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Next WEEK: Lab 5 — LevilLab Encore!

« We will run a combined Lab/Tutorial Session ©

&

Follow Along Reading:
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B. P. Lathi ->
Signal processing
and linear systems

1998
TK5102.9.L.38 1998

G. Franklin,
J. Powell,
M. Workman

S Today

State-space € (asateyica e

Lathi Ch. 13

— §13.2 Systematic Procedure for
Determining State Equations

— 8§ 13.3 Solution of State Equations

Digital Control
of Dynamic Systems : e
1990 :

TJ216.F721990

— Chapter 4:
Discrete Equivalents to Continuous

— Transfer Functions: The Digital Filter
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https://library.uq.edu.au/record=b1604253~S7
http://library.uq.edu.au/record=b2013253~S7

Even More Online Reading Materials

THREF

* Friedland, Control System Design Ch. 6 and 3

9 http://robotics.itee.ug.edu.au/~elec3004/tutes.html

State Space
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Basic Closed-loop Block Diagram

W
RA‘? D(S) UA‘%— G(s) Y

H(s) [«

TF (s) = Y(s) D (s)G(s) . DG

R(s) 14+ D(s)G(s)H(s) 14 DGH

Solving State Space...

* Recall:

r= f(x,u,t)
» For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

 ForLTI:
— x = Ax + Bu

—y=Czx+ Du




Solving State Space

ELEC 3004: Systems |7 May 2019 -

=» Solutions to State Equations

X X
sX(s) —(x(0) = AX(s) + BU(s)

$(§ X(s) = (sI — A)~1x(0) + (sI — A)"*BU(s)

X(s) = L[e“]x(0) + L[e“*]BU(s)

t
x(t) = j et Bu(1)dr
0

—_—

= edt




=» State-Transition Matrix ©

o ®(t) =et =L7Y(sI -—A)1]

« It contains all the information about the free motions of the
system described by x = Ax

LTI Properties:

o ®(0) =e% =]

« O7Y(t) = (-1)

o O(t; +ty) = D(t)D(ty) = P(t)P(¢y)
o [@(D)]" = d(nt)

=>» The closed-loop poles are the eignvalues of the system matrix

Solving State Space

+ In the conventional, frequency-domain approach [METR4201]
the differential equations are converted to transfer functions as
soon as possible...

— The dynamics of a system comprising several subsystems is
obtained by combining the transfer functions!

» With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.




Solving State Space [Extended Reading...]

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the “homogeneous,” i.e., unforced equation

X = Ax

(3.2)

where A is a constant k by k matrix. The solution to (3.2) can be expressed as

x(1) = e

where ' is the matrix exponential function
3

At . 3!
eM = T+ A+ A+ At

2 3!

(33)

(3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the

derivative of x(t)
dx(r) =i( Afye

di dt

and, from the defining series (3.4),

(3.5)

d r 5
E(e“'):A+A’1+A3§+--»:A(I+A1+A2;+~--) =AM

Thus (3.5) becomes

dx(f) _

& Ae?e = Ax(1)

Source: Friedland, Control System Design

Solving State Space [Extended Reading...]

which was to be shown. To evaluate the constant ¢ suppose that at some time 7

the state x(r) is given. Then, from (3.3),

x(7) = e™c

(3.6)

Multiplying both sides of (3.6) by the inverse of e"” we find that

c=(e")"x(7)

Thus the general solution to (3.2) for the state x(t) at time ¢, given the state x(7)

at time 7, is

x(l) = eAl(eAv)—lx(T)

(3.7

The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition

(3.4)—
M) = oM g
for any f, and t,. From this property it follows that
(e47)! = e™4"
and hence that (3.7) can be written

x(1) = e x(7)

(3.8}

(3.9)

(3.10)

Source: Friedland, Control System Design




Solving State Space [Extended Reading...]

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or ““forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e™e(t) (3.11)

is a special form of the state-transition matrix to be discussed

where c(f) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Aee(t) + eMé(1) = Ae™elt) + Bult)
or, upon cancelling the terms A e*c(s) and premultiplying the remainder by
e—Al,
é(t) = e ™Bu(t) (3.12)

Thus the desired function ¢{(¢) can be obtained by simple integration {the
mathematician would say “by a quadrature”)

!
c(t) = J e “*Bu(A) dA
-
The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

Source: Friedland, Control System Design

Solving State Space [Extended Reading...

homogeneous equation to obtain the complete (general] solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 ¢
x(t) = e™ J e MBu(A) da = J AN BR (L) dr (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write eMg A = gAY

The complete solution to (3.1) is obtained by adding the *complementary
solution™ (3.10) to the particular solution (3.13). The result is

t

x(t) = e* x(1) I—J- e M Bu(A) di (3.14)

T
We can now determine the proper value for lower limit T on the integral. At
t = 7 (3.14) becomes

x(7) = x(r) + JTeA“’“Bu(A) dx (3.15)
.

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(1) = e Vx(r) + j MM By () da (3.16)

T

Source: Friedland, Control System Design




Solving State Space [Extended Reading...]

This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time r and the “‘present” time ({ The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ Z 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral”’: the contribution to the state x(r) due to the input u is
the convolution of u with e™B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(f).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=Cx

then this output is expressed by

1

(1) = Ce“f'-*3x(r)+J Ce* "M Bu()) da (3.17)

=

Source: Friedland, Control System Design

O

Solving State Space [Extended Reading...]

and the impulse response of the system with y regarded as the output is
CEA“_A}B_

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C' are time-varying, (3.16) and (3.17) generalize to

i

x(f) = e x(r) + j eAMB(A)ulA) di (3.18)

T

and

y(£) = C(t) e x(r) + J C(t) e MB(A)u(A) dr (3.19)

T

Source: Friedland, Control System Design

o




Digital State Space

ELEC 3004: Systems

17 May 2019 - 19

Digital State Space:

« Difference equations in state-space form:

xn+ 1] = Az[n| + Bun]
yn] = Czxn] + Du|n]

» Where:
— u[n], y[n]: input & output (scalars)
— x[n]: state vector

10



Discretization

» We can use the time-domain representation to produce
difference equations!

kT+T

x(kT +T) = €T x(kT) + f eFUTHT D Gu(1)dt
— KT ~

Notice u(t) is not based on a discrete ZOH|input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T

Discretization

» Put this in the form of a new variable:

n=kT+T—-1
Then: -
KT+T
x(kT +T) = efTx(kT) + <j eF"dn> Gu(kT)
KT

kT+T
J

e eF”dr)) G

Let’s rename ® = efT and T = (

11



Digital Control Law Design [Extended Reading...]

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

x = Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k +1) = &x(k) + T'ulk),

(k) = Hx(k), (6.3)
where
@ = eFT, (6.4a)
7
T= f eF1dn G, (6.4b)
0

Source: FPW

Discrete state matrices

So,
x(k+1) = ®x(k) + Tu(k)
y(k) = Hx(k) + Ju(k)

Again, x(k + 1) is shorthand for x(kT + T%

Note that we can also write & as:

®=1+FTWY
where
B F F2T?
L R T T

12



Simplifying calculation

« We can also use W to calculate T’

— Note that:
ka

W itself can be evaluated with the series:

2 3 n—1

FT (. FT FT
Y+ — I+ — |1+ I+

FT
n

Bl

State-space z-transform

We can apply the z-transform to our system:
(z1 - ®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2)
X(z)

=G(z) =H(zI - ®)7 T

13



= State-space Control Design

 Design for discrete state-space systems is just like the

continuous case.
— Apply linear state-variable feedback:

u = —Kx
such that det(zl — ® +I'K) = a.(2)
where a.(z) is the desired control characteristic equation

Note for Next Class...
Predictably, this requires the system controllability matrix
C=[T ®r &?r .- &é&n1r] to be full-rank.

State-Space Control: An example!

Given:
y(k+1)—yk) +Ty(k) = x(k +1) — x(k) + 2Tx(k)
Simplify:
yk+ 1)+ (T —-1Dy(k) =x(k+1) + Q2T — 1)x(k)

yk+1)=x(k+1)+ QT - 1Dx(k) — (T — Dy(k)

14



A quick note on causality!

* Calculating the “(k+1)th” value of a signal using

y(k+1)=x(k+1)+ Ax(k) - By(k)

Y
future value current values

relies on also knowing the next (future) value of x(t) !

 Thus, shift it to run with a delay:
y(k) = x(k) + Ax(k — 1) — By(k — 1)

“Digital” (Computer) Control Version:

T = 0.02; //period of 50 Hz,
A =

B = T-1;

while (1)

{
if (interrupt_flag)
{
x0 = x;
y0 = vy;
x = update_input();

y = x + A*x0 - B*y0;

update_output (y) ;

(The actual calculation)

a number pulled from thin air

2*T-1; //pre-calculated control constants

//this triggers every 20 ms
//save previous values
//get latest x value

//do the difference equations
//write out current value

15



Break ©
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Solving State Space:
Tustin’s Method
(Analog Emulation)

ELEC 3004: Systems 17 May 2019 - 33

16



Tustin’s method

 Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) = Z [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z71
T 1 .
Z X(tk+1) ‘///
which can be substituted into continuous models
X(t)
(k=T kT

Matched pole-zero

 If z = 5T, why can’t we just make a direct substitution and go
home?

Y(s) _ s+a i> Y(z) z—e 9T
X(s)  s+b X(z)  z—e-bT
« Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.

17



Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)g> (z — e~T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,
multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

Modified matched pole-zero

» We’re prefer it if we didn’t require instant calculations to
produce timely outputs
* Modify step 2 to leave the dynamic order of the numerator one

less than the denominator
— Can work with slower sample times, and at higher frequencies

18



Discrete design process

1. Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

o s wd

4. Img(2) 4 Img(2) 4 Img(@)

Re(z)

Re(z) ,7_@_. Re(2)

Discrete design process

» Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
* but 5to 10x for “stability”
20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
« Employ actual velocity measurements when possible

19



Control Systems Design:

tf2ss
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TF 2 SS — Control Canonical Form)
Y(s) bos"+bs" '+ +b,,5+0b,
Uis) s"+ais" '+ +a,5+a,
B 0 1 0 - 0 [ x ] 0
i 0 0 1 0 X 0
:> . + u
%o 0 0 0 1 || x.- 0
I | —a Ay a, a X Ul 1.0 -
X
X
+ y = lb,, awby | by = a,1by | i by — ayby + byu
_Yn




Modal Form

Y(S) B %” + "i“” s brrls + bn

U(s)  s345.03247s2+25.10265+5.008
Get a state space representation of this system

« Matlab:
num [25.04 5.0087;
den = [1 5.03247 25.1026 5.0087;
[A,B,C,D] = tf2ss(num/den) ;

e Answer:

¥, 50325 -25.1026 - 5.008 r]_l 1]
X | = 1 0 0 Xy |+ 0 fu
i 0 1 0 o] Lo
x
y =[0 2504 5.008]| x, | + [O]u
5}

U(s) s+ s £ ) (s + po)
S WY PR NN
, s+ p s+ p, 5+ py
P‘ ~py 0 =] [1]
X, P2 *2 1
=) | . |- !
. i
X, ] | 0 Pn_ |l %u_| 'J Xy
\:H:’ y=!c1 (&) '[nJ +b0u’
"'.l'l
Matlab’s tf2ss
) v 25.045+5.008
* Given: () _ -

21



Control Canonical Form as a Block Diagram

by by —aby by — azby by —a,1by by —anby
L !
—
—_— - -
J = I 7 7 J 7
x Xp1 y SN ) [
a) ar 2y a,
+ )

O

Modal Form Block Diagram

> bU

—| ——— - cy -+
s+ py
u 1 X C Y
> €2 o (4 i
S+ pr 4

S+ Py

22



Control System Design:

Obtaining a Time Response

ELEC 3004: Systems |7 May 2019 - 47

From SS to Time Response — Impulse Functions

« Given: x = Ax + Bu
 Solution: Y L
x(t) = e 0lx(yy) / e* I Bu(r) dr
— Substituting t, = 0 into this: |

‘:‘f:l — (.Jl\fx_[l(]_) + / eA[l T)lllli:T](!r
JO

— Writethe impulse as: ;) — 501y

— where w is a vector whose components are the magnitudes of r
impulse functions applied at t=0

4
x(1) = e*x(0-) + /(”\"’”:Bc‘?(-r}w dt

—> b

= eMx(0-) + eMBw

23



From SS to Time Response — Step Response

* Given: x = Ax + Bu

o Startwithu(t) =k
Where Kk is a vector whose components are the magnitudes
of r step functions applied at t=0.

x(t) = eMx(0) + [ MTBkdr
JO

Vs A"rz \ b
= eMx(0) + M-‘! /(1 ~ A7+ - = Jdr | Bk
LJo A & J

A A

oy + o1 — AL L AT )
= eM'x(0) + e \.Ir T + 3l "|“l\

— Assume A is non-singular

C x(1)

eMx(0) + eM[—(A)(e™ - 1) |Bk
eMx(0) + A(e™  I)Bk

From SS to Time Response — Ramp Response

» Given: x = Ax + Bu

e Start with u(t) = tv
Where v is a vector whose components are magnitudes of ramp
functions applied att =0

x(1) = e*x(0) 4 M RBrv dr

= eMx(0) + e"“/ e 7 drBv
]
) (1, 2A AT, A \
--.»-".\[llj—u"“il\ir 3 O 4‘71 Tl +‘--’JBv

— Assume A is non-singular

Il

eMx(0) + (A%)(e* — I — At)Bv
eMx(0) + [A(eM — 1) - At]Bv

x(1)
=

Il

24



Example: Obtain the Step Response

. Given: [} _ [*1‘ *?}5][:] + [(ﬂm BESH - [SJ
y=1 ()]E} u(t) = 1()
« Solution:

s+1 05 [ 1 [ -05 | (¢ oA = ol isl - A)
e Y 7[ ' 1 . ¢ ' (e o (51 - A)]
1 § 2+s+0501 s+1] [(- 5((c0s 0.5¢ — sin0.5¢) ¢ % sin 0.5¢ |

- = = e sin .51 e "¥(cos0.5r + sin0.51) |
s+ 05— 05 0.5 1 )

s+ 052+ 035 (54 05) + 052

s+ 05+05
(s + 0.5)* + 057 (5 + 05) + 0.5
— Set k=1, x(0)=0:
x(t) = eMx(0) Al eM I)Bk

= A B

1)
- 0 ij‘ 0.5¢ ¥ (cos0.5¢ - sin0.5t) — 05 | :> y(t) = H U}[ "[':| = i = e " 5in0.5¢
L~z -2 ¢ X
5t |

Example II: Obtain the Step Response

* Given:

« Solution:

. |r : ‘J e m :> B(r) = e = L7 (s1 — A)7]

[o]-[20em cosnlim] [
— Assume x(0)=0:

xi(0) | _ 2et — e ™ et — g
x5(1) ,l 2e + 2e W —gt + 2e7¥

7"‘1(031 . [ &t Je ]
_x,(0) et — e

25



The Direct Method
of Digital Controls —

to be confused with
Controller Emulation
(e.g., Tustin’s Method)

ELEC 3004: Systems |7 May 2019 - 53

Direct Design Method Ot Ragazzini
(See also: FPW 5.7 pp.216-222)

Start with 3 Discrete Transfer Functions:
— G(2): TF! of a plant + a hold (e.g., from a ZOH)
— D(2): A controller TF to do the job (what we want here)
— H(2): The final desired TF between R (reference) and Y (output)

— Thus?:
DG
H(z) = 14+DG
1 H
>D(z) = ;1

This calls for a D(z) that will cancel the plant effects and that will add whatever is
necessary to give the desired result. The problem is to discover and implement
constraints on H(z) so that we do not ask for the impossible.

— This implies that we need some constraints on both H(z) and D(z)

1: Transfer Function

2: Mental Quiz: What does 1+DG say about the sign of the feedback (positive or negative)?
That is, what is the characteristic equation for a system with positive feedback?

26



Direct Design Method Ot Ragazzini [Z]:
Design Constraints: |. Causality

» Remember/Recall an Interesting Point:
— From z-transform theory we know that if D(z) is causal,
then as z - oo its transfer function is well behaved
& it does not have a pole at infinity.

¢ D(2) = z— implies that if G(z) = 0 (at =),
then D(z) would have a pole (at o) unless H(z) cancels it.

H(z) must have a zero (at «) of the same order as G(z)’s Os (at )

-> Which means: If there is a lag in the plant (G(z) starts with z*)
then causality requires that the delay of H(z) is that the closed-loop
system must be at least as long a delay of the plant.

(Whoa! It mightsound deep, but it’s rather intuitive ®)

Direct Design Method Ot Ragazzini [3]:
Design Constraints: |l. Stability

» The characteristic equation and the closed loop roots:
1+D(2)G(2) =0
+ Define® D = Zand G== ad + bc =0
» Define z — a as a pole of G(z) and a common factor in DG that
represents D(z) cancelling a pole/zero of G(z).

» Then this common factor remains a factor of the characteristic polynomial.
If this factor is outside the unit circle, then the system is unstable!

1-H(z) must contain as zeros
all the poles of G(z) that are outside the unit circle &
H(z) must contain as zeros
all the zeros of G(z) that are outside the unit circle

3: Note the switching of the “alphabetical-ness” of these two fractions

27



Direct Design Method Ot Ragazzini [4]:
Design Constraints: lll. Steady State Accuracy

» The error from H(z) is given by:
E(z) =R(z)(1-H(2))
o If the system is “Type 17 (with a constant velocity/first derivative (K,,)
— Then* E5;P = 0and EG™ =1/,

H(Zj-z 1
&
@D 1y

* d(2) =1 K,

4: Eg: steady-state error

Direct Design Method Ot Ragazzini [5]:
An Example

+ Consider the plant: s2 + s+ 1 =10
With T;=1 > z-Transform: z% + 0.786z + 0.368=0

 Let’s design this system such that

-K,=1
— Poles at the roots of the plant equation & additional poles as needed
__ bo+b1z 1 4+byz7 2 +b3z 3 4
dHE) = 1-0.7862~1+0.368 z~2
. Causality: H(z)|,—e = 0> by =0
I1.  Stability: All poles/zeros of G(z) are in the unit circle
— except for by, which is taken care of by by = [Const] = 0

Il.  Tracking:

H(1) =b; + by + by +--=1-(1—-0.786 + 0.368) &
by+2b,+3b3+ —[-.05014
S gy 2N R 1+202+303 L ! (note the z™1)
azYl,., (1-0.786+0.368)

= Truncate the number of unknowns to 2 “zeros” ... thus solve for b, and b, (& set bg,b,,...=0)

(z = 1)(z - 0.9048)(0.6321) (2 —0.07932)

. H(Z) — byz+b, e ~ (0:04837)(z + 0.9672) z—1)(z — 0.4180)
°* - ,2_ oo (2= 0.9048) (z —0.07932)
z4—0.786z+0.368 = 1807 e o a

&




Next Time...

» Example of Digital Feedback Control

* Review:
— Chapter 5 of FPW

* More Pondering??

29



