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Signals & Systems:

A Primer!
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Follow Along Reading:

&~ _ » Chapter 1
& o b (Introduction to Signals
Lhear |gnal processing
& S || and linear systems and Systems)
B 02,0138 1908 — § 1.2: Classification of Signals
— 8§1.2: Some Useful Signal
Operations

— § 1.6 Systems

« Chapter B (Background)
— B.5 Partial fraction expansion
— B.6 Vectors and Matrices



http://library.uq.edu.au/record=b2013253~S7

Modelling Ties Back with ELEC 2004

 Linear Circuit Theorems

» Operational Amplifiers

« Capacitors and Inductors, RL and RC Circuits
» AC Steady State Analysis

» AC Power, Frequency Response

» Laplace Transform

 Reduction of Multiple Sub-Systems
 Fourier Series and Transform

« Filter Circuits

=>» Linear Algebra is a Modelling Tools!
(Modell1ing means forecasting)

An Overview of Systems

» Today we are going to look at F(x)! g FX)

» F(x): System Model
— The rules of operation that describe it’s behaviour of a “system”
— Predictive power of the responses
— Analytic forms > Empirical ones
« Analytic formula offer various levels of detail
« Not everything can be experimented on ad infinitum
* Also offer Design Intuition (let us devise new “systems’)
 Let’s us do analysis! (determine the outputs for an input)

— Various Analytic Forms
« Constant, Polynomial, Linear, Nonlinear, Integral, ODE, PDE, Bayesian...




System Ter mi-nol-o-gy
\ tor-ma- 'na-le-jé \
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System Classifications/Attributes

1. Linear and nonlinear systems
Constant-parameter and time-varying-parameter systems
Instantaneous (memoryless) and dynamic (with memory)
systems

Causal and noncausal systems

Continuous-time and discrete-time systems

Analog and digital systems

Invertible and noninvertible systems

Stable and unstable systems

w ™
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Linear Systems

y(x)

Model describes the relationship _U(X)t
inpu

between the input u(x) and
the output y(x) g F(x) :

If it is a Linear System (wk 3):
R

output

y(t)zl/OF(t—T)u(T)dT

If it is also a (Linear and) lumped, it can be expressed algebraically as:

i(t) =AMz @)+ B®)u(t)
y (1) =C e (®) + D) u)

If it is also (Linear and) time invariant the matrices can be reduced to:

i (t) = Az (t) + Bu (t)
y(t) = Cz () + Du(t)

Paplacian: y(s) = F (s)u(s)

WHY? This can help simplify matters...

For Example: Consider the following system:

3 ; ; i : 3 ; A ;
0 100 200 300 400 500 600 709 800 900 1000

» How to model and predict (an%l later control) the output?

Source: EE263 (s.1-13)




I'his can help simplity matters...
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This can help simplify matters...

e That is:

In:

y

®)
c
=
Y

B L i i i i i H H H
0 100 200 300 400 500 600 700 800 900 1000

» May be considered as: t
= Ax, y=Cx

« X(t) € R8, y(t) € R! - 8-state, single-output system
* No Control @ - It’s Autonomous © (- No input yet! (u(t)=0.))




Linear Systems

Linearity:
* A most desirable property for many systems to possess

« Ex: Circuit theory, where it allows the powerful technique or
voltage or current superposition to be employed.

Two requirements must be met for a system to be linear:
 Additivity
» Homogeneity or Scaling

Additivity U Scaling =» Superposition

Linear Systems: Additivity

+ Given input x4 (t) produces output y,(t)
and input x, (t) produces output y, (t)

« Then the input x; (t) + x,(t)
must produce the output y; (t) + y,(t)
for arbitrary x; (t) and x, (t)

« EXx:
— Resistor
— Capacitor
* Not EX:
- y(t) = sin[x(t)]




Linear Systems: Homogeneity or Scaling

» Given that x(t) produces y(t)

» Then the scaled input a - x(t)
must produce the scaled output a - y(t)
for an arbitrary x(t) and a

« EXx:

- y(8) = 2x(t)
* Not Ex:

- y() = x*(t)

-y(t)=2x(t)+1

Linear Systems: Superposition

+ Given input x4 (t) produces output y,(t)
and input x, (t) produces output y, (t)

» Then: The linearly combined input
x(t) = ax,(t) + bx,(t)
must produce the linearly combined output
y(t) = ay;(8) + by,(6)
for arbitrary a and b

e Generalizing:
— Input: x(t) = ¥ apx(t)
— Output: y(t) = ¥ axyx(t)




Linear Systems: Superposition [2]

Consequences:

 Zero input for all time yields a zero output.
— This follows readily by setting a = 0, then 0 - x(t) = 0

DC output/Bias = Incrementally linear

Ex:y(t) = [2x(t)] + [1]
Set offset to be added offset [Ex: yo(t)=1]

x(1) | Linaar wit)

— (!
system \ l / vin

f 1

¥olt)

“Dynamical” Systems... (=2 Differential Equations)

A system with a memory
— Where past history (or derivative states) are relevant in
determining the response

Ex:

— RC circuit: Dynamical
* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)
— R circuit: is memoryless “ the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.




Linear + Dynamical: A Type of Linear Systems:

« LDS (Linear Dynamical System)::
z(t) =A()z(t) + B (%) u(t)
e, YO =C O () +DB)u®)

 Continuous-time linear dynamical system (CT LDS):

% = A(t)x(t) + B(t)u(t), y(t)=C(t)x(t) + D(t)u(t)
t € R denotes time

X(t) € R" is the state (vector)

u(t) € R™ is the input or control

y(t) € RP is the output

A Type of Linear Systems

« LDS (Linear Dynamical System):

z(t)=At)x(t)+ B()u(l)
y(t) =C @)z )+ D) u(t)

A(t) € R™" is the dynamics matrix

B(t) € R™™ is the input matrix

C(t) € RP*" js the output or sensor matrix
D(t) € RP*™ js the feedthrough matrix

=> state equations, or “m-input, n-state, p-output’ LDS

10



A Type of Linear Systems

« LDS (Linear Dynamical System):

P(t) = A e () + B @) ud)
y (1) =C (O (®)+ D) u®)

« Time-invariant: where A(t), B(t), C(t) and D(t) are constant
« Autonomous: there is no input u (B,D are irrelevant)
* No Feedthrough: D=0

« SISO: u(t) and y(t) are scalars
« MIMO: u(t) and y(t): They’re vectors: Big Deal ?

To Recap: LDS & LTI-LTS

« LDS (Linear Dynamical System):
w(t) =A)z(t) + B(t)u(t)
y () =C @)z (t) + D (1) u(t)

e« LTI-LDS (Linear Time Invariant — LDS):
z (1) = Az (t) + Bu ()
y (t) = Cz (t) + Du(?)

11



Discrete-time Linear Dynamical System

Discrete-time Linear Dynamical System (DT LDS)

has the form:

r(t+1) = A@t)z(t) + B(t)u(t).  y(t) = C(t)x(t) + D(t)ult)
t € Z denotes time index : Z={0, £1, ..., £ n}

X(t), u(t), y(t) € are sequences

Differentiation handled as difference equation:
=> first-order vector recursion

Discrete Variations & Stability

L]

y(s) = F(s)u(s)

Is in continuous time ... « SISO to MIMO

To move to discrete time it is — Single Input, Single Output
more than just “sampling” at: — Multiple Input, Multiple Output
2 x (biggest Frequency) . BIBO:

— Bounded Input, Bounded Output
Discrete-Time Exponential
* Lyapunov:
F(t) — F [kT] — Conditions for Stability
ﬁ L => Are the results of the system

el — y asymptotic or exponential
1 __
T — In Y

12



Causality:

Causal (physical or nonanticipative) systems

OH G
TEL

-8

tant t, depends only
on the value of the input x(t) for t<t,. Ex:

u(@) =a({t—2)=causal () ==z({—2)+z(t+2) = noncausal

* A “real-time” system must be causals
— How can it respond to future inputs?

A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems

Causality:
Looking at this from the output’s perspective...

« Causal = The output before some time t does not depend on
the input after time t.

Given: y (t) = F (u (1))
For:
u(t)y=u(t),vO<t<Tor[0,T)
Then for a T>0:
7)) =y), V0<t<T

else:

then:
Ly [y

| | = & —
» J_T : ﬁ : {_
Y oa l 5 oy

t

Causal Noncausal

13



Systems with Memory

» A system is said t have memory if the output at an arbitrary
time t = t, depends on input values other than, or in addition
to, x(t.)

 Ex: Ohm’s Law
V(to) = Ri(to)

* Not Ex: Capacitor
t

1
Vito) =7 f i(t)dt

Time-Invariant Systems

« Given a shift (delay or advance) in the input signal
« Then/Causes simply a like shift in the output signal

If x(t) produces output y(t)
Then x(t — t,) produces output y(t — t;)

Ex: Capacitor
V(t)) == i(r—to)dr
= [ limdr

=V (t —ty)

14



Time-Invariant Systems

+ Given a shift (delay or advance) in the input signal

If x(t) produces output y(t)
Then x(t — t,) produces output y(t — t,)

¥t

v

Shift

System

v

x{1)

Xt = tg)

-
oo
=
A

Then/Causes simply a like shift in the output signal

yit =t

Viglt)

SYSIBM |f—

Linear Systems Examples! : First Order Systems

Examples

simple RC circuit:

circuit equation: RCv'4+v =0

solution: v(t) = v(0)e~t/ (H)

population dynamics:

e y(t) is population of some bacteria at time ¢

e growth (or decay if negative) rate is y' = by — dy where b is birth rate,

d is death rate

o y(t) = y(0)e=Dt (grows if b > d; decays if b < d)

15



First Order Systems

First order systems

ay' + by =0 (with a # 0)

righthand side is zero:
e called autonomous system

e solution is called natural or unforced response
can be expressed as
Ty +y=0 o ¢y +ry=0

where
e I"=a/bis a time (units: seconds)

e r=>0b/a=1/T is a rate (units: 1/sec)

First Order Systems

Solution by Laplace transform

take Laplace transform of Ty + 1y = 0 to get

T(RY(Z)W)MO)) +Y(s)=0

solve for Y'(s) (algebra!)

_ Ty(0) _ y(0)
sTH+1 s+1/T

Y (s)

and so y(t) = y(0)e= /T

16



First Order Systems

solution of Ty +y = 0: y(t) = y(0)e /T

if T' > 0, y decays exponentially

e T gives time to decay by e~ ~ 0.37
e 0.693T gives time to decay by half (0.693 = log 2)
e 4.67" gives time to decay by 0.01 (4.6 = log 100)

if T'< 0, y grows exponentially

e |T| gives time to grow by e ~ 2.72;
e 0.693|T| gives time to double

e 4.6|T| gives time to grow by 100

Linear Systems: Second Order Systems

Second order systems

ay’ +by' +ey=0

assume a > () (otherwise multiply equation by —1)

solution by Laplace transform:

a(s2Y (s) — sy(0) — y'(0)) + b(sY (s) — y(0)) + Y (s) =0

Liy") L(y)

solve for Y (just algebral)

asy(0) + ay'(0) + by(0) as+ 3

Y(s) = =
(%) as? + bs + ¢ as2 +bs+ ¢

where oo = ay(0) and 3 = ay'(0) + by(0)

17



Second Order Systems

so solution of ay” + by +cy =0 is

P as + 3
ylt) = £ ((1.52 +bs + 0)

o \(s) = as? +bs + cis called characteristic polynomial of the system
e form of y = £L7(Y) depends on roots of characteristic polynomial

e coefficients of numerator as + 3 come from initial conditions

EXAMPLE: First Order RC Filter

+ Passive, First-Order Resistor-Capacitor Design:

" R out - 3dB (%2 Signal Power):
T c w=2nf
(Low-pass configuration) —_— 1
- Je= 27RC
» Magnitude:
1
V| = [—L |V
T (s) = a1s + ag [Vout| (WRC)? [Vinl
s+ wo . Phase:

¢ =tan—! (—wRC)

18



2" Order Active RC Filter (Sallen—Key)

« 2" Order System Sallen—Key Low-Pass Topology:

Build this for
Real in
ELEC 4403

« KCL:  Mn=b — Oy s (vp — voyt) + Z2prout

1

Combined with Op-Amp Law:

B>

Vjp — U CosRo+1 y vout (CosRo+1)—1
in Out( 2 2+ ) = Cysvout (CQSRQ-f—l)*UOUt—F?OUt( 28 ng‘ )—vout

Ry

Vout —

Solving for Gives a 2" order System:

1

Vin — C1CoR1Ros?+Co(R1+Rp)s+1

Example,: 15t or 2™ Order Circuit Elements (

Vout —

1

Vin — C1C2R1R55%2+Co(R1+Ro)s+1

19



Linear Systems: Equivalence Across Domains

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

Variable Integrated Variable Integrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, i Charge, ¢ Voltage Flux linkage, Ay
difference, v,
Mechanical ~ Force, F Translational Velocity Displacement
translational momentum, P difference, vy, difference, y,,
Mechanical ~ Torque, T Angular Angular velocity Angular
rotational momentum, /1 difference, wy, displacement
difference, 65,
Fluid Fluid Volume, V Pressure Pressure
volumetric rate difference, P», momentum, y,;
of flow, Q
Thermal Heat flow Heat energy, Temperature
rate, q H difference, 75,
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Source: Dorf & Bishop, Modern Control Systems, 12t Ed., p. 73

Table2.2 S yof G ing Diff for Ideal Elements
Type of Physical Governing Energy E or
Element Element Equation Power & Symbol
: £ o s
Electrical inductance vy = L% E= %I_t2 12 oYY Yo,
. . 1dF 1P k
‘Translational spring vy = % di E= T E vy om‘r\_',’,'_.. F
Inductive storage 2
3 z 1dT 1T E
Rotational spring wn =3 E= i E wy oYY
e _ a0 _1 i
Fluid inertia Py = 1= E= EIQZ onmg_opj )
Electri i = cdon o2 i 1C
rical capacitance i= CT E= szn vy D_,_| }_D n
d
Translational mass F=uE =ty Foe M-
dr 2 constant
Capacitive storage Rotational mass L E= 1,!.;;,’ = w =
dt 2 constant
dP.
Fluid capacitance Q= C;W21 E= %C;P;.Z e 2 Py
. T, o—C]—o
Thermal capacitance q= C,? E=CT, 4 A E
constant
Electrical resi -1 =L Ao
ctrical resistance i= Rvg. P = Ruzt vy N
Translational damper F= P = :
Ip by buyy 54;01_1 o
Energy dissipators Rotational damper T = by P = ban,’
el
Fluid resistance Q LFH P= LPMZ L/
Ry Ry Py o—AAN——0 P|
] 1 1 Source: Dorf & Bishop,
Thermal resistance 4= P =T R g Modern Control Systems,
t t T, o AAN——0 T, 12" Ed., p. 74
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DO NOT
WRITE
IN THIS
MARGIN

Example,: Thermal Systems

J(s
16. Thermal heating system %S; o mlg +1/R)’ where
7, e T = 9, — J. = temperature difference
— 7, due to thermal process
FREES g C, = thermal capacitance
’ ‘ Q = fluid flow rate = constant

= '1 S = specific heat of water
‘i
out R, = thermal resistance of insulation
Heater

g(s) = transform of rate of heat flow of
heating element

o

21



Example,: Motors

E DC motor, field-controlled, rotational actuator

a(s) K,

Vi(s)  s(Js + b)(Lys + Ry)

0(s)  Kn
Vi(s)  s(rs + 1)
T=J/(b—-m)
- Reference m = slope of linearized torque-speed
field curve (normally negative)

ELEC 3004: Systems | March 2019 - 47

Example,: Mechanical Systems

15. Accelerometer, acceleration sensor xo(t) = y(t) — xin(1),

Frame Xo(s) _ s

0 ﬁﬁlx'"‘” Xin(s)  s2+ (b/M)s + k/M

Mass ‘ For low-frequency oscillations, where

M
I——— w < w,,
Lo "‘% J-Jb oN IW) Xo(jo) o

Xoljw)  k/M

ELEC 3004: Systems | March 2019 - 48



Another 2™ Order System:

Accelerometer or Mass Spring Damper (MSD)

» General accelerometer:
— Linear spring (k) (0™ order w/r/t 0)
— Viscous damper (b) (1t order)
— Proof mass (m) (2" order)

=>» Electrical system analogy:
— resistor (R) : damper (b)
— inductance (L) : spring (k)
— capacitance (C) : mass (m)

Measuring Acceleration:
Sense a by measuring spring motion Z

 Start with Newton’s 2" Law:

« Solve ODE:

X (t) = Xge™t  Z(t) = Zge?

23



Measuring Acceleration [2]

» Substitute candidate solutions:

d2 Xoeiwt d2 ZOeiwt . d Zoeiwt
m (dtz ) —m (dt2 )ﬂ_k(zoezwo_l_b ( o )
—muw2Xget = —mw2Zgelt+kZget+ (iw) bZge?

* Define Natural Frequency (®,)
& Simplify for Z,

(the spring displacement “magnitude”):

_ |k
2
_ mw<Xg 1 Xo
Zo = mw?—k—iwb | \/ w02 b2
=22

Acceleration: 2" Order System

¢ For o<<aoy:

" Plot for a .umt mass, etc.... 7 w?Xg _ a
. 0~ "2 w2
, 0 0
2 r —a= Zowg
L N = it’s an
2 2 Accelerometer
* For o~m,
%; Asib>0, Z> w
i - : ,
L0 "
~—l : — Sensitivit
y
. . >>@:
r_ w a0 | 0 to o e For o>>ay:
- ZO ~ XO

Accelerometer

= it’sa

24



Cascades of Linear Systems:
Ex .: Quarter-Car Model

k(y — x)I I b(y — %)

y
my

X
. l

O

l k(x — 1) k(y — x) l l b(y — x)

REF: FPE, Feedback Control of Dynamic Systems, 6% Ed, p.25

Example: Quarter-Car Model (2)

o bk
y+—0 =)+ —(-x)=0
(&) Hiy

k

w w
—Xx = —r,

el TR
I+ —@ -+ —x-y+
mi my m

1 my

b y ,
s2X(5) +5—(X(5) — Y (s)) + E(X(-Y) —Y(s) + = X(s) = —=R(s),
mq mq nmy my

b
Y () + 52— (F(5) = X()) + (¥ () — X(5)) =0,
ma mp

kywb
Y (s) mums \

+ ks
b

mq mp mq my

RG) b b k&
) s“+<—+—>s3+(——+—+

kuwks

) ()
— )54 s+
mq mimy

mimy
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Ex ;: Using Response to Guide Order
» Loop Gain” to Quantify Ventilatory Stability:
Disturbance V ventilation

Ventilation

disturbandg

Chemo-
reflex PCOZ

Response chemical
drive overall loop gain, LG
Response

Disturbance
* Loop Gain>1 implies an unstable control system

* Loop Gain =

* Loop Gain<I implies a stable control system
* Like EEG, disturbance can be characterised by frequency

Pco,
U ——————————— >
— delay

REF: P. Terrilland U. Abeyratne

Measuring LG — 3min CPAP Drop:

« This is an invasive procedure

 As such, unsuitable for clinical sleep lab:
— Large scale clinical studies Difficult
— Clinical practice.....

[s)
o
T
E
2 1o
«
7]
E
=
o
0
or Ventlalory dive .. vveeeeeerns
T 8
E Response
=
= &k
s e
T o4 Disturbance <
g 2 -
> L
o . . . . .
0 50 100 150 200 250
B Time (seconds)

[Wellman, JAP, 2011]
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Estimating LG from Clinical PSG:

Abdo RIP "

_ Gefsﬁ
Vchem = VE
1+st
2~
1 /\ /\ /\\/ /\
./ o \)[ \/ \/ \ \/ \-

05~

ol r r r r r L r r

2050 3000 3050 3100 3150 3200 3250 3300
!v LGn=0.64 LG60=0.9 LG30=0.46

Next Time... /
« We’ll talk about Other System Properties © é 2 I

We will introduce this via the lens of:
“Systems as Maps. Signals as Vectors”
Review:
— Phasers, complex numbers, polar to rectangular, and general
functional forms.
— Chapter B and Chapter 1 of Lathi
(particularly the first sections on signals & classification thereof)

Register on Platypus

Try the practise assignment

27
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