Sampling Theory & Data Acquisition			
	3	15-Mar	Aliasing & Antialiasing			
	4	20-Mar	Discrete Time Analysis & Z-Transform			
	4	22-Mar	Second Order LTID (& Convolution Review)			
	5	27-Mar	Frequency Response			
	3	29-Mar	Filter Analysis			
	6	3-Apr	Digital Filters (IIR) & Filter Analysis			
	0	5-Apr	Digital Filter (FIR)			
	7	10-Apr	Digital Windows			
	'	12-Apr	FFT			
	8	17-Apr	Active Filters & Estimation & Holiday			
		19-Apr				
		24-Apr	Holiday			
		26-Apr				
	9	I-May	Introduction to Feedback Control			
		3-May	Servoregulation/PID			
	10	8-May	PID & State-Space			
		10-May	State-Space Control			
	11	15-May	Digital Control Design			
		17-May	Stability State Same Control Suptam Davier			
	12	22-May	State Space Control System Design			
		24-iviay	Sustam Identification & Information Theory			
	13	29-May	System identification & information Theory			
		31-May	summary and Course Review	1		

Basis Spaces of a Signal	
$\int_{t_1}^{t_2} x_m(t) x_n(t) dt = \begin{cases} 0 & m \neq n \\ E_n & m = n \end{cases}$	
$f(t) \simeq c_1 x_1(t) + c_2 x_2(t) + \dots + c_N x_N(t)$ = $\sum_{n=1}^N c_n x_n(t)$	
$e(t) = f(t) - \sum_{n=1}^{N} c_n x_n(t)$	
$c_n = \frac{\int_{t_1}^{t_1} f(t) x_n(t) dt}{\int_{t_1}^{t_2} x_n^2(t) dt}$	
$= \frac{1}{E_n} \int_{t_1}^{t_2} f(t) x_n(t) dt \qquad n = 1, 2, \dots, N$	
$f(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots$ $= \sum_{n=1}^{\infty} c_n x_n(t) \qquad t_1 \le t \le t_2$	
ELEC 3004: Systems	6 March 2019 - 30

Basis Spaces of a Signal

$$f(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots$$
$$= \sum_{n=1}^{\infty} c_n x_n(t) \qquad t_1 \le t \le t_2$$

- Observe that the error energy *Ee* generally decreases as *N*, the number of terms, is increased because the term C_k²E_k is nonnegative. Hence, it is possible that the error Energy → 0 as N → ∞. When this happens, the orthogonal signal set is said to be complete.
- In this case, it's no more an approximation but an equality

ELEC 3004: Systems

This (and Other) Basis for ℝⁿ A fundamental idea of linear algebra One basis maybe better suited for a particular problem For vectors w₁, ..., w_n to be a basis for ℝⁿ, this means: The w_i's are linearly independent A n × n matrix W with these columns is invertible Every vector v in ℝⁿ can be written in exactly one was as a combination of the w_i's w = c₁w₁ + c₂w₂ + ... c_nw_n

BREAK

Systems as Maps

ELEC 3004: Systems

6 March 2019 - **34**

ELEC 3004: Systems

6 March 2019 - **40**

ELEC 3004: Systems