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Week Date Lecture Title

27-Feb|Introduction

1
I-Mar[Systems Overview

s 6-N as Maps & Signals as Vectors

8-Mar|Systems: Linear Differential Systems

T3-Marjsampling Theory & Data Acquisition

15-Mar|Aliasing & Antialiasing

20-Mar|Discrete Time Analysis & Z-Transform

22-MarjSecond Order LTID (& Convolution Review)

27-Mar[Frequency Response

29-Mar|Filter Analysis

3-AprDigital Filters (IIR) & Filter Analysis

S5-AprPS 1: Q & A

T0-AprDigital Windows

12-Apr|Digital Filter (FIR)

8 17-Apr|Active Filters & Estimation

19-Apr]
24-Apr| Holiday
26-Apr]

1-May|Introduction to Feedback Control

3-May|Servoregulation & PID Control

8-May/State-Space Control

10-May|Guest Lecture: FFT

15-May|Advanced PID & & FFT Processes

17-May|State Space Control System Design

22-May[Shaping the Dynamic Response

24-MayStability and Examples

29-Ma System Identification & Information Theory &
13 YInformation Space

31-May[Summary and Course Review



http://videolectures.net/mackay_course_01/
https://www.ucl.ac.uk/cortexlab/class/7._Information_theory.pptx
http://www.mee.tcd.ie/~sigmedia/pmwiki/uploads/Teaching.4S1b/comp_rev.pptx
http://itee.uq.edu.au/~metr4202/
http://elec3004.com/

Follow Along Reading:

— Today

‘gﬁ‘ . B.P.Lathi =>Information Theory €

Signal processing
and linear systems

1998 .
TK5102.9.1.38 1998 Lathi Ch. 2 (?)

— § 2.7-6 Time Constant and Rate of
Information Transmission

David J. C. . . '
MacKay Information Theory!
. Information Theory,
o Inference and Learniug
Aloorithms i g
20%3 :* Final Exam Review:

: http://robotics.itee.uq.
http://www.inference. : ody,au/~elec3004/tutes.h
phy.cam.ac.uk/itila/ : N

tml#Final :
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http://www.inference.phy.cam.ac.uk/itila/
http://library.uq.edu.au/record=b2013253~S7
http://robotics.itee.uq.edu.au/~elec3004/tutes.html

Shannon Information Theory
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“The fundamental problem of communication is that of reproducing at one point,
either exactly or approximately, a message selected at another point.”

On the transmission of information over a noisy channel:

An information source that produces a message

A transmitter that operates on the message to create a signal which can be sent through a
channel

A channel, which is the medium over which the signal, carrying the information that
composes the message, is sent
A receiver, which transforms the signal back into the message intended for delivery

A destination, which can be a person or a machine, for whom or which the message is
intended

Information theory is...

It all starts with Probability Theory!

(Wikipedia) Information theory is a branch of
applied mathematics, electrical engineering,

and computer science involving the
quantification of information.

Information theory is probability theory where
you take logs to base 2.



http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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Entropy — a measure of randomness

* Entropy

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X):—Z/)(_\‘)Iog:p(.\‘). (1.1)
x

Example 1.1.2 Suppose that we have a horse race with eight horses

taking part. Assume that the probabilities of winning for the eight horses
111 1 1 1 1 1

are (3. 7.5+ 7+ 24- 54 a4+ 33)- We can calculate the entropy of the horse

race as
| | | | | | | |
HX)=—=log=— — —-log— — —log— — —log — —4— log —
2 "2 4 "4 8 °8 16 " 16 64 64
= 2 bits. (1.3)
Entropy

* Consider the Random Variable X, the outcome of each
consecutive horse race.

» Assigning a binary number to each horse in the race would
require 8 = 28 - k = 3 bits/symbol

» Shannon states that some encoding scheme on the sequence
X1, X, ... X,, can reduce the average number of bits -> H(X) =
2 bits/symbol

* We will show you how soon




Connection to Physics

A macrostate is a description of a system by large-scale
quantities such as pressure, temperature, volume.

A macrostate could correspond to many different microstates i,
with probability p;.

Entropy of a macrostate is
S = —kg XipiInp;

Entropy: The bent coin

&

Example 2.1.7 Let

I with probability p,

X= 0 with probability 1 — p.

Then &
, def -
H(X)=—-plogp— (1 —p)log(l — p) = H(p). (2.5)

Consider X to be the result of a coin toss.

This coin has been modified to land a Head (1) with probability p
and Tails (0) with probability 1-p.

What is the entropy of X as we vary p?

Plot a graph of H(p) against p.




Entropy

Hi(p)

FIGURE 2.1. H(p) vs. p.

Bent/Unfair Coin

* The most unpredictable coin is the fair coin.

* More generally for a variable of k states, a uniform distribution
across all k states exhibits maximum entropy

* The observation of a coin with two tails is not random at all.




Example: Mystery Text

I. Emma Woodhxuse, hands*me, clever* and rich,*with a comijortabxe home anx*
happy di*position,*xseemed toxunite som* of the b*st bless*ngs of
existencej;*xand had *ived neaxly twenty *ne year* in the*world wxth
very*Llittle *o distr*ss or vexxher. xhe wasxthe yoxngest *f the *wo
dauxhters *f a most *ffect*xonatex induxgent xatherx and *ad, i* cons*quencx*
of hxr si*ter'* mar*xiage*x beex misxressxof hxs hoxse fxom a verx eaxly
*erixd. *xer *othxr hxd dxed *oo *ongxago*forxher toxhaxe xorx
txanxanxinxisxinxt x*emxmbxanxe *f *erxcaxeskxes* axdxh*r*pxaxexhxdxbxex
*u*p*i*d*b* *nkexckx Lxextrxwxmrinxax g**e**e**’**h**h**

*k LhkrxNkkTx*k LArkShkhkrx*Ok*xq*xkOx*@k*x*

QXKKCHAXNK Kk Shkhk k@A Xk Yk kX ShkkdxkkSkxk @k kXM hkk@xkkNKkk*
Wk ok ok k Ok ok ok k Sk ok ok ok xkokok Lk kkk @k kkok @k kkk Nk kkk Tk kkk @k kk k @k Kk k\/k ok %

II. Emma Woodhouse, handsome, clever, and rich, with a comfortable home and happy
disposition, seemed to unite some of the best blessings of existence; and had lived
nearly twenty one years in the world with very little to distress or Vex her. She was
the youngest of the two daughters of a most affectionate, indolent father; and had ,
in consequence of her sister's marriage , been mistress of his house from a very
early period. Her mother had died too long ago for her to have more than an
indistinct remembrance of her caresses; and her place had been supplied by an
excellent woman as governess, who had fallen little short of a mother in affection.
Sixteen years had Miss Taylor been in Mr Woodhouse's family , less as a eoverness
than a friend , very

Entropy of English - 2.6 Bits/letter || Raw encoding 27+4 = 31sym = 5.1 Bits/letter

Source: MacKay VideolLectures 02, Slide 5

Source coding
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Data Compression/Source coding

* Removes redundancy to reduce bit length of messages

» Save bits on common symbols/sequences

» Spend extra bits on the ‘surprises’, as they very rarely occur

* Lossless (Huffman, Algorithmic, LZ, DEFLATE)

* Lossy (JPEG, MP3, H.265 etc)

» Lossy techniques exploit perceptual dynamic range to expend

bits where a human is sensitive, and save where they’re not
Source

l T

SOURCE S

. . Compressor Decompressor
CODING

Huffman Coding

* Huffman is the simplest entropy coding scheme
— It achieves average code lengths no more than 1 bit/symbol of the

entropy

A binary tree is built by combining A0S

the two symbols with lowest

probability into a dummy node 10
B0.25

The code length for each symbol is 04 A0

the number of branches between the Col B10

root and respective leaf 0.15 C110

D111

D 0.05




Ex: Bent/Unfair Coin

e Form symbols TT, HT, TH, HH

P(TT) = 0.81 ; P(HT) =

X =0|p =081
Xy =110 | p = 0.09

Transmission cost 0.81-1+0.09-2+0.09-3+0.01-3 =

bits

1.29

symbol
H(X) = 0.4690-2 =

Huffman transmission cost HX) < C< H(X) + 1

P(TH) = 0.09 ; P(HH) = 0.01
Xpy =10 |p = 0.09
Xy = 111 | p = 0.01

Bits .
0.938 — non-optimal code
symbol
bit
symbol

longer code words = better performance

Huffman performance -> Longer codewords

12r

cost in bits
[=2]

Unencoded
Huffman
Shannon limit

1 2 3 4

5 6 7 8 9 10 1"
elements per symbol (2")

10



Lossless compression and entropy

The lower the entropy of the source, the more we can gain via
compression.

The fair coin exhibits no exploitable means of compressing a
sequence of observations from their direct description, without
losing some information in the process

All forms of compression exploit structure to reduce the
average number of bits to describe a sequence.

Channel Coding

ELEC 3004: Systems 29 May 2019 - 22
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Channel and Source Coding
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Channel coding

to the source space

 All physical transmission is susceptible to noise.
» Noise results in errors when a transmission 1s converted back

* Channel coding introduces redundancy to reduce the
probability an error is made in conversion back to the source.

12



Noisy channels: Binary Symmetric Channel

D—P-D £ R A _ _r Fo_ T B
x >< " Iwy—Mx—Of-— 1 fglny_mx_lf
14341 Piy=1|z=0) = [ Piy=1[x=1)

1

« A1 bit digital channel where each bit experiences a
probability, £, of being misinterpreted (flipped)
* Ex: A File of N=10,000 bits is transmitted with f~=0.1

R.EDUNTHAN

How many bits are flipped?

Assume a Binomial distribution

* Mean: u = Np

* Variance: 6% = Npq Hyl)

0.8-

Then: 06~

u = (0.1)10,000 0.4-

o2 = (0.1)(0.9)10,000 = 900 o
0 T I T 1 1

Thus:
1000 + 30

13



How to beat this?

Filter like mad!

vmbaamm

P

 But this will also affect
“non-noisy” signal portions

Matlab: medfilt2(noisy_im)

o=

Redundant Transmission!

“:' KEDUNDAN
771 Aethss. f

'I
Repetition Code ‘R3’

r = t|modulo 2|n

Does there exist some
scheme where P(error) -> 0

Can we quantify the
required redundancy?

Repetition Code ‘R3’

ENCODER CHANNEL
= 1()‘/

——

REDUNDA?‘ REDUNDAh
G'LAsS GLASS,
® \ﬁ }Lﬁ \E/

KEDUNDN‘

GLASS,

(v

REDUNDA'*
GLASS.

i

Source: MacKay VideoLectures 01, Slide 30

Ll W

r DECODER s
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Hamming distance of R3
011 111
001 _ 101
010 110
000 ¢ c100

Porror Of the Rz code

* P(ro00,51) = P(r111,50) = 0.1° = 0.001
P(r100,51) = P(1510,51) - = 0.12 = 0.01

e P, =(0.001+0.01-3)p(s;)+ (0.001 +0.01-3) - p(s,)
e P, =0.031

* The number of errors u = 310 + 17.3
» Approximately 3x reduction in errors, but 3x as many bits
required to send the message

15



Performance of Repetition Codes

0.1 o

01 4 R1 0014 RS R1

\ R3

1e-05 1 ¢ “mure useful codes

Po

0.04 1e-10 i
\ R3

R5, \ more useful codes |
R61 \ i Ret
0 — — T

0 02 04 06 08 1 0 0.2 04 06 08 1
Rate Rate

- Want to maximise rate, minimise Error

- Software (e.g. Checksums) can identify errors and correct to
higher stringency

- Can we do better?

T 1e-15 T T 158 T .

Source: MacKay VideolLectures 01, Slide 45

The Noisy-channel coding theorem
* The channel capacity for the general channel:
X (noisy) y

Transmitter > —>| Receiver
Channel

Is the mutual information between X and Y:
Capacity = I(X;Y)
We will show Capacity of the BSC is:
Capacitygsc = [(Xpsc; Yosc) =1 — H(Pgsc)
Where H is the Shannon entropy of the bent coin with Py,

16



Conditional Entropy

* Suppose Alice wants to tell Bob the value of X
— And they both know the value of a second variable Y.

» Now the optimal code depends on the conditional distribution
p(X|Y)

* Code length for X = i has length -log, p(X = i|Y)

» Conditional entropy measures average code length when they
know Y

HXIY) = = ) p(X,¥) log, p(XIV)

Mutual information

* How many bits do Alice and Bob save when they both
know Y?

I(X;Y) = H(X) — HX|Y)
= Z p(X,¥)(~log, p(X) + log, p(X|1)

p(X,Y)
ZP(X Vlog ( (X)p(y)>

* Symmetrical in X and Y'!

* Amount saved in transmitting X if you know Y equals
amount saved transmitting Y if you know X.

17



Properties of Mutual Information

1X;Y) = HX) — HX|Y)
=HY) - H{IX)
=HX)+H({Y)-HX,Y) N

H(X) H(Y)

« IfX=VY,I(X;Y) = HX) = H®Y)

« If X and Y are independent, I(X;Y) =0

HX,Y)=HX)+HY|X) =HY)+HX|Y) HX|Y) < HX)

* In straightforward terms, information is never negative, we are
always at least as certain about X|Y vs X

Conditional Entropy & Mutual Information

« Note that the distributions p(X), p(Y) and p(X|Y) may be
complex.

« computing p(X|Y) may be intractable
* Mutual Information and Conditional entropy hold for all
distributions, but quantifiying them may be intractable

eciination (

Meair..
<= B

Median

Right skewed distribution: Mean is to the right

18



Mutual information of the BSC,—¢ 4

P(X,,Y,) = P(Xy,Y,) = 0.5 0.9 = 0.45
P(Xo, Yl) = P(Xl, Yo) = 05 x0.1= 005
P(Xo) = P(X1) = P(Yo) = P(Y1) =0.5

p(X,Y) >

IX;Y) = ;’P(X, Y) log, (m

I(Y:Y)=2-:0451 —045 +2-:0.051 (0'05)
¥;¥)=2-0. °g2(0.52) 091082\ 552

I(Y;Y) = 0.7632 — 0.2322 = 0.531

Ultimate error free performance

* H(0.1)=0.4690

* Capacity = 0.531 Bits per Symbol

* Theoretically can obtain a p,, = 0 at that rate
* Does not tell us how to obtain that rate

0.1 4

01 4 R1 001 4 RS-, ol
0.08 \
1e-05 4 » \,more useful codes
Po L
0.06
0.04 4 1e-10 41
\ A3
0.02 4 A
RS / \ more useful codes !
R61 \ T Rs1
0 -‘.'ﬁ;v—r—.—r*—v— 1e-15 T T ' T
0 02 0.4 06 08 1 0 02 04 06 08
Rate Rate

19



What’s Practically Achievable?

01 4 R1; 0.1 pprTrEr
001 4 RS#TT H(7.4) R1
0.08 4 4
T OH 74) 1605 1 \more useful codes
Po 1 .
0.06 - 4 BCH(511,76)
004 - 1e-10 41
RS B
0.02 1 7 4i “BCH(1023,101)
RS/ 4
"_'T achievable / not achievable 1e-15 . . .
0 k y y 0 02 04 068 08

0

02 04 Cos o8
Rate

Xk

Interative forward error correction (FEC) codes N

» Shannon told us the limit, reaching it is not so easy = [

Source: MacKay VideolLectures 01, Slide 54

ELEC 3004: Systems
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https://en.wikipedia.org/wiki/Turbo_code
https://en.wikipedia.org/wiki/Forward_error_correction

Communications
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Physical layer — Modulation Schemes

 The final piece to transmitting over real communication
channels

* Analog modulation (AM (SSB) ,FM , PM, QAM)
 Digital modulation(ASK,PSK,FSK,QAM)

» Both encode the signal on the amplitude (A) or phase (F,P,Q)
of a carrier sine frequency

« Will only cover digital Quadrature Amplitude Modulation
(QAM)

21



QAM

» A pulse of the carrier frequency encompasses a symbol.

» The symbol can take on a number of states, encoded as finite
levels of amplitude and phase (quadrature)

» Here we need to window our sine carrier to form a pulse

* A rectangular window would produce spectral leakage, and
heavy interference — use a raised cosine window

* A RCW results in no inter-symbol-interference

h(t)

Constellations

* For QAM 16 — 16 discrete locations on the inphase /
quadrature plane

* Red lines denote decision boundary

Scatter plot

22



Doubling data rate — QAM4 to QAMI| 6

* Bits per symbol of QAM4 =2, QAM16 =4

 Constellation diagrams

* Assuming receive power of % = 10dB, what is the
probability that a message sent crosses the descision boundary?

EDb . . . :
- o s the energy per bit received, over the average noise energy at

the receiver.

QAM4 v QAMI6
Perr, =8-107° Perr; =8-1073
BER=4-10"° 2-1073
Rate = 2 Bits Bits
Symbol Symbol

23



QAM4 v QAMI6

Double the data rate
500 more likely to flip a bit!

Generally BER is a specification of the communication
protocol

For example Gigabit Ethernet adjusts the constellation to

maintain a raw BER below 1071° (one per 10 gigabits)

— In other words, your Ethernet connection will produce ~ 7-8 one
bit errors per hour of 4k Netflix streaming (~7GB/Hr)

Source coding reduces this to 1071* (one per 100 terabits)

QAM vs Theoretical maximum

./ 256QAM

128QAM

64QAM|

32QAM

16QAM

8QAM

Mutual Information [bits/symbol]
S

4QAM

0 i i i i
-10 5 0 5 10 15 20 25 30
Es/N, [dB]

» Using a smaller constellation restricts the channel capacity

» Using too high a constellation requires complex channel

coding to exploit

24



Shannon Capacity of the AWGN channel

C = Blog,(1 +%)

B is the bandwidth S the signal power in real terms, N noise in
real terms, and C the capacity in bits.

Upper bound on error free transmission

By intelligently selecting QAM constellation and Channel
coding schema in tandem capacity can be maximised.

Requires some coordination between transmitter and sender

Shannon and Weaver: Models of Communication

Three “problems” in Communication:

LG

The technical problem: how
accurately can the message be
transmitted?

The semantic problem: how precisely
1s the meaning “conveyed”?

g L I
Source

lig.org/wiki/File.T, 8 somm modelipg

The effectiveness problem: how
effectively does the received meaning
affect behaviour?

25


http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/File:Transactional_comm_model.jpg

Ex: Morse code

* Code words are
shortest for the most
common letters

* This means that
messages are, on
average, sent more
quickly.

Ao mm
Bmmeoeo
Comommoe
Demoeoe

Ee
Foomme
¥ I
Heooo
|oe

J o mm -
Kmm o mm
Lommoo
M =
Nmmeo
Omm mm mm
Pomumuoe
oF B NJ |
Rommo
Seoeoe

T

Ueoomm
Vooomm
We mm mm
Xmmoomm
Y mm o mm mm
Zmm e e

1o mm mm mm mm
200 Em mE EN
3eo0ommmm
locooomm
500000
Otmmoeooee
Tommmeoo
Smmmmmmoo
Omm mm =m mm ¢
o F K ]

What is the “optimal code”?

* X is a random variable

» Alice wants to tell Bob the value of X (repeatedly)

» What is the best binary code to use?

* How many bits does it take (on average) to transmit the value

of X?

26



Optimal code lengths

* In the optimal code, the word for X = i has length

* log; = —log, p(X =)

p(X i)

For example:
A 0

s
B Ya 10
C Ya 11

ABAACACBAACB coded as 010001101110001110

If code length is not an integer, transmit many letters together

Kullback-Leibler divergence

* Measures the difference between two probability distributions
— (Mutual information was between two random variables)
* Suppose you use the wrong code for X. How many bits do you

waste? ,
Length of Length of optimal

codeword odeword

Di(pllg) = Xxp(x) [logz % ~log2
_ p(x)
- Z p(x) lOgZ q(x)

Dy (pllg) = 0, with equality when p and q are the same.
I(X;Y) = Dy (p(x, )| Ip()p(¥))

27



Continuous variables

e X uniformly distributed between 0 and 1.
* How many bits required to encode X to given accuracy?

Decimal places | Entropy

1 3.3219
2 6.6439
3 9.9658
4 13.2877
16.6096
Infinity Infinity

+ Can we make any use of information theory for continuous
variables?

K-L divergence for continuous variables

* Even though entropy is infinite, K-L divergence is usually
finite.

» Message lengths using optimal and non-optimal codes both
tend to infinity as you have more accuracy. But their difference
converges to a fixed number.

p(x)

mdx

Z p(x) 1082? - [ p(x)log,

28



Calculating the Entropy of an Image

The entropy of lena is = 7.57 bits/pixel approx

Huffman Coding of Lenna

Code Length

0 42
1 42
2 41
3 17
4 14

Average Code Word Length = Y223 p.l;, = 7.59 bits/pixel

So the code length is not much greater than the entropy

29



But this is not very good

* Why?
— Entropy is not the minimum average codeword length for a
source with memory
— If the other pixel values are known we can predict the unknown
pixel with much greater certainty and hence the effective (ie.
conditional) entropy is much less.

* Entropy Rate
— The minimum average codeword length for any source.
— It is defined as

H(y)= lim;]H(Xl,Xz,...,Xn)

Coding Sources with Memory

« It is very difficult to achieve codeword lengths close to the
entropy rate

— In fact it is difficult to calculate the entropy rate itself —
P(X1|X; ... X,) is described in R™ Space — for lenna n = 65536

* We looked at LZW as a practical coding algorithm
— Average codeword length tends to the entropy rate if the file is
large enough

— Efficiency is improved if we use Huffman to encode the output
of LZW
— LZ algorithms used in lossless compression formats (eg. .tiff,

.png, .gif, .zip, .gz, .rar... )

30



Efficiency of Lossless Compression

* Lenna (256x256) file sizes
— Uncompressed tiff - 64.2 kB
— LZW tiff — 69.0 kB
— Deflate (LZ77 + Huff) — 58 kB

* Green Screen (1920 x 1080) file
sizes

— Uncompressed — 5.93 MB
- LZW —-4.85 MB
— Deflate — 3.7 MB

Differential Coding

» Key idea — code the differences in intensity.

G(xy) = I(xy) - I(x-Ly)

x

31



Differential Coding

Calculate Huffman
. = Difference = .
Enoding
Image
(@)
=0
Q
003 | o §
>3
0.02 1 g
Image
Huffman
ﬂ €— Recon- [€ :
e — : Decoding
struction

* The entropy is now 5.60 bits/pixel which is much less than 7.57
bits/pixel we had before (despite having twice as many symbols)

Entropy In General

* Entropy of a source is maximised when all signals are
equiprobable and is less when a few symbols are much more

probable than the others.
Entropy = 7.57 bits/pixel Entropy = 5.6 bits/pixel

0.003}

0.002

0.001

0 _ L
200 250 200 -300 -200 -100 [ 100 200 300

Hoistogr%m of the o'rsioginal image Histogram of the difference image

0
-50
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Lossy Compression

* But this is still not enough compression
— Trick is to throw away data that has the least perceptual

significance

Effective bit rate = 8
bits/pixel

&

Effective bit rate = 1
bit/pixel (approx)

Next Time...

* Exam Review!!

* Review:
— Chapter 6 of FPW
— Chapter 13 of Lathi

* Deeper Pondering??

o
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Final Exam Reviews

1. Wed, June 5, 2019
* EBESS —Loc: TBA
* 3-7pm???

2. Thursday June 6, 2019
* 12n—2p
« TBA

* Some Review Notes
(from Course Textbooks)

=>» http://robotics.itee.uqg.edu.au/

~elec3004/tutes.html

Venve

ELEC3004 Signals, Systems & Control

) THE UNIVERSITY  soume
[\ OF QUEENSLAND NN

AUSTRALIA

School of jy and Electrical
EXAMINATION

Fun Fact: With this, 42% of the exam is already “public’ ©
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