	http://elec3004.com
Advanced PID Control	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 20: Part I	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u> © 2019 School of Information Technology and Electrical Engineering at The University of Queensland	May 15, 2019

Lecture S	che	edule		
Loctare	Week	Date	• Lecture Title	1
	Treese	27-Feb	Introduction	
	1	1-Mar	Systems Overview	
		6-Mar	Systems as Maps & Signals as Vectors	
	2	8-Mar	Systems: Linear Differential Systems	
		13-Mar	Sampling Theory & Data Acquisition	
	3	15-Mar	Aliasing & Antialiasing	
	4	20-Mar	Discrete Time Analysis & Z-Transform	
	4	22-Mar	Second Order LTID (& Convolution Review)	
	Ē	27-Mar	Frequency Response	
	2	29-Mar	Filter Analysis	
	(3-Apr	Digital Filters (IIR) & Filter Analysis	
	6	5-Apr	PS 1: Q & A	
	-	10-Apr	Digital Windows	
	7	12-Apr	Digital Filter (FIR)	
	8	17-Apr	Active Filters & Estimation	
		19-Apr		
	1	24-Apr	Holiday	
		26-Apr		
	9	1-May	Introduction to Feedback Control	
		3-May	Servoregulation & PID Control	
	10	8-May	State-Space Control	
	10	10-May	Guest Lecture: FFT	
	11	15-May	Advanced PID & & FFT Processes	
		17-May	State Space Control System Design	
	12	22-May	Digital Control Design	
		24-May	Shaping the Dynamic Response	
	13	29-May	System Identification & Information Theory & Information Space	
		31-May	Summary and Course Review	
ELEC 3004: Systems				15 May 2019 - 2

When Can PID Control B	e Used?
 When: "Industrial processes" such that the demands on the performance of the control are not too high. Control authority/actuation Fast (clean) sensing PI: Most common All stable processes can be controlled by a PI law (modest performance) First order dynamics 	 PID (PI + Derivative): Second order (A double integrator cannot be controlled by PI) Speed up response When time constants differ in magnitude (Thermal Systems) Something More Sophisticated: Large time delays Oscillatory modes between inertia and compliances
ELEC 3004: Systems	

PID Implementation

15 May 2019 - 🦻

ELEC 3004: Systems

PID Implementation Non-Interacting (Standard Form) Interacting Form (Series Form) P D Ĩ Σ Σ Р D $C(s) = K\left(1 + \frac{1}{sT_i} + sT_d\right) \left| C'(s) = K'\left(1 + \frac{1}{sT'_i}\right)(1 + sT'_d)\right|$ • Integral time (T_i) does not • Note: Different K, T_i and T_d influence derivative T_d does influence T_i : interacting • Easier to tune manually ٠ ELEC 3004: Systems

Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function

$$\frac{U(s)}{X(s)} = G_c(s) = K_P + \frac{K_I}{s} + K_D s.$$
 (13.54)

We can determine a digital implementation of this controller by using a discrete approximation for the derivative and integration. For the time derivative, we use the **backward difference rule**

$$u(kT) = \frac{dx}{dt}\Big|_{t=kT} = \frac{1}{T}(x(kT) - x[(k-1)T]).$$
(13.55)

The z-transform of Equation (13.55) is then

$$U(z) = \frac{1 - z^{-1}}{T} X(z) = \frac{z - 1}{Tz} X(z).$$

The integration of x(t) can be represented by the **forward-rectangular integration** at t = kT as

$$u(kT) = u[(k-1)T] + Tx(kT), \qquad (13.56)$$

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

ELEC 3004: Systems

15 May 2019 - 1

PID Intuition

ELEC 3004: Systems

15 May 2019 - 15

<list-item><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

PID Intuition

$$u(t) = K \left[e(t) + \frac{1}{T_i} \int e(s) \, ds + T_d \frac{de(t)}{dt} \right]$$

• P:

- Control action is proportional to control error
- It is necessary to have an error to have a non-zero control signal

• I:

ELEC 3004: Systems

- The main function of the integral action is to make sure that the process output agrees with the set point in steady state

Effects of <mark>i</mark> l	nc reasi i	n g a par	ameter inde	pendently	
Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability ^[11]
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small
stem=[??? mpensator system = f	lps with]; H=[1]; = pidtune Geedback(se m)	PID tunin (G_system, ries(D_comp	ng: 'PIDF') ensator,G_	u system), H)	sys1

	is i uning -	- Stability	Limit M	ethod
PW § 5.8.5 [p.22	26]			
Increase K _P unt	il the system	has continu	ous oscill	ations
$\equiv K_U$: Oscillation	on Gain for "U	Iltimate stabi	lity"	
$\equiv P_U$: Oscillatio	on Period for "	Ultimate stal	oility"	
Table 3	5.3 Ziegler-N	Vichols tunin	g	
param	eters using sta	ability limit.		
	K_p	T_I	$T_{\mathcal{D}}$	
\overline{P}	$0.5K_u$			
PI	$0.45K_u$	$P_{u}/1.2$		
PID	$0.6K_u$	$P_u/2$	$P_u/8$	

PID

(Non-Linear Effects [e.g. saturation])

ELEC 3004: Systems

15 May 2019 - **33**

Integrator Wind-Up

Wind-Up:

- A non-linear effect: motor limitations (speed, hysteresis, etc.) / saturation
- When this happens the feedback loop is broken and the system runs as an open loop because the actuator will remain at its limit independently of the process output.
- If a controller with integrating action is used, the error may continue to be integrated if the algorithm. is not properly designed. This means that the integral term may become very large or, colloquially, it "winds up."

