	http://elec3004.com
Summary & Course Review	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh (& Timothy Sherry via Skype)	
Lecture 25	
elec3004@itee.uq.edu.au	May 31, 2019
http://robotics.itee.uq.edu.au/~elec3004/	

Lecture Schedule:						
-			x . mu	1		
	week	Date 27 E-h	Lecture Little			
	1	2/-reu 1 Mar	Sustama Quantianu			
-		6 Mar	Systems of Mane & Signals as Vactors			
	2	8-Mar	Systems: Linear Differential Systems			
	0-ivia bysens. Enclary & Data Acquisition					
	3	15-Mar	Aliasing & Antialiasing			
-		20-Mar	Discrete Time Analysis & Z-Transform			
	4	22-Mar	Second Order LTID (& Convolution Review)			
		27-Mar	Frequency Response			
	5	29-Mar	Filter Analysis			
		3-Apr	Digital Filters (IIR) & Filter Analysis			
	6	5-Apr	PS 1: O & A			
		10-Apr	Digital Windows			
	7	12-Apr	Digital Filter (FIR)			
	8	17-Apr	Active Filters & Estimation			
		26-Apr				
	0	1-May	Introduction to Feedback Control			
	9	3-May	Servoregulation & PID Control			
	10	8-May	State-Space Control			
	10	10-May	Guest Lecture: FFT			
	11	15-May	Advanced PID & & FFT Processes			
		17-May	State Space Control System Design			
	12 22-May Shaping the Dynamic Response					
	12	24-May	Stability and Examples			
	29-May System Identification & Information Theory & Information Space					
	13	31-May	Summary and Course Review			
ELEC 3004: Systems				31 May 2019 - 2		

AKA ELEC 3004: What do I need to know about *.* ???

ELEC 3004: Systems

31 May 2019 - 15

PS 3		
	<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	
ELEC 3004: Systems		31 May 2019 - 18

	Fo Review:				
E	Back to the Begin i	ni	ngLecture I S	Slic	de 27
•	Systems		0	•	Controllability and state transfer
•	Signal Abstractions	•	Discrete Time	•	Observability and state estimation
•	Signals as Vectors / Systems as Maps	•	Continuous Time		
				•	And that, of course,
•	Linear Systems and Their Properties	•	Laplace Transformation		Linear Systems are Cool!
•	LTI Systems	•	Feedback and Control		
•	Autonomous Linear Dynamical Systems	•	Additional Applications		
	Convolution	•	Linear Functions		
•	FIR & IIR Systems	•	Linear Algebra Review		
•	Frequency domain	•	Least Squares		
•	Fourier Transform (CT)	•	Least Squares Problems		
•	Fourier Transform (DT)	•	Least Squares Applications		
		•	Matrix Decomposition and Linear		
•	Even and Odd Signals		Algebra		
•	Likelihood	•	Regularized Least Squares		
•	Causality				
		•	Least-squares		
•	Impulse Response	•	Least-squares applications		
•	Root Locus	•	Orthonormal sets of vectors		
•	Bode Functions	•	Eigenvectors and diagonalization		
		•	Linear dynamical systems with inputs		
•	Left-hand Plane		and outputs		
		•	Symmetric matrices, quadratic forms,		
•	Frequency Response		matrix norm, and SVD		
S	ELEC 3004: Systems				31 May 2019 - 19

l	_ots of Stuff To C	over	
	Systems Signal Abstractions Signals as Vectors / Systems as Maps Linear Systems and Their Properties LTI Systems Autonomous Linear Dynamical Systems	Discrete Time Continuous Time Laplace Transformation Feedback and Control Additional Applications	 Controllability and state transfer Observability and state estimation And that, of course, Linear Systems are Cool! ⁽²⁾
· > > > > > > > > > > > > > > > > > > >	Convolution FIR & IIR Systems Frequency domain Fourier Transform (CT) Fourier Transform (DT) Even and Odd Signals Likelihood Convolution	Linear Functions Linear Algebra Review Least Squares Least Squares Problems Least Squares Applications Matrix Decomposition and Linear Algebra Regularized Least Squares	
<u>י ניני</u>	Impulse Response Root Locus Bode Functions Left-hand Plane Frequency Response	Least-squares Least-squares applications Orthonormal sets of vectors Eigenvectors and diagonalization Linear dynamical systems with inputs and outputs Symmetric matrices, quadratic forms, matrix norm, and SVD	
X	ELEC 3004: Systems		31 May 2019 - 20

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

System Classifications/Attributes

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

ELEC 3004: Systems

Table 2.1	Summary of Thro	ough- and Acro	ss-Variables for F	Physical Systems
System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ ₂₁
Fluid	Fluid volumetric rate	Volume, V	Pressure difference, P ₂₁	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Type of Element	Physical Element	Governing Equation	Energy E or Power 9	Symbol
	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \cdots \circ F$
Inductive storage	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \cdots \circ T$
-	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \cdots \circ P_1$
	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^{2}$	$v_2 \circ \overset{i}{\longrightarrow} \overset{C}{\longrightarrow} v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \longrightarrow v_2 - M - v_1 = constant$
Capacitive storage	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \xrightarrow{\omega_2} \overline{J} \xrightarrow{\omega_1} \omega_1 =$ constant
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}{}^2$	$\mathcal{Q} \xrightarrow{\bullet \circ}_{P_2} \overline{C_f} \xrightarrow{\bullet \circ} P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{I}_2}{dt}$	$E=C_t\mathcal{I}_2$	$q \xrightarrow{q} \mathcal{T}_2 \xrightarrow{C_l} \mathcal{T}_1 = constant$
	Electrical resistance	$i = \frac{1}{R} v_{21}$	$\mathcal{P}=\frac{1}{R}{v_{21}}^2$	$v_2 \circ - \checkmark \overset{R}{\longrightarrow} \circ v_1$
	Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \longrightarrow v_2$ v_1
Energy dissipators	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}{}^2$	$T \longrightarrow 0 \\ \omega_2 \longrightarrow b \\ b \\ \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}{}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_{\rm r}} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ \longrightarrow \mathcal{T}_1$
			Source	ce: Dorf & Bishop, Modern Control Systems, 12th Ed., p.

The Kalman Filter • Question: What does it do? • Answer: It estimates x(t) based on y(t) from: x(t+1) = A x(t) + u(t) y(t) = C x(t) + w(t)

Probability of transition as a matrix

We can form a matrix which describes the probability of transition given a particular state described as a "one hot" vector

THAT'S AN EIGENVECTOR PROBLEM!

• The distribution of the symbols are simply the lefteigenvectors of the transition matrix

 $\operatorname{Eig}(P^T)$

• To solve, you can solve the characteristic Eq.

$$P^T - \lambda I | = 0$$

• We will go through how to solve the eq above in the tutes for a 2x2 matrix

ELEC 3004: Systems

Linear Systems

31 May 2019 - **49**

ELEC 3004: Systems

Review
What do you think when you see?
ÿ+2ÿ+3y = u
. System?

Joy?
Excitement?
Shock and Awe??

Itinear algebra provides the tools/foundation for yorking with (linear) differential equations.

Linear algebra provides the tools/foundation for working with (linear) differential equations.

• Signals are vectors. Systems are matrices.

	Break ©	
ELEC 3004: Systems		31 May 2019 - 59

Now, What's Next?

ELEC 3004: Systems

31 May 2019 - **60**

Iceberg to Titanic: Take Advantage of Information

ELEC 3004: Systems

- 30 Min/Day Talking on Phone
- 5.5 days/year of audio samples
- Track this (notably the pauses) over time to detect onset of dimentia
- 150 Photos/Month

<section-header><section-header><complex-block><complex-block>

SECAIS: Let's look back at the topic list from Lecture I The course is has a huge mandate: • It is really $3 \cdot \frac{1}{2}$ courses in one ! - Linear Systems - Signal Processing - Controls & Digital Controls \therefore It is **b r** d !! 0 a There is a logic to it They share the same _ mathematical nature (poles & zeros) The math is common to more than just circuits! ELEC 3004: Systems

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Next Time						
There is no next	: ti	me! ©				
W	Veek	Date Lecture Title				
	1	27-FebIntroduction				
	-	6-MarSystems as Mans & Signals as Vectors	_			
	2	8-MarSystems: Linear Differential Systems				
	3	13-MarSampling Theory & Data Acquisition				
	5	15-MarAliasing & Antialiasing	_			
	4	20-MarDiscrete Time Analysis & Z-Transform	-			
		27-MarFrequency Response	—			
	5	29-MarFilter Analysis	_			
	6	3-AprDigital Filters (IIR) & Filter Analysis				
	0	5-AprPS 1: Q & A				
	7 -	10-AprDigital Windows	_			
	-	12-Aprolytal Filter (FIK)	_			
	8	17-AprActive Filters & Estimation				
	-	19-Apr 24-Apr 26-Apr 26-Apr				
	0	1-May Introduction to Feedback Control	—			
	9	3-MayServoregulation & PID Control				
	10	8-MayState-Space Control	_			
	-	10-MayGuest Lecture: FF1 15-MayAdvanced PID & & FET Processes	-			
	11	17-MayState Space Control System Design	—			
	12	22-May Shaping the Dynamic Response				
	12	24-MayStability and Examples				
	13	29-MaySystem Identification & Information Theory & Information Space	2			
L		31-MaySummary and Course Review	I			
 We're at the End Thank you folked 	•	It's (the) final!				
• Thank you lorks!						
ELEC 3004: Systems			31 May 2019 - 80			