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Lecture Schedule: 
Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 
6-Mar Systems as Maps & Signals as Vectors 

8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 
27-Mar Frequency Response 

29-Mar Filter Analysis 

6 
3-Apr Digital Filters (IIR) & Filter Analysis 

5-Apr PS 1: Q & A 

7 
10-Apr Digital Windows 

12-Apr Digital Filter (FIR) 

8 17-Apr Active Filters & Estimation 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation & PID Control 

10 
8-May State-Space Control 

10-May Guest Lecture: FFT  

11 
15-May Advanced PID & & FFT Processes 

17-May State Space Control System Design 

12 
22-May Shaping the Dynamic Response 

24-May Stability and Examples 

13 
29-May System Identification & Information Theory & Information Space 

31-May Summary and Course Review 
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Next WEEK: Lab 5 – LeviLab Encore!   

• We will run a combined Lab/Tutorial Session  
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G. Franklin,  

J. Powell,  

M. Workman 

Digital Control  

of Dynamic Systems 

1990 

 

TJ216.F72 1990  

 

 

Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

  State-space    [A stately idea! ] 

 

• Lathi Ch. 13 

– § 13.2 Systematic Procedure for 

Determining State Equations 

– § 13.3 Solution of State Equations 

  

• FPW 

– Chapter 4:  
Discrete Equivalents to Continuous 

– Transfer Functions: The Digital Filter 

  

Today 
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• Friedland, Control System Design Ch. 6 and 3 

  

 

 

Even More Online Reading Materials 
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State Space 
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Basic Closed-loop Block Diagram 

D(S) 

H(s) 

G(s) R Y 
U + 

 –  

W 

+ 
+ 

V + 

+ 
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• Recall: 

 

 

 

• For Linear Systems: 

 

 

 

• For LTI: 

 

 

Solving State Space… 
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Solving State Space 
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𝑥 = 𝐴𝑥 + 𝐵𝑢 

 

𝑠𝑋 𝑠 − 𝑥 0 = 𝐴𝑋 𝑠 + 𝐵𝑈 𝑠  

𝑋 𝑠 = 𝑠𝐼 − 𝐴 −1𝑥 0 + 𝑠𝐼 − 𝐴 −1𝐵𝑈 𝑠  

 

𝑋 𝑠 = ℒ 𝑒𝐴𝑡 𝑥 0 + ℒ 𝑒𝐴𝑡 𝐵𝑈 𝑠  

 

𝑥 𝑡 =  𝑒𝐴𝑡
𝑡

0

𝐵𝑢 𝜏 𝑑𝜏 

 

⇒ 𝑒𝐴𝑡 

 

 

 Solutions to State Equations 
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• Φ 𝑡 = 𝑒𝐴𝑡  = ℒ−1[ 𝑠𝐼 − 𝐴 −1] 

 

• It contains all the information about the free motions of the 

system described by 𝑥 = 𝐴𝑥 

 

LTI Properties: 

• Φ 0 = 𝑒0𝑡 = 𝐼 

• Φ−1 𝑡 = Φ −𝑡  

• Φ 𝑡1 + 𝑡2 = Φ 𝑡1 Φ 𝑡2 = Φ 𝑡2 Φ 𝑡1  

• Φ 𝑡 𝑛 = Φ 𝑛𝑡  
 

 The closed-loop poles are the eignvalues of the system matrix 

 

 

 State-Transition Matrix Φ 
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• In the conventional, frequency-domain approach [METR4201] 

the differential equations are converted to transfer functions as 

soon as possible… 
– The dynamics of a system comprising several subsystems is 

obtained by combining the transfer functions! 

 

 

• With the state-space methods, on the other hand, the 

description of the system dynamics in the form of differential 

equations is retained throughout the analysis and design. 

Solving State Space 
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Solving State Space [Extended Reading…] 

Source: Friedland, Control System Design  
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Solving State Space [Extended Reading…] 

Source: Friedland, Control System Design  17 May 2019 - ELEC 3004: Systems 15 
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Solving State Space [Extended Reading…] 

Source: Friedland, Control System Design  
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Solving State Space [Extended Reading…] 

Source: Friedland, Control System Design  
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Digital State Space 
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• Difference equations in state-space form: 

 

 

 

 

 

 

• Where: 
– u[n], y[n]: input & output (scalars) 

– x[n]: state vector 

 

 

 

Digital State Space: 
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Discretization 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 

an integrated time-series. 

 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Discretization 
• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 

Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

 

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 

 

17 May 2019 - ELEC 3004: Systems 22 



12 

 

Digital Control Law Design [Extended Reading…]  

Source: FPW 
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Discrete state matrices 
So, 

𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  
 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  

 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  

 

Note that we can also write 𝚽 as: 

𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+

𝐅2𝑇2

3!
+ ⋯ 

 

17 May 2019 - ELEC 3004: Systems 25 
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Simplifying calculation 
• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 

 

 

𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 + ⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛
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State-space z-transform 
We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 

17 May 2019 - ELEC 3004: Systems 27 



14 

∴ State-space Control Design 

• Design for discrete state-space systems is just like the 

continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 

where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

 

Note for Next Class… 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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State-Space Control: An example! 
 

Given: 
𝑦 𝑘 + 1 − 𝑦(𝑘) + 𝑇𝑦 𝑘 = 𝑥 𝑘 + 1 − 𝑥(𝑘) + 2𝑇𝑥 𝑘  

 

 

Simplify: 

 
𝑦 𝑘 + 1 + 𝑇 − 1 𝑦 𝑘 = 𝑥 𝑘 + 1 + 2𝑇 − 1 𝑥 𝑘  

 
𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 2𝑇 − 1 𝑥 𝑘 − 𝑇 − 1 𝑦 𝑘  
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A quick note on causality! 
 

• Calculating the “(k+1)th” value of a signal using 
 

𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 𝐴𝑥 𝑘 − 𝐵𝑦 𝑘  

 

      relies on also knowing the next (future) value of x(t) ! 
 

• Thus, shift it to run with a delay: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

current values future value 
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“Digital” (Computer) Control Version: 

(The actual calculation) 
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Break  
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Solving State Space: 
Tustin’s Method 

(Analog Emulation) 
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Tustin’s method 
• Tustin uses a trapezoidal integration approximation (compare 

Euler’s rectangles) 

• Integral between two samples treated as a straight line: 

𝑢 𝑘𝑇 = 𝑇
2
 𝑥 𝑘 − 1 + 𝑥(𝑘)  

Taking the derivative, then z-transform yields: 

 𝑠 =
2

𝑇

𝑧−1

𝑧+1
 

 

which can be substituted into continuous models 

(𝑘 − 1)𝑇 

x(tk) 

x(tk+1) 

𝑘𝑇 
17 May 2019 - ELEC 3004: Systems 34 

Matched pole-zero 
• If 𝑧 = 𝑒𝑠𝑇, why can’t we just make a direct substitution and go 

home? 
 

𝑌(𝑠)

𝑋(𝑠)
=

𝑠+𝑎

𝑠+𝑏
         

𝑌(𝑧)

𝑋(𝑧)
=

𝑧−𝑒−𝑎𝑇

𝑧−𝑒−𝑏𝑇 

• Kind of! 
– Still an approximation 

– Produces quasi-causal system (hard to compute) 

– Fortunately, also very easy to calculate. 
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Matched pole-zero 
The process: 

1. Replace continuous poles and zeros with discrete equivalents: 

(𝑠 + 𝑎)       (𝑧 − 𝑒−𝑎𝑇) 
 

 

2. Scale the discrete system DC gain to match the continuous 

system DC gain 

 

3. If the order of the denominator is higher than the enumerator, 

multiply the numerator by (𝑧 + 1) until they are of equal 

order* 
 

* This introduces an averaging effect like Tustin’s method 
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Modified matched pole-zero 
• We’re prefer it if we didn’t require instant calculations to 

produce timely outputs 

• Modify step 2 to leave the dynamic order of the numerator one 

less than the denominator 
– Can work with slower sample times, and at higher frequencies 
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Discrete design process 

1. Derive the dynamic system model ODE 

2. Convert it to a discrete transfer function 

3. Design a digital compensator 

4. Implement difference equations in software 

5. Platypus Is Divine! 

Img(z) 

Re(z) 

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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• Handy rules of thumb: 
– Sample rates can be as low as twice the system bandwidth  

• but 5 to 10× for “stability” 

• 20 to 30 × for better performance 

 

– A zero at 𝑧 = −1 makes the discrete root locus pole behaviour 

more closely match the s-plane 

 

– Beware “dirty derivatives” 
• 𝑑𝑦 𝑑𝑡  terms derived from sequential digital values  are called ‘dirty 

derivatives’ – these are especially sensitive to noise! 

• Employ actual velocity measurements when possible 

 

 

Discrete design process 
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Control Systems Design: 

17 May 2019 - ELEC 3004: Systems 40 

TF 2 SS – Control Canonical Form) 
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Modal Form 
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• Given: 
𝑌 𝑠

𝑈 𝑠
=

25.04𝑠+5.008

𝑠3+5.03247𝑠2+25.1026𝑠+5.008
  

Get a state space representation of this system 

 

• Matlab: 

• Answer: 

 

Matlab’s tf2ss 
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Control Canonical Form as a Block Diagram 
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Modal Form Block Diagram 
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Control System Design: 

Obtaining a Time Response 
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• Given: 𝑥 = 𝐴𝑥 + 𝐵𝑢 

• Solution: 

 
– Substituting 𝑡0 = 0 into this: 

 

 

– Write the impulse as: 

 

– where w is a vector whose components are the magnitudes of r 

impulse functions applied at t=0 

 

 

 

From SS to Time Response — Impulse Functions 
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• Given: 𝑥 = 𝐴𝑥 + 𝐵𝑢 

• Start with 𝑢 𝑡 = 𝒌 

Where k is a vector whose components are the magnitudes  

of r step functions applied at t=0. 
 

 

 

 

 

– Assume A is non-singular 

 

 

 

 

 

 

From SS to Time Response — Step Response 

17 May 2019 - ELEC 3004: Systems 49 

• Given: 𝑥 = 𝐴𝑥 + 𝐵𝑢 

• Start with 𝑢 𝑡 = 𝑡𝒗 

Where v is a vector whose components are magnitudes of ramp 

functions applied at t = 0 

 

 
 

 

– Assume A is non-singular 

 

 

 

 

 

 

From SS to Time Response — Ramp Response 

17 May 2019 - ELEC 3004: Systems 50 



25 

Example: Obtain the Step Response 
• Given: 

 

 

• Solution: 

 

 

 

 

 
– Set k=1, x(0)=0: 

 

17 May 2019 - ELEC 3004: Systems 51 

Example II: Obtain the Step Response 
• Given: 

 

 

• Solution: 

 

 

 

 

 
– Assume x(0)=0: 
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The Direct Method  

of Digital Controls – 

 
NOT to be confused with  

Controller Emulation  

(e.g., Tustin’s Method) 
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Start with 3 Discrete Transfer Functions: 
– G(z): TF1 of a plant + a hold (e.g., from a ZOH) 

– D(z): A controller TF to do the job (what we want here) 

– H(z): The final desired TF between R (reference) and Y (output) 

– Thus2: 

𝐻 𝑧 =
𝐷𝐺

1+𝐷𝐺
    

𝐷 𝑧 =
1

𝐺

𝐻

1−𝐻
  

 

• This calls for a D(z) that will cancel the plant effects and that will add whatever is 

necessary to give the desired result. The problem is to discover and implement 

constraints on H(z) so that we do not ask for the impossible.   
– This implies that we need some constraints on both H(z) and D(z)  

 

1: Transfer Function  

2: Mental Quiz:  What does 1+DG say about the sign of the feedback (positive or negative)?   

That is, what is the characteristic equation for a system with positive feedback? 

Direct Design Method Of Ragazzini  
(See also: FPW 5.7 pp.216-222) 
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• Remember/Recall an Interesting Point: 
– From z-transform theory we know that if D(z) is causal,  

then as 𝑧 →  ∞ its transfer function is well behaved  

& it does not have a pole at infinity. 

 

• 𝐷 𝑧 =
1

𝐺

𝐻

1−𝐻
  implies that if G(z) = 0 (at ∞),  

then D(z) would have a pole (at ∞) unless H(z) cancels it. 

   ∴  

H(z) must have a zero (at ∞) of the same order as G(z)’s 0s (at ∞) 

 

Which means: If there is a lag in the plant (G(z) starts with z-l)  

then causality requires that the delay of H(z) is that the closed-loop 

system must be at least as long a delay of the plant. 
(Whoa!  It might sound deep, but it’s rather intuitive ) 

 

 

Direct Design Method Of Ragazzini  [2]: 
Design Constraints: I. Causality 
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• The characteristic equation and the closed loop roots: 

1 + 𝐷 𝑧 𝐺 𝑧 = 0 

• Define3 𝐷 =
𝑐

𝑑
 and G=

𝑏

𝑎
   𝑎𝑑 + 𝑏𝑐 = 0 

• Define 𝑧 − 𝛼 as a pole of G(z) and a common factor in DG that 

represents D(z) cancelling a pole/zero of G(z). 

• Then this common factor remains a factor of the characteristic polynomial.  

• If this factor is outside the unit circle, then the system is unstable! 

∴  

1-H(z) must contain as zeros  

all the poles of G(z) that are outside the unit circle & 

H(z) must contain as zeros  

all the zeros of G(z) that are outside the unit circle 

 

Direct Design Method Of Ragazzini  [3]: 
Design Constraints: II. Stability 

3: Note the switching of the “alphabetical-ness” of these two fractions 
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• The error from H(z) is given by: 

E(z)  = R(z) 1 − H z  

• If the system is “Type 1” (with a constant velocity/first derivative (𝐾𝑣) 

– Then4 𝐸𝑠𝑠
𝑆𝑡𝑒𝑝

= 0 and  𝐸𝑠𝑠
𝑅𝑎𝑚𝑝

= 1
𝐾𝑣  

 

∴  

H z = 1 

&  

−Ts

𝑑𝐻 𝑧

𝑑 𝑧
 
𝑧=1

=
1

𝐾𝑣
H z = 1 

 

Direct Design Method Of Ragazzini  [4]: 
Design Constraints: III. Steady State Accuracy 

4: Ess: steady-state error 

17 May 2019 - ELEC 3004: Systems 57 

• Consider the plant: 𝑠2 + 𝑠 + 1 = 0 

With Ts=1  z-Transform: 𝑧2 + 0.786𝑧 + 0.368=0 

• Let’s design this system such that  
– 𝐾𝑣 = 1  
– Poles at the roots of the plant equation & additional poles as needed 

H z =
𝑏0+𝑏1𝑧−1+𝑏2𝑧−2+𝑏3𝑧−3+⋯ 

1−0.786𝑧−1+0.368 𝑧−2  

I. Causality: H z  𝑧=∞ = 0 → 𝑏0 = 0 

II. Stability: All poles/zeros of G(z) are in the unit circle  
– except for 𝑏0, which is taken care of by 𝑏0 = 𝐶𝑜𝑛𝑠𝑡 = 0 

III. Tracking:  
  H 1 = 𝑏1 + 𝑏2 + 𝑏3 + ⋯ = 1 ∙ 1 − 0.786 + 0.368   & 

 −{1} 
𝑑𝐻 𝑧

𝑑 𝒛−𝟏  
𝑧=1

=
1

{1}
   

𝑏1+2𝑏2+3𝑏3+⋯  −[−.05014]

1−0.786+0.368
    (note the 𝑧−1) 

 Truncate the number of unknowns to 2 “zeros” … thus solve for b1 and b2 (& set b3,b4,…=0) 

 

∴ H z =
𝑏1𝑧+𝑏2 

𝑧2−0.786𝑧+0.368 
  

Direct Design Method Of Ragazzini  [5]: 
An Example 
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•  Example of Digital Feedback Control 

 

 

• Review:  
– Chapter 5 of FPW 

 

 

• More Pondering?? 

 

 

 

Next Time… 
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