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Recall dynamic responses
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Various Types of Singularities (2" order systems)

Stable Unstable

Trajectory type Eigenvalues Trajectory type| Eigenvalues
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Unstable focus

jw

jw
——0{ 4'—0—0"

Unstable node

Saddle

Stable node

LGl

Stability of a 2" order regulator

Controller Pl

The Jacobian matrix is

0 1
A =

-1 -£(0)

The linear behavior of the system in the close
neighborhood of the origin is described by

u = Ke + f(e)e

X1 = X2
state equations let e = x; and e = X, X, =-X1 -~ f (OIXZ
X1 = X3

AND, the characteristic equation is:

" s[ls + £(0)]J+ 1 =0
X =-Kx1 - f£(x1) %2

with the eigenvalues

assume for simplicity that K = 1.
0 = x}

& e ok Flz =
Ay m = 2 £(0) + oF £2(0)-1
= 0

0 = -x - £(x))x!

= e !‘. — l 2 -
R = 3 £(0) E £2(0)~1




Controllability
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Controllability

where

—

C=

state vector (n-vector)

control vector (r-vector)

output vector {m-vector) (m = n)
n X n matrx

n X r matrix

m X nmatrix

is completely output controllable if and only if the composite m X nr matrix P, where

P=|[CB i CAB | CA’B | --- | CA"'B|

complete output controllability.)

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for




Controllability matrix

» To convert an arbitrary state representation in F, G, H and J to
control canonical form A, B, C and D, the “controllability
matrix”’

C=[G FG F?G - F"IG]
must be nonsingular.

Why is it called the “controllability” matrix?

Controllability matrix

 If you can write it in CCF, then the system equations must be
linearly independent.

 Transformation by any nonsingular matrix preserves the
controllability of the system.

» Thus, a nonsingular controllability matrix means x can be
driven to any value.




Controllability Example

e T ML
1SS e
an-| IJLJ -4

* We see that vectors B and AB are not linearly independent and
» The rank of the matrix [B | AB] is 1 <m (m=2)
[> ~ the system is not completely state controllable.

l‘\)'

+ In fact, elimination of x, from the given problem yields: X,(s) s+25
X+ 15% - 250 =0 +25u T g T Gres)s o)

» Notice that cancellation of the factor (s + 2.5) occurs in the numerator and denominator of the transfer
function. Because of this cancellation, this system is not completely state controllable and it’s
unstable system (s=1, RHP!). Remember that stability and controllability are quite different things.
There are many systems that are unstable, but are completely state controllable.

Controllability Example |l

5] _[o —047][ =" [og]
LJ L —!.JJ! .xpj "l l

STy Fl

« TF = CCF N
HEEE NN

y = [08 ]j] * | Solu
X controlabi

system defined by Equations (9-120 and (9-121). The rank of the




Observability
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Observability

+ Observability is concerned with the issue of what can be said
about the state when one is given measurements of the plant
output.

« Definition: The state X0 # 0 is said to be unobservable if,
given x(0) = x0, and u[k] = 0 for k > 0, then y[K] = 0 for k > 0.
The system is said to be completely observable if there exists
no nonzero initial state that it is unobservable.




Observability and Detectability

 Consider again the state space model

dzlk| = Aszlk| + Bsulk]
ylk] = Cszlk] + Dsulk]

* In general, the dimension of the observed output, y, can be less
than the dimension of the state, x.

» However, one might conjecture that, if one observed the output
over some nonvanishing time interval, then this might tell us
something about the state.

» The associated properties are called observability

)

Observability criteria for LTI systems

« Given the n-dimensional LTI dynamical equation:
z=Ax+ Bu
y=Cz+ Du

« Then for the system to be observable for any t, in [0, +00):
All the columns of CeAt must be are linearly independent

on [t,, +o0). _[

| Recall: Ce4t: Matrix Exponential

)




Observability criteria for LTI systems [2]

We test for this by:
« Forming a nq X n observability matrix
+ and checking its rank:

C
CA
rank : =n
Example

 Consider the following state space model:

Ah‘g _02}; BH; C=[1 -1]

* Then
TolA, € = {CCA} B {—14 :ﬂ

* Hence, rank(I'y[A,C]) = 2,
and the system is completely observable.

10



Examp|e [2] A(l,l) = -3 9 A(l.l) =-1

» Consider
s D2 m ) eon

* Here
Fo[Aa C] - {_12 :é}

* Hence, rank(T'y[4,C]) = 1 < 2,
and the system is not completely observable

Controllability «<» Observability Duality

» There is a remarkable similarity between the results for
controllability and Observability.

» We can formalize this Duality as follows:

Consider a state space model described by the
4-tuple (A, B, C, D).
Then the system is completely controllable if and only if

the dual system (AT, CT, BT, D7) is completely observable.

11
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Example 1.

State-Space

in First Order
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Problems
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A Quick Example

@ 1

n
MWy

Ly '
/;) =20 0 Y 3

AAA

D) S

vy

1. The inductor current g, and the capacitor voltage g2 as the state variables.

2 q =iz ¢ = 2(i,

Y =ir—is

3 4i-2=x g2 =2
22—+ +q@=0

— i) —q2

[ fi=—-g—q@+ix

2
-3

AR e HE

See also: Fig. 13.2, Lathi p. 789
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A Systematic Procedure for Determining State Egs.

1. Choose all independent capacitor voltages and inductor
currents to be the state variables.

2. Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

3. Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)

Another Example

Bismuth-211*
p a | 2.1 minutes
36 minutes

Lead-211* Lead-207 (stable)

Thallium-207

IN1(f . -
o L0_ ) NI@®

AN 2t \ r , T
TJ ==A,N2(t) + 1 N1(2)

o 20— L N3+ LN2(D)

L




Another Example

Bismuth-211*

B @ | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207

Ny A O 0
No| | A1 =X O
N3 | | 0 X =Xz
Na 0 0 A3

X =FX —

oNoNoNe
&

Another Example

Bismuth-211*

p a | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207

* N;y(t)=N;(0)exp(-A;t)

o N2(t)= N2(0)exp(- A ,£) = N1(0) ";L__(exp(— hot) —exp(= A 1)

P

exp(—h 1) ) exp(=h +7)
I TN N S N N T

* N3()=1 A oN10) [ =]

|
T 0 )

° 17\""4(0 =1 l}h 2)“ 3;\’.1(0) [u — exp(—h 17) exp(—h 5f) _ exp(-D 37) 1 ]

0 sk =R ) ’ O =k )0 5= =70 Y I )R ) + S
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Example 2:

n Second Onder Probloms

Featuring:
C —to— D Recap
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2"d Order System Response

 Response of a 2" order system to increasing levels of damping:

S T r
_—{=0
1.8F :
0.2
1.6/ /
\\ 0.4
1.4F /\ .
\ 0.6
12F : D
g 1k I S
0.8+
(=08
0.6 1
1.0
041 :
0.2
00 2 4 6 8 10 12
w,t




2" Order System Specifications

Characterizjng the step response:

> ' 1%

e o
0.1
* Rise time (10% - 90%): i~ 18  Steady state error to unit step:
wo
e~ TE €ss
. Overshoot; Mp*= S +  Phase margin:
46 ¢pyp = 100¢

+ Settling time (to 1%): ¢, =
Cwo

2" Order System Specifications

Characterizing the step response:

_ 1%
[ o
L/ \_ﬁ.{:-_.-_—:— _____ T

* Rise time (10% -> 90%) & Overshoot:
t, M, = , o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:<co1
» Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F (2)}

17



Damping and natural frequency

z=eSTwheres = —(w, + jw, /1 — {2

1.0

,,,,,,,

0.8~

06~

,,,,,,,,,,,,,

e NN
1 \\ 1 e
0 [™~7 | 3 : : : R Re(2)
-1.b -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 l\
[Adapted from Franklin, Powell and Emami-Naeini]
Recall: S-Plane to z-Plane [1/2]
s-plane z-plane
Im(s) Im(z)
=T !
Y
/ >
0 Re(s)
§s=0+jw
o = constant

Alm(s)
z=eT !
T
/ > ,

/ 0 Re(s) 1 I Re(2)
s=0+ jw
w = constant : L o dw

arg(z) = wT constant

18



Recall: S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio { < 1

AIm(s)
52 + (wos +Lu'(2] =0 \W*O
4 6
5 = —Cwo £ jv/T= CPan ~wo Re(s)
cosf = ¢
(=05 Alm(s) Alm(z)
c=07 z=eT ! ¢=07
/[
0 Re(s) 1 Q Re(2)
c=o7 - ¢=0.7
=05

s = —Cwo + jy/1 = wo: ¢ = constant 2 = eS0T eIV 1-C2woT

Discrete-time transfer function

take Z-transform of system equations

x(t + 1) = Ax(t) + Bu(t), y(t) = Ca(t) + Du(t)

yields

2 X (2) — zx(0) = AX (2) + BU(=), Y(z2)=CX(2)+ DU(z)

solve for X (=) to get

X(2) = (2 — A) '2(0) + (2 — A)"'BU(2)

:> (note extra = in first term!)

hence
Y(z) = H(z)U(z) 4+ Oz — A)~'zz(0)
where H(z) = C(z] — A)=*B + D is the discrete-time transfer function

note power series expansion of resolvent:

) (I-A)y =4 2A0 A
Source: Boyd, Lecture Notes for EE263, 13-39

19



Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e~ cos(bt) U(t) (U(t) = unit step)
y(kT) = r* cos(kO) U(KT)

z 1 z

1
2 (z — rei?) *3 (z —re—d¥)

withr =e 7 & 6 =T

* sample:

* transform: Y'(z)
. z(z —rcosf)
T (z—rei?)(z — re—i9)

Im(z)A
* e.g. yi is the pulse response of G(z): ) T
Glz) = z(z — rcosf) X .
(z —rei?)(z — re—i9) e
e [ 7= red® ﬁé;—.‘g—e—]b Re(z)
poles: { z=re I . !
X
zeros: { = 0
’ { z =rcosl

The z-plane [ for all pole systems |

plane

[Adapted from Franklin, Powell and Emami-Naeini]

« We can understand system response by pole location in the z-

20



Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle

unstable W

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r

Response of 2nd order system [1/3]

Responses for varying r: 1
r=0.7
] 0.5 1
>or<l ) 8 =m/4
>3
+ ok ] et
. : -+
exponentially decaying -
envelope 05 2 ! 6 8 10
sample k
ror=1 =

T T T =
- ~
0.5 \
+
= Of

sinusoidal response

. r=1.0
with 27 /6 samples o5t e
. ) P #=m/4
per period 4 . e . .
0 2 4 6 8 10
sample k
= r>1 10
A
N N ) 5 A \
exponentially increasing - \
P N
envelope of T r=13%
-
e 6=m/4
0 2 4 6 8 10
sample k

21



Response of 2nd order system [2/3]

1
1

Responses for varying 8:

r=0.7
e #=0 > 05} T =0
W w““”""«#._,__r__"
decaying exponential 0 ‘ ‘ ]
0 2 4 6 8 10
sample k
1% w
. -/ \
b O=m/2 \ r=0.7
l 031 0=mn/2]

27 /0 = 4 samples - ok \ . /K\P
per period -
70.50 - .

-t

2 4 3 8 10
sample k
=3 f=m ! I
05F *
A \ / .
. . \ / e ;
2 samples per period = o/ \/\\4/' B
\ / r=0.7
—05F
¥ f=m
- L
4] 2 8 10

sample k

Response of 2nd order system [3/3]

Some special cases:

r»  for # =0, Y (z) simplifies to:

Y(z) =
— exponentially decaying response

> whenf#=0and r=1:

— unit step

> when r =0:

— unit pulse

> whenf=0and -1 <r<0:

samples of alternating signs

22



Specification bounds

» Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) 4 Img(s) Img(s)
wp, = |s| _ 9
£ X
'I
3 Re(s) Re(s) Re(s)
\\ X X
\\
s=0
. 4.6
|5|:? s=4 6 =sin™1¢
T S

Discrete bounds

» These map to the discrete domain:

In practice, you’d use Matlab to plot these, and check that the spec is satisfied




Ex: System Specifications = Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: G (s) =
« Addiscrete ZOH sampler
« Sampling time (T): T,=1s
« Controller:
UL — —O.S’U,k_l —|— 13 (6k - 0.88€k_1)

0.1
s(s+0.1)

The closed loop system is required to have:
* M, <16%
*+ t,<10s

B<1

Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

7 e | u(t } 0] 5y
S s e e i

+
- : G(2) i

|:> G(z)=(1- flﬂ{@} 1L : 1)2{52(5)0:0.1)}

e.g. look up Z{a/s?(s +a)} in tables:

(01 —1+e 0Nz 4 (1—e 01— 0.16*0-1))
0.1(z —1)2(z — e 01)

. z—1) %
G(z) = ( - ) (
_0.0484(= 4 0.9672)

T (2 —1)(2 — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-0882"")  (x—0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13

24



Ex: System Specifications =2 Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

ess = lim e, = lim (2 — 1)E(z)
k—o0 z—1

R E U Y B(z) _ ! ;
+7\T D) G(z) > R(z) 1+ D(2)G(z)
- Tz
R(z) =
. . 1z 1 ) T
o =l N T b | - M e nomee
li T 10g- - e
= 111m =
= .0484(= + 0.96T: .
Uy Q080 £ 0.9672) by gy g g
(z —1)(z — 0.9048) g
B 6}
1 — 0.9048 =
= = 0.96 g
0.0484(1 + 0.9672)D(1) 0-96 S S
£ 2
—> ess <1 (as required) ©
O

5
Time (sec)

Ex: System Specifications =2 Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5
settling time ¢, < 10 = |z| < 0.01%* = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
4, (2 —0.88) 0.0484(z + 0.9672)
1+13 - =0
+ (z40.5) (z—1)(z — 0.9048)
— 2z = 0.88, —0.050 & 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
r=2031,0=1.73

z = —0.050 £ j0.304 = et — { ]
¢ =0.56

T
1

Output y and input u/10
@

all specs satisfied!

5
Time (sec)

25



Another Example: PID control

» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
—2

y=1[0 1 0]x+0u

x — Ku

X, 1s the output state of the system;
x11s the value of the integral;
x5 1S the velocity.

Example: PID control [2]

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
-2 — K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

26



Example 3:

Command Shaping
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Command Shaping

0.6

A, ===A, Response
""" A, Response
—e—Total Response

0.4

= 02
2
-
0
R \ i) P8 7% 7\ 7
\ (& 7 L 4N NG G
\‘ X 2N ,I N t”
9 . .
-0.2 \ " \_ N
\ ) L
X ¥
. B |
04| -
0 0.5 1 1.5 2 2.5 3
Time

27



Experiments: Scanning Over Obstacle
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Robust Contror:
Command Shaping for Vibration Reduction

ELEC 3004: Systems

Integrated COTE]
Planner *| shapping
Controller
?
|
|
L — Tunnin,

g— —

Enr

ror—p]

Regulator

Plant

v

Sensor

24 May 2019 - 66
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Command Shaping

Original velocity profile

Input shaper
Time” Time
Command-shaped velocity profile

\ Tinle

Velocity

Velocity

Command Shaping

Aj
* A2 s From A
e From A
Initial Command Input Shaper Shaped Command

» Zero Vibration (ZV)

1 K
{ﬂ: 14K 1+K [gJ
« Zero Vibration and Defivative (zvD)
1 2K K?
{ﬂ: 1+K)? (1+K)2 (1+K)?
b 0 %" T,

29



b

0 v
Command

t.'ﬁj"‘
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Example 4:
Inverted Pendulum
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Digital Control

L= %M,} + %ml‘; —mgfcost

hors 1t eoky o he s h lcky ftho it e . 1.0 U on b
et oo § i ey o e s v s e o
i
. .
d d
= (5(1 ~t5n0)) + (& (ecost)
- -
Simplifying the expression for V3 leads to:
oF = & — 2ib cos + 6
e Logargants nn ren

1 . 1 -
L= (M4 m) i = mbifcost + zmé* — mgfeosd
and the equations of mation ar

d

substiating [ inthess squations and simpifing eads o the squations tat describ ths motion o
(M +m) & — mblcosd + ml6?sing = F
(6 - gsind = i cosd

. : / 7 : My /M A
\

0
Wikipedia, / .
Cart and pole

8ldeg]
5 8
~
ldeg]
=
o

Inverted Pendulum

1 1
L= =Mv} + =mvi —mglcosd

2 2
Velocity pick-off
—_— whara Ty is the velocity of the cart and U is the velocity of the point mass 72. U4 and Uz can be
i expressed in terms of x and ¢ by writing the velocity as the first derivative of the position;
vf =it

d Pod :
2= | —(x—fsi —
v3 (df (z — fsin 6‘)) + (df (€ cos 6‘))
Simplifying the expression for Vg leads to:
vd = i — 2606 cosd + °6°

The Lagrangian is now given by

1 . Lo,
L= (M +m)i* — mlif cosd + Emﬁzﬂz — mglcosf

2
and the equations of mation are:
aL
- —=F
dx
AL
—Z_q

op
substituting [ in these equations and simplifying leads to the equations that describe the motion o
(M +m) & — mifcosd + mbg*singd = F
{0 — gsint = & cost)




Inverted Pendulum — Equations of Motion

» The equations of motion of an inverted pendulum (under a

small angle approximation) may be linearized as:
0=w
@ =60 =0Q% + Pu

02 =<M+m>g

Where:

Ml
1

P=m.

If we further assume unity Ml (Ml = 1), then P = 1

Inverted Pendulum —State Space

» We then select a state-vector as:

X = [Z] hence x = [z] = [z]

Hence giving a state-space model as:

[ Yol

The resolvent of which is

o(s) = (sl — )1 = | -1

And a state-transition matrix as:

sinh Qt
o(t) = cosh Qt 0

Q sinh Qt coshQt

_—5(:22 S] 1 :ﬁ[QSZ

1
s

|
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Cart & Pole in State-Space With Obstacles?

Swing-up is a little more than stabilization...

See also: METR4202 — Tutorial 11:

http://robotics.itee.uq.edu.au/~metr4202/tpl/tll-Weekll-pendulum.pdf

Cart & Pole in State-Space

Swing-up is a little more than stabilization...

Goal

f : Goal | i o
L | L l |
1 F 3 [ 5 &

33


http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf

Inverted Pendulum [Extended Reading...]

Velocity pick-off

s

Example 6B Stabilization of an inverted pendulum An inverted pendulum can readily be
stabilized by a closed-loop feedback system, just as a person of moderate dexterity can do it,

A possible control system implementation is shown in Fig. 6.3, for a pendulum con-
strained to rotate about a shaft at its bottom point. The actuator is a dc motor. The angular
position of the pendulum, being equal to the position of the shaft to which it is attached, is
measured by means of a potentiometer. The angular velocity in this case can be measured by
a **velocity pick-off” at the top of the pendulum. Such a device could consist of a coil of wire

LGl

Source: Friedland, Control System Design, Chapter 6, p. 232

Inverted Pendulum [2]

in a magnetic field created by a small permanent magnet in the pendulum beb. The induced
voltage in the coil is proportional to the linear velocity of the bob as it passes the coil. And
since the bob is at a fixed distence from the pivat point the linear velocity is proportional to
the angular velocity. The angular velocity could of course also be measured by means of a
tachometer on the dc motor shaft.
As determined in Prob. 2.2, the dynamic equations governing the inverted pendulum in
which the point of attachment does not translate is given by
0=w
(6B.1)
@ =0 — aw + Bu
where « and B are given in Example 6A, with the inertia J being the total reflected inertia:
J=1J,+m?

where m is the pendulum bob mass and [ is the distance of the bob from the pivot. The natural
frequency () is given by

pa-_m ___ 3
J+ml® I+I/ml

(Note that the motor inertia J,, affects the natural frequency.)

Since the linearization is valid only when the pendulum is nearly vertical, we shall assume
that the control objective is to maintain # = 0. Thus we have a simple regulator problem.

The matrices A and b for this problem are

asfo L] e-[]

Source: Friedland, Control System Design, Chapter 6

o
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Inverted Pendulum [3]

The open-loop characteristic polynomial is

5 =]

Q@ s | =8 t+as-0°
= 5 13

sl A|=|

Thus
a, =a
a; = -0*

The open-loop system is unstable, of course.
The controllability test matrix and the W matrix are given respectively by

ol 2] v[i ]

(which are the same as they were for the instrument servo). And

Qw1 = [lfﬁ 4l

Thus the gain matrix required for pole placement using (6.34), is
:[ 0 us][[al = a)} _ [(azmi)w]
““lyg o lla+or] L@ -ae

Example 6C Control of spring-coupled masses The dynamics of a pair ol spring-coupled
masses, shown in Fig. 3.7(a), were shown in Example 3I to have the matrices

01 0 0 0
00 1 0 0
A= B=
00 0 1 0
0 0 -K/M 0 1

LGl

Source: Friedland, Control System Design, Chapter 6

Inverted Pendulum [4]

The system has (he characterislic pelynGmidl
D(s) = s* +(K/M)s*
Hence a=a,=a,=0, a=K/M

The controllability test and W matrices are given, respectively, by

00 0 1 1 ¢ K/M 0
0 0 K/M
0= 0 0 1 ) e 0 1 / (6C.1)
01 0 K/M 0 0 1 0
1 0 -K/M 0 00 0 1
Multiplying we find that
000 1
00 1 0
QW = (QW) =(QW) ' = (6C.2)
I 00
I 000

(This rather simple result is not really as surprising as it may at first seem, Note that A is
in the first companion form but using the right-to-left numbering convention. IF the left-to-right
numbering convention were used the A matrix would already be in the companion form of
(6.11) and would not require transformation. The translormation matrix T given by (6C.2) has
the effect of changing the state variable numbering order from left-to-right to right-to-left, and

vice versa.)
The gain matrix g is thus given by
0 0 0 1 a a,
oo 10 a,-K/M| a
o100 a T la,-K/M
1 00 0 d, a,

Source: Friedland, Control System Design, Chapter 6
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A suitable pole “ constellation™ for the closed-loop process might be a Butterworth pattern
as discussed in Sec. 6.5. To achieve this pattern the characteristic polynomial should be of the
form ) -

D(s) = st + (1 +V3)Qs> + 2+ VDN + (1 +V3)Qs + Q°
Thus
= ' P
da =(1++v3)1
a, = (2 + 302

a, =(1+J3)0°

a, =0°
Thus the gain matrix g is given by
o’

(1+Y3)Q"
g= - . -
(2+V3*-K/M

(1+/3)0

Source: Friedland, Control System Design, Chapter 6

« System ldentification
» Information Theory

« Last Lecture: Exam Review!
Including:
— Key slides from all lectures
— Key charts from all lectures
— Exam Hints!

* Almost Done! ©

Next Time... /2
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Encore State Space
Example 5

Can you use this for
more than Control?

YES!
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Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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How?

 Constrained Least-Squares ...
One formulation: Given (0]

u[0]
S 2 ull]
minimize  ||#||7, where @ = _
u[0],ull],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that )
[n] = A"x[0] + ) " AU Bulk,
k=0

so this problem can be written as

Apgrrs — bi||* subjectto  Creaye = Dy

minimize
Ig

ELEC 3004: Systems

24 May 2019 -105
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