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Advanced PID —
Integrator Wind-Up
(Non-Linear Effects [e.g. saturation])

& the Levi-Lab
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This WEEK: Lab 5 — LevilLab Encore!

« We will run a combined Lab/Tutorial Session ©




Integrator Wind-Up

Wind-Up:

» Anon-linear effect: motor limitations (speed, hysteresis, etc.) / saturation

* When this happens the feedback loop is broken and the system runs as an open
loop because the actuator will remain at its limit independently of the process
output.

« If a controller with integrating action is used, the error may continue to be
integrated if the algorithm. is not properly designed. This means that the integral
term may become very large or, colloquially, it “winds up.”

An Anti Wind-Up Mechanism:
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Shaping the
Dynamic Response:
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(Friedland Chapter 6)

Last Week: Solving State-Space:
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Last Week: State-space Control Design

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:

u=-Kx
such that det(zl — ® +T'K) = a.(2)
where & .(Z) is the desired control characteristic equation

Q:How to get K?

A: Pole-Placement
(i.e., engineer a.(z) )

Pole Placement

Pole placement: Big idea:

« Arbitrarily select the desired root locations of the closed-loop
system and see if the approach will work.

» AKA: full state feedback
> enough parameters to influence all the closed-loop poles

 Finding the elements of k so that the roots are in the desired
locations. Unlike classical design, where we iterated on
parameters in the compensator (hoping) to find acceptable root
locations, the full state feedback, pole-placement approach
guarantees success and allows us to arbitrarily pick any root
locations, providing that n roots are specified for an nt"-order

system.




Pole Placement

* Given:

Zi = ﬁli ﬁZi 33!

« This gives the desired control-characteristic equation as:

ac(z) =(z-p)z—-F)z~—-P3) .=

» Now we “just solve” for K and “bingo” ©

» Recall that the modal form is given by:

X
0 [ x 1] 2
X2 1 ¥
Y h Ca Cul| "
I
X
:

Pole Placement

« Start with a simple feedback control law (“controller”)
I
w=-Kx=—[K Ky...] wzJ

« It’s actually a regulator
~+ it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

+ Substitute in the difference equation
x(k +1) = dx(k) — TKx (k)
» Z Transform:
(zI —P+TK)X(z) =0
=» Characteristic Eqn: det|zl — ® + TK| =0
=—=> A polynomial of z, that we can expand & solve for K




Pole Placement Example (FPW p. 241)

Example 6.1: Suppose we want to design a control law for the
satellite attitude-control system described by (2.45) with @ = [@; @3]
Example 2.13 showed that the discrete model for this system is

2
o] and = [TT/Z}-

“Kinematic™ State-Transition Matri
We want to pick z-plane roots of the closed-loop characteristic equa-
tion so that the equivalent s-plane roots have a damping ratio of
¢ = 0.5 and real part of s = —1.8 rad/sec (i.e., s = —1.8 £ j3.12
rad/sec). Using z = e*T with a sample period of 7' = 0.1 sec, we find
that z = 0.8 + j0.25, as shown in Fig. 6.1. The desired characteristic
equation is then

22 — 1.6z +0.70 = 0, (6.9)
and the evaluation of (6.7) for any control law K leads to

le 0] Il T]+[T2/2J[K1 Ko

0 1 01 T =0

det

or

:> 2+ (TKy+ (T?)2)Ky — 2)2 + (T2/2)K, — TKy +1=0. (6.10)

Pole Placement Example (FPW p. 241)

Equating coefficients in (6.9) and (6.10) with like powers of z, we
obtain two simultaneous equations in‘ the two unknown elements of

K:

TKy+ (T?/2)K) — 2 = —1.6,
(T?/2)K1 — TKy + 1 = 0.70,

which are easily solved for the coeflicients and evaluated for 7' = 0.1
sec:

0.10 0.35
:> KI:‘W=10, KQ:T:&O.

o




Pole Placement: Graphing K; and K,

|
I axis

0.8 0.6 04

z = plane loci of roots of constant § and w,, A control roots

s =—tw, t jw,T—¢2 A\ estimator roots
z =l

7 = sampling period

Approach ll: Ackermann's Formula (FPW p. 245)

+ Gains maybe approximated with:

|[K=[p...0 yr or &T.. 2" ' a(2)|

» Where: C = controllability matrix, n is the order of the system
(or number of state elements) and «.:

C=[ &r...]
ap(®) = " + ;B 1+ P2+ -+ ],
- a;: coefficients of the desired characteristic equation

a(2) =2l =@ +TK|=2"+a12" ' 4+ + ap.




Ackermann's Formula Example (FPW p.246)

LGl

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ap = —1.6, ag = +0.70,

and therefore

a(®) = [é 217‘] km“] T] +0‘70[é ll)] - {0(.)1 S:TT]-

Furthermore, we find that

T &1)= [T;ﬂ 3T;/2]
and
[ &0 = 1,/T2[ ! *_3;/22 ,
and finally
—tre sy [ ] (03 0ar),
therefore

[k Ko = ?‘1—2[0.1 0.357]
=[10 33),

which is the same result as that obtained earlier.

Meaning.

L

Log magnitude

Serious design

0.0 0.5 1.0 1.5 2.0

Frequency
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SDR: Introduction [Extended Reading...]

6.1 INTRODUCTION

At last we have arrived at the point of using state-space methods for control
system design. In this chapter we will develop a simple method of designing a
control system for a process in which all the state variables are accessible for
measurement—the method known as pele-placement. We will find that in a
controllable system, with all the state variables accessible for measurement, it is
possible to place the closed-loop poles anywhere we wish in the complex s
plane. This means that we can, in principle, completely specify the closed-loop
dynamic performance of the system. In principle, we can start with a sluggish
open-loop system and force it to behave with alacrity; in principle, we can start
with a system that has very little open-loop damping and provide any amount
of damping desired. Unfortunately, however, what can be attained in principle
may not be attainable in practice. Speeding the response of a sluggish system
requires the use of large control signals which the actuator (or power supply)
may not be capable of delivering. The consequence is generally that the actuator
saturates at the largest signal that it can supply. In some instances the system
behavior may be acceptable in spite of the saturation. But in other cases the
effect of saturation is to make the closed-loop system unstable. It is usually not
possible to alter open-loop dynamic behavior very drastically without creating
practical difficulties.

Adding a great deal of damping to a system having poles near the imaginary
axis is also problematic, not only because of the magnitude of the control
signals needed, but also because the control system gains are very sensitive to
the location of the open-loop poles. Slight changes in the open-loop pole

222

&

Source: Friedland, Control System Design

SDR: Introduction [Extended Reading...] [2]

SHAPING THE DYNAMIC RESPONSE 223

location may cause the closed-loop system behavior to be very different from
that for which it is designed.

We will first address the design of a regulator. Here the problem is to
determine the gain matrix G in a linear feedback law

u=-Gx (6.1)

which shapes the dynamic response of the process in the ‘absence of distur-
bances and reference inputs. Afterward we shall consider the more general
problem of determining the matrices G and G in the linear control law

u = —Gx — Gyx, (6.2)

where x, is the vector of exogenous variables. The reason it is necessary to
separate the exogenous variables from the process state x, rather than deal
directly with the metastate
X
- [2] .
Xo

introduced in Chap. 5, is that in developing the theory for the design of the gain
matrix, we must assume that the underlying process is controllable. Since the
exogenous variables are not true state variables, but additional inputs that
cannot be affected by the control action, they cannot be included in the state
vector when using a design method that requires controllability.

I

Source: Friedland, Control System Design
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SDR: Introduction [Extended Reading...]

[3]

O

The assumption that all the state variables are accessible to measurement in
the regulator means that the gain matrix G in (6.1) is permitted to be any
function of the state x that the design method requires. In most practical
instances, however, the state variables are not all accessible for measurement.
The feedback control system design for such a process must be designed to use
only the measurable output of the process

y=Cx

where y is a vector of lower dimension than x. In some cases it may be possible
to determine the gain matrix G, for a control law of the form

u=-Gy (6.4)

which produces acceptable performance. But more often it is not possible to do
so. It is then necessary to use a more general feedback law, of the form

u=-Gx% (6.5)

where X is the state of an appropriate dynamic system known as an ‘“‘observer.”
The design of observers is the subject of Chap. 7. And in Chap. 8, we shall show
that when a feedback law of the form of (6.5) is used with a properly designed
observer, the dynamic properties of the overall system can be specified at will,
subject to practical limitations on control magnitude and accuracy of
implementation.

Source: Friedland, Control System Design

Design of regulators for
single-input, single-output systems

o

6.2 DESIGN OF REGULATORS FOR
SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS

The present section is concerned with the design of a gain matrix

(‘;:gF ﬁIghgl!"'agk] {66}
for the single-input, single-output system
x=Ax+ Bu (6.7}
where
b,
b,
B=b=|. (6.8)
b
With the control law u = —Gx = —g'x (6.7) becomes
x=(A—bg')x

Our objective is to find the matrix G = ¢' which places the poles of the
closed-loop dynamics matrix

A.=A- by (6.9)

Source: Friedland, Control System Design

12



Design ot regulators tor
single-input, single-output systems

at the locations desired. We note that there are k gains g, go, ..., g and k
poles for a kth order system, so there are precisely as many gains as needed to
specify each of the closed-loop poles.

One way of determining the gains would be to set up the characteristic
polynomial for A.:

IsT -Al=|sI —A+bg|=s"+as""'+ - --+a, (6.10)

The coeflicients a,, @, ..., d, of the powers of s in the characteristic poly-
nomial will be functions of the k unknown gains. Equating these functions to
the numerical values desired for a,...,d; will result in k simultaneous
equations the solution of which will yield the desired gains g, ..., g

This is a perfectly valid method of determining the gain matrix g, but it
enlails a substantial amount of calculation when the order k of the system is
higher than 3 or 4. For this reason, we would like to develop a direct formula
for g in terms of the coefficients of the open-loop and closed-loop characteristic
equations.

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

—a, =—a, e
1 0 0 0
A= 0 1 i 45 0 0 (6.11)
0 0 1 0
Source: Friedland, Control System Design

Design of regulators for
single-input, single-output systems

0 g g2 Ok
b= | Ofianana=| D0 ’.
0 0 90 0
Hence
-4 -4, —— 6 ~ a4 = Gk
1 0 0
A =A-bg' = 0 1 0
0 0 0

The gains g,,..., g are simply added to the coefficients of the open-loop A
matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements
are given by
a;+gi=d i=12...,k

or

g=d—a (6.12)

where

(6.13)

[~

]
1
8 ...8
| I

(=1

]
N
| I—

o

Source: Friedland, Control System Design
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Design ot regulators tor
single-input, single-output systems

are vectors formed from the coefficients of the open-loop and closed-loop
characteristic equations, respectively.

The dynamics of a typical system are usually not in companion form. It is
necessary to transform such a system into companion form before (6.12} can be
used. Suppose that the state of the transformed system is X, achieved through
the transformation

=Tx (6.14)
Then, as shown in Chap. 3,
£ = A% + bu (6.15)
where
A=TAT" and b=Tb
For the transformed system the gain matrix is
g=d—-a=da-a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

u=-g'x=—gT 's=-gx (6.17)

From (6.17) we see that

g=g'T"
Thus the gain in the original system is

g=Tg=T(d—a) (6.18)

Source: Friedland, Control System Design

Design of regulators for
single-input, single-output systems

o

In words, .the desired gain matrix for a general system is the difference
between the coeficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has

the form (6.11).
The desired matrix T is obtained as the product of two matrices U and V:

T=VU (6.19)

The first of these matrices transforms the original system into an intermediate
system
% = A% (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

¥ = A%+ bu (6.21)
with A and b in the form of (3.107). Then we must have

A=UAU"' and b=Ub (6.22)

Source: Friedland, Control System Design

14



Design ot regulators tor
single-input, single-output systems

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

UtA=au (6.23)
or .
QA= AQ (6.24)

Now, for a single-input system
Q=[bAb,..., A" 'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is

00 --v —a
10 v —a,
QA=[bAb..., A<D 0 1 -+ —a_,
00 - —a
=[Ab, A%, ..., A b, —ab — a,_ Ab — - - - — q, A 'B] (6.25)
The last term in (6.23) is
(—ad —ag_ A—--—aA"Yb (6.26)
Now, by the Cayley-Hamilton theorem, (see Appendix):
Af = —q A AR - g

50 (6.26) is A*b. Thus the left-hand side of (6.24) as given by (6.25) is
QA =[Ab, A%,..., A*b] = A[b, Ab, ..., A" 'h] = AQ
which is the desired result.

Source: Friedland, Control System Design

Ex: Servo Motor Control

Tachometer Potentiometer

DC motor

& Velocity gain

y 0
g R o NN
Position gain

Figure 6.2 Implementation of an instrument servo.

Source: Friedland, Control System Design
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Ex: Servo Motor Control [2]

Example 6A Instrument serve A dc motor driving an inertial load constitutes a simple
instrument servo for keeping the load at a fixed position.
As shown in Chap. 2 (Example 2B}, the state-space equations for the motor-driven inertia

are o
d=w (6A.1)

@ = aw+ Pu (6A.2)

where @ is the angular position of the load, w is the angular velocity, u is the applied voltage,
and @ and B arc constants that depend on the physical parameters of the motor and load:

a=-KYIR p=K/IR
IT the desired position #, is a constant then we can define the servo error
e=6-9,
Then é=f—6-w (#, = const) (6A.3)

and (6A.3) replaces (6A.1) to give

[:] - [3 :.][;] ' [,0:]“ (6A4)

The angular position can be i dbya on the motor
shaft and the angular velocity by a tachometer. Thus, the closed-loop system would have the
configuration illustrated in Fig. 6.2. Note that the position gain is shown multiplying the
negative of the system error which in turn is added to the control signal. This is consistent with
the convention normally used for servos, wherein the position gain multiplies the difference
8, - 6 between the reference and the actual positions. The quantity e defined above (6A.3) is
the negative of the system error as normally defined in clementary lexis

The characteristic polynomial of the system is
s =1
0 sta

L3

The controllability test matrix Q and the matrix W are given respectively by

- To B 1
Q'“’""’]'[ﬁ -aﬁ] W'[o |]

Isf - Al = s+ as

Thus

Systems

22 May 2019 - 31

Ex: Servo Motor Control [3]

Thus

N ] .

wa[ﬁ 0] (@w)
and

Y = 0 /B

(Qwy) [l/ﬂ 0]

Thus the desired gain matrix, by the Bass-Gura formula (6.34), is

_[o s d.—w]u[ a/p ]
‘ [lm o][ & 17 L@ -aye As)

where @, and 4, are the cocfficients of the desired characteristic polynomial.
‘While the above calculation illustrates the general procedure, the gains could have been
more easily computed directly. For a control law of the form

u=-—ge- g

(6A.4) becomes @

) —g.Be — (a + Bgy)w
which has the closed-loop matrix

Am [ 0 1 ]
~gB ~(a+g,B)
with the characleristic equation
[sT = A= 5"+ (a + g:8)s + 0.8

Thus

d=atgp d=gB

ELEC 3004: Systems 22 May 2019 - 32
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Ex: Servo Motor Control [4]

or
g9, = a;/B 9;

which is the same as (6A.5)

(a, —a)/B

Note that the position and velocity gains g, and g,, respectively, are proportional to the

amounts we wish to move the coefficients from their open-loop positions. The position gain g,

is necessary to produce a stable system: a, > 0

But if the designer is willing to settle for

a, = a, i.e., to accept the open-loop damping, then the gain g, can be zero. This of course

eliminates the need for a tachometer and reduces the hardware cost ol the system. It is also

possible to alter the system damping without the use of a tachometer, by using an estimate @

of the angular velocity w. This estimate is obtained by means of an observer as discussed in

Chap. 7

Source: Friedland, Control System Design

ELEC 3004: Systems

22 May 2019 - 34

17



Control System Design:

Obtaining a Time Response

ELEC 3004: Systems 22 May 2019 - 35

From SS to Time Response — Impulse Functions

« Given: x = Ax + Bu
 Solution: Y L
x(t) = e 0lx(yy) / e* I Bu(r) dr
— Substituting t, = 0 into this: |

‘:‘f:l — (.Jl\fx_[l(]_) + / eA[l T)lllli:T](!r
JO

— Writethe impulse as: ;) — 501y

— where w is a vector whose components are the magnitudes of r
impulse functions applied at t=0

4
x(1) = e*x(0-) + /(”\"’”:Bc‘?(-r}w dt

—> b

= eMx(0-) + eMBw

18



From SS to Time Response — Step Response

* Given: x = Ax + Bu

o Startwithu(t) =k
Where Kk is a vector whose components are the magnitudes
of r step functions applied at t=0.

x(t) = eMx(0) + [ MTBkdr
JO

Vs A"rz \ b
= eMx(0) + M-‘! /(1 ~ A7+ - = Jdr | Bk
LJo A & J

A A

oy + o1 — AL L AT )
= eM'x(0) + e \.Ir T + 3l "|“l\

— Assume A is non-singular

C x(1)

eMx(0) + eM[—(A)(e™ - 1) |Bk
eMx(0) + A(e™  I)Bk

From SS to Time Response — Ramp Response

» Given: x = Ax + Bu

e Start with u(t) = tv
Where v is a vector whose components are magnitudes of ramp
functions applied att =0

x(1) = e*x(0) 4 M RBrv dr

= eMx(0) + e"“/ e 7 drBv
]
) (1, 2A AT, A \
--.»-".\[llj—u"“il\ir 3 O 4‘71 Tl +‘--’JBv

— Assume A is non-singular

Il

eMx(0) + (A%)(e* — I — At)Bv
eMx(0) + [A(eM — 1) - At]Bv

x(1)
=

Il

19



Example: Obtain the Step Response

. Given: [} _ [*1‘ *?}5][:] + [(ﬂm BESH - [SJ
y=1 ()]E} u(t) = 1()
« Solution:

s+1 05 [ 1 [ -05 | (¢ oA = ol isl - A)
e Y 7[ ' 1 . ¢ ' (e o (51 - A)]
1 § 2+s+0501 s+1] [(- 5((c0s 0.5¢ — sin0.5¢) ¢ % sin 0.5¢ |

- = = e sin .51 e "¥(cos0.5r + sin0.51) |
s+ 05— 05 0.5 1 )

s+ 052+ 035 (54 05) + 052

s+ 05+05
(s + 0.5)* + 057 (5 + 05) + 0.5
— Set k=1, x(0)=0:
x(t) = eMx(0) Al eM I)Bk

= A B

1)
- 0 ij‘ 0.5¢ ¥ (cos0.5¢ - sin0.5t) — 05 | :> y(t) = H U}[ "[':| = i = e " 5in0.5¢
L~z -2 ¢ X
5t |

Example II: Obtain the Step Response

* Given:

« Solution:

. |r : ‘J e m :> B(r) = e = L7 (s1 — A)7]

[o]-[20em cosnlim] [
— Assume x(0)=0:

xi(0) | _ 2et — e ™ et — g
x5(1) ,l 2e + 2e W —gt + 2e7¥

7"‘1(031 . [ &t Je ]
_x,(0) et — e

20



Solving State Space Method Il:
Tustin’s Method

(Analog Emulation)

ELEC 3004: Systems 22 May 2019 - 41

Tustin’s method

 Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) = g [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z-1
T z+1 .
’ X(tk+1) //
which can be substituted into continuous models
X(t)
(k=T kT

21



Matched pole-zero

 If z = 5T, why can’t we just make a direct substitution and go
home?

Y(s) _ s+a i> Y(z)  z—e @T
X(s)  s+b X(z) z—e bT
« Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.

Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)[> (z — e~T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,
multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

22



Modified matched pole-zero

* We’re prefer it if we didn’t require instant calculations to
produce timely outputs
» Modify step 2 to leave the dynamic order of the numerator one

less than the denominator
— Can work with slower sample times, and at higher frequencies

Discrete design process

1. Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

ok owbd

4 Img(2) 4 Img(@)

Re(z)

23



Discrete design process

» Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
 but 5 to 10x for “stability”
20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
» Employ actual velocity measurements when possible

Solving State Space Method lIl:

The Direct Method
of Digital Controls —

to be confused with
Controller Emulation
(e.g., Tustin’s Method)

ELEC 3004: Systems 22 May 2019 - 48
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Direct Design Method Ot Ragazzini
(See also: FPW 5.7 pp.216-222)

Start with 3 Discrete Transfer Functions:
— G(2): TF! of a plant + a hold (e.g., from a ZOH)
— D(2): A controller TF to do the job (what we want here)
— H(2): The final desired TF between R (reference) and Y (output)

— Thus?:
DG
H(z) = 1+DG
1 H
>D(z) =:15

This calls for a D(z) that will cancel the plant effects and that will add whatever is
necessary to give the desired result. The problem is to discover and implement
constraints on H(z) so that we do not ask for the impossible.

— This implies that we need some constraints on both H(z) and D(z)

1: Transfer Function

2: Mental Quiz: What does 1+DG say about the sign of the feedback (positive or negative)?
That is, what is the characteristic equation for a system with positive feedback?

Direct Design Method Ot Ragazzini [Z]:
Design Constraints: |. Causality

» Remember/Recall an Interesting Point:
— From z-transform theory we know that if D(z) is causal,
then as z —» oo its transfer function is well behaved
& it does not have a pole at infinity.

e D(2) = %& implies that if G(z) = 0 (at o),
then D(z) would have a pole (at ©) unless H(z) cancels it.

H(z) must have a zero (at o) of the same order as G(z)’s 0Os (at )

- Which means: If there is a lag in the plant (G(z) starts with z)
then causality requires that the delay of H(z) is that the closed-loop
system must be at least as long a delay of the plant.

(Whoa! It might sound deep, but it’s rather intuitive ©)

25



Direct Design Method Ot Ragazzini [5]:
Design Constraints: |l. Stability

» The characteristic equation and the closed loop roots:
1+D(2)G(z) =0

« Define3 D =§and ng-) ad +bc=0

» Define z — a as a pole of G(z) and a common factor in DG that

represents D(z) cancelling a pole/zero of G(z).
» Then this common factor remains a factor of the characteristic polynomial.

If this factor is outside the unit circle, then the system is unstable!

1-H(z) must contain as zeros
all the poles of G(z) that are outside the unit circle &
H(z) must contain as zeros
all the zeros of G(z) that are outside the unit circle

3: Note the switching of the “alphabetical-ness” of these two fractions

Direct Design Method Ot Ragazzini [4]:
Design Constraints: lll. Steady State Accuracy

« The error from H(z) is given by:
E(z) =R(z)(1-H(z))
If the system is “Type 17 (with a constant velocity/first derivative (K,,)
— Then*Eg; P = 0and Efy™ =1/,

H(Zjlzl
&
dH(z) 1
e 1 K—UH(Z)=1

4: Eg: steady-state error




Direct Design Method Ot Ragazzini [5]:
An Example

« Consider the plant: s> +s+1 =0
With T;=1 > z-Transform: z% + 0.786z + 0.368=0

 Let’s design this system such that

-K,=1

— Poles at the roots of the plant equation & additional poles as needed
DH(z) = b°+b12_1+bff_z+b3z__3:m

1-0.786z7++0.368 z

. Causality: H(z)|;—e = 0> by =0
Il.  Stability: All poles/zeros of G(z) are in the unit circle

— except for by, which is taken care of by b, = [Const] = 0

1. Tracking:
= H@) =b,+by+bhs+--=1-(1—0786+0368) &
o 1y QHE@ _ 1 3 b1+2by+3bs3+- —[-.05014] 1
&Y az N, (1-0.786+0.368) (note the z7%)

= Truncate the number of unknowns to 2 “zeros” ... thus solve for b, and b, (& set bg,b,,...=0)

piny = (2= 1)(z - 0.9048)(0.6321) (= -0.07932)
byz+b, )= TT0.04837)(z + 0.9672) (= — 1)(z — 0.4180)

2_ 14 g7 (2= 0.9048) (2 —0.07932)
27-0.7862+0.368 0T 09672) (= — 04180

~H(z) =

Next Time... /2 |

The “-Ity Lecture”
— Observability | Stability

Examples of Digital Feedback Control

Review:
— Chapter 5 of FPW

More Pondering??
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