|                                                                                                                                                                                   | http://elec3004.com |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| DTFT & FFTs                                                                                                                                                                       |                     |
| ELEC 3004: <b>Systems</b> : Signals & Controls<br>Tim Sherry & Surya Singh                                                                                                        |                     |
| Lecture 19                                                                                                                                                                        |                     |
| elec3004@itee.uq.edu.au<br><u>http://robotics.itee.uq.edu.au/~elec3004/</u><br>© 2017 School of Information Technology and Electrical Engineering at The University of Queensland | May 10, 2019        |

| octure <sup>(</sup> | Scł  | nedul  | ٥,                                                             |           |
|---------------------|------|--------|----------------------------------------------------------------|-----------|
|                     | Week | Date   | C ·                                                            |           |
|                     | Week | 27-Feb | Introduction                                                   |           |
|                     | 1    | 1-Mar  | Systems Overview                                               |           |
|                     | -    | 6-Mar  | Systems as Maps & Signals as Vectors                           |           |
|                     | 2    | 8-Mar  | Systems: Linear Differential Systems                           |           |
|                     |      | 13-Mar | Sampling Theory & Data Acquisition                             |           |
|                     | 3    | 15-Mar | Aliasing & Antialiasing                                        |           |
|                     | 4    | 20-Mar | Discrete Time Analysis & Z-Transform                           |           |
|                     | 4    | 22-Mar | Second Order LTID (& Convolution Review)                       |           |
|                     | ~    | 27-Mar | Frequency Response                                             |           |
|                     | 2    | 29-Mar | Filter Analysis                                                |           |
|                     | 6    | 3-Apr  | Digital Filters (IIR) & Filter Analysis                        |           |
|                     | 6    | 5-Apr  | PS 1: Q & A                                                    |           |
| ſ                   | 7    | 10-Apr | Digital Windows                                                |           |
|                     | /    | 12-Apr | Digital Filter (FIR)                                           |           |
|                     | 8    | 17-Apr | Active Filters & Estimation                                    |           |
|                     |      | 19-Apr |                                                                |           |
|                     |      | 24-Apr | Holiday                                                        |           |
|                     |      | 26-Apr |                                                                |           |
|                     | 0    | 1-May  | Introduction to Feedback Control                               |           |
|                     | '    | 3-May  | Servoregulation & PID Control                                  |           |
|                     | 10   | 8-May  | State-Space Control                                            |           |
|                     | 10   | 10-May | Guest Lecture: FFT                                             |           |
|                     | 11   | 15-May | Advanced PID                                                   |           |
|                     |      | 17-May | State Space Control System Design                              |           |
|                     | 12   | 22-May | Digital Control Design                                         |           |
|                     |      | 24-May | Shaping the Dynamic Response                                   |           |
|                     | 13   | 29-May | System Identification & Information Theory & Information Space |           |
|                     | 15   | 31-May | Summary and Course Review                                      |           |
| 04: System          | s    |        |                                                                | 10 May 20 |















The Fourier Transform • The continuous-time Fourier Transform  $X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$ • What happens if we sample  $x(t)|_{t=n\Delta t} = x_c(t)$ ? • Represent  $x_c(t)$  as sum of weighted impulses  $x_c(t) = \sum_{n=1}^{\infty} x(n\Delta t)\delta(t - n\Delta t)$ 

$$X_{c}(\omega) = \int_{-\infty}^{\infty} \left[ \sum_{n=-\infty}^{\infty} x(n\Delta t) \delta(t - n\Delta t) \right] \exp(-j\omega t) dt$$





## DTFT and the DFT

- Fourier transform,  $\hat{X}_c(w)$ , of sampled data is
  - continuous in frequency, range  $\{0, w_s\}$
  - and periodic  $(w_s)$
  - known as DTFT
- If calculating on digital computer
  - then only calculate  $\hat{X}_c(w)$  at discrete frequencies
  - normally equally spaced over  $\{0, w_s\}$
  - normally N samples, i.e., same as in time domain
  - i.e, samples  $\Delta w$  apart











## Naïve DFT in Matlab

```
%% function X : MyNiaveDFT(x)
% ELEC3004 - Lecture 13
function X = MyNiaveDFT(x)
% Niave/direct implementation of the Discrete Fourier Transform (DFT)
% Calculate N samples of the DTFT, i.e., same number of samples
N=length(x);
% Initialize (complex) X to zero
X=[complex(zeros(size(x)),zeros(size(x)))];
for n = 0:N-1
     for k=0:N-1
        % Calculate each sample of DFT uSIng each sample of input.
        % Note: Matlab indexes vectors from 1 to N,
        % whilst DFT is defined from from 0 to (N-1)
        X(k+1) = X(k+1) + x(n+1)*exp(-i*n*k*2*pi/N);
     end
end
H
```

## Computational Complexity

- Each frequency sample X[k]
  - Requires *N* complex multiply accumulate (MAC) operations
- .:. for N frequency samples
  - There are  $N^2$  complex MAC

### • Example:

- 8-point DFT requires 64 MAC
- 64-point DFT requires 4,096 MAC
- 256-point DFT requires 65,536 MAC
- 1024-point DFT requires 1,048,576 MAC
- i.e., number of MACs gets very large, very quickly!





$$\begin{aligned} & X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk} \\ & X(k=0) = x(0) + x(1) + \dots + x(N-1) \\ & X(k=1) = x(0) + x(1)W_N^1 + \dots + x(N-1)W_N^{N-1} \\ & X(k=2) = x(0) + x(1)W_N^2 + \dots + x(N-1)W_N^{N-2} \\ & \vdots & \vdots & \vdots \\ & X(k=N-1) = x(0) + x(1)W_N^{N-1} + \dots + x(N-1)W_N^1 \\ & \hline \text{Remember } W_N^0 = 1 \end{aligned}$$



|   | Examp                | ole    | : <b>8</b> -p | oint          | DF            | ΓMa         | atrix   |             |             |             |                                      |
|---|----------------------|--------|---------------|---------------|---------------|-------------|---------|-------------|-------------|-------------|--------------------------------------|
|   |                      |        | 4             | no ro<br>DC r | otation<br>ow | 1 rot       | ation   | 2 ro        | tations     | etc         |                                      |
|   | X(0)                 |        | $W_8^0$       | $W_8^0$       | $W_{8}^{0}/$  | $W_{8}^{0}$ | $W_8^0$ | $W_8^0$     | $W_8^0$     | $W_8^0$     | $\begin{bmatrix} x(0) \end{bmatrix}$ |
|   | X(1)                 |        | $W_8^0$       | $W_8^1$       | $W_8^2$       | $W_{8}^{3}$ | $W_8^4$ | $W_{8}^{5}$ | $W_{8}^{6}$ | $W_{8}^{7}$ | x(1)                                 |
|   | X(2)                 |        | $W_8^0$       | $W_8^2$       | $W_8^4$       | $W_{8}^{6}$ | $W_8^0$ | $W_8^2$     | $W_8^4$     | $W_{8}^{6}$ | x(2)                                 |
|   | X(3)                 |        | $W_8^0$       | $W_{8}^{3}$   | $W_{8}^{6}$   | $W_8^1$     | $W_8^4$ | $W_{8}^{7}$ | $W_{8}^{2}$ | $W_{8}^{5}$ | <i>x</i> (3)                         |
|   | X(4)                 | =      | $W_8^0$       | $W_8^4$       | $W_8^0$       | $W_8^4$     | $W_8^0$ | $W_8^4$     | $W_8^0$     | $W_8^4$     | x(4)                                 |
|   | X(5)                 |        | $W_8^0$       | $W_{8}^{5}$   | $W_{8}^{2}$   | $W_{8}^{7}$ | $W_8^4$ | $W_8^1$     | $W_{8}^{6}$ | $W_8^3$     | x(5)                                 |
|   | X(6)                 |        | $W_8^0$       | $W_{8}^{6}$   | $W_8^4$       | $W_{8}^{2}$ | $W_8^0$ | $W_{8}^{6}$ | $W_8^4$     | $W_{8}^{2}$ | <i>x</i> (6)                         |
|   | X(7)                 |        | $W_8^0$       | $W_{8}^{7}$   | $W_{8}^{6}$   | $W_{8}^{5}$ | $W_8^4$ | $W_{8}^{3}$ | $W_8^2$     | $W_8^1$     | $\lfloor x(7) \rfloor$               |
|   | I                    | ncre   | easing        | rotati        | onal fr       | equen       | cy do   | wn the      | rows        | of the I    | DFT matrix                           |
| X | ELEC 3004: <b>Sy</b> | /stems | 5             |               |               |             |         |             |             |             | 10 May 2019 <b>2</b>                 |



## Properties of the DTFT and DFT

10 May 2019 **26** 













![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

| Fourier Transforms                     |                          |                          |
|----------------------------------------|--------------------------|--------------------------|
|                                        |                          | Frequency                |
| Transform                              | Time Domain              | Domain                   |
| Fourier Series (FS)                    | Continuous &<br>Periodic | Discrete                 |
| Fourier Transform (FT)                 | Continuous               | Continuous               |
| Discrete-time Fourier Transform (DTFT) | Discrete                 | Continuous &<br>Periodic |
| Discrete Fourier Transform (DFT)       | Discrete & Periodic      | Discrete & Periodic      |
|                                        |                          |                          |
| ELEC 3004: Systems                     |                          | 10 May 2019 <b>40</b>    |

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

| DFT Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <ul> <li>Resolution is ability to distinguish <ul> <li>2 (or more) closely spaced sinusoids</li> </ul> </li> <li>Minimum resolution of DFT given by <ul> <li>Δw = w<sub>s</sub>/N = 2π/NΔt</li> <li>defined by sampling frequency, w<sub>s</sub></li> <li>and number of samples, N</li> </ul> </li> <li>Minimum resolution occurs when <ul> <li>integer number of complete cycles of input signal</li> <li>in the N samples analysed</li> <li>This is a 'best case' scenario</li> <li>'sinc' smearing always zero in adjacent frequency bins</li> </ul> </li> </ul> |                       |
| ELEC 3004: Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 May 2019 <b>48</b> |

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

| Window Fu           | nctions                          |                               |                               |                                     |
|---------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------------|
| Window              | -3dB<br>bandwidth                | Loss (dB)                     | Peak sidelobe<br>(dB)         | Sidelobe roll<br>off<br>(dB/octave) |
| Rectangular         | 0.89/ <i>N</i> ∆ <i>t</i>        | 0                             | -13                           | -6                                  |
| Hanning             | 1.4/ <i>N</i> ∆ <i>t</i>         | 4                             | -32                           | -18                                 |
| Hamming             | 1.3/ <i>N</i> ∆ <i>t</i>         | 2.7                           | -43                           | -6                                  |
| Dolph-<br>Chebyshev | 1.44/ <i>N</i> ∆ <i>t</i>        | 3.2                           | -60                           | 0                                   |
| Note, tr            | ade-off between<br>And increased | increased sid<br>3dB (peak) b | lelobe attenuatio<br>andwidth | n                                   |
| ELEC 3004: Systems  |                                  |                               |                               | 10 May 2019 <b>63</b>               |

## Inverse and Interpolati On (Mini-section)

ELEC 3004: Systems

10 May 2019 **64** 

## Inverse DFT

- One powerful property is the inverse fourier transform is simply the fourier transform with time-reversed basis functions
- So, IDFT and DFT obtained by
  - changing sign of  $\omega_{N_{nk}}$

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_6.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

| Interpolation via DFT (FFT)                                                                                                                                                                                                                                                                                                       |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <ul> <li>Interpolation of X[k] <ul> <li>zero pad sequence x[n]</li> <li>either start or end of x[n] (or both)</li> <li>increased sampling of DTFT spectrum, X(w)</li> </ul> </li> <li>Interpolation of x[n] <ul> <li>zero pad discrete spectrum X[k]</li> <li>evenly, both at start or end of the sequence</li> </ul> </li> </ul> |                       |
| <ul> <li>to ensure xu[n] remains real</li> <li>i.e., pad to preserve symmetry of X[k]</li> </ul>                                                                                                                                                                                                                                  |                       |
| ELEC 3004: Systems                                                                                                                                                                                                                                                                                                                | 10 May 2019 <b>72</b> |

![](_page_36_Picture_0.jpeg)

| Example:                        | 8-p                                           | oint        | DF          | Г Ма        | trix    |             |             |             |                                               |    |
|---------------------------------|-----------------------------------------------|-------------|-------------|-------------|---------|-------------|-------------|-------------|-----------------------------------------------|----|
|                                 | ×                                             | (0)         | ×           | 2)          | ×       | 4)          | <b>x</b> (  | 6)          | Even samples                                  |    |
| $\left\lceil X(0) \right\rceil$ | $W_8^0$                                       | $W_8^0$     | $W_{8}^{0}$ | $W_8^0$     | $W_8^0$ | $W_8^0$     | $W_{8}^{0}$ | $W_{8}^{0}$ | $\left[ x(0) \right]$                         |    |
| X(1)                            | $W_8^0$                                       | $W_8^1$     | $W_{8}^{2}$ | $W_{8}^{3}$ | $W_8^4$ | $W_{8}^{5}$ | $W_{8}^{6}$ | $W_{8}^{7}$ | x(1)                                          |    |
| X(2)                            | $W_8^0$                                       | $W_{8}^{2}$ | $W_8^4$     | $W_{8}^{6}$ | $W_8^0$ | $W_{8}^{2}$ | $W_8^4$     | $W_{8}^{6}$ | x(2)                                          |    |
| X(3)                            | $W_8^0$                                       | $W_{8}^{3}$ | $W_{8}^{6}$ | $W_8^1$     | $W_8^4$ | $W_{8}^{7}$ | $W_{8}^{2}$ | $W_{8}^{5}$ | x(3)                                          |    |
| X(4)                            | $W_8^0$                                       | $W_8^4$     | $W_8^0$     | $W_8^4$     | $W_8^0$ | $W_8^4$     | $W_8^0$     | $W_8^4$     | $\begin{vmatrix} \cdot \\ x(4) \end{vmatrix}$ |    |
| X(5)                            | $W_8^0$                                       | $W_{8}^{5}$ | $W_{8}^{2}$ | $W_{8}^{7}$ | $W_8^4$ | $W_8^1$     | $W_{8}^{6}$ | $W_{8}^{3}$ | x(5)                                          |    |
| X(6)                            | $W_8^0$                                       | $W_{8}^{6}$ | $W_{8}^{4}$ | $W_{8}^{2}$ | $W_8^0$ | $W_{8}^{6}$ | $W_8^4$     | $W_{8}^{2}$ | x(6)                                          |    |
| $\lfloor X(7) \rfloor$          | $W_8^0$                                       | $W_{8}^{7}$ | $W_{8}^{6}$ | $W_{8}^{5}$ | $W_8^4$ | $W_{8}^{3}$ | $W_{8}^{2}$ | $W_{8}^{1}$ | $\left\lfloor x(7) \right\rfloor$             |    |
| R                               | Repeated complex multiplications in EVEN rows |             |             |             |         |             |             |             |                                               |    |
| ELEC 3004: Systems              |                                               |             |             |             |         |             |             |             | 10 May 2019                                   | 81 |

![](_page_37_Figure_0.jpeg)

| Phasor                          | Rotational Symmetry                                                                                             |                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| To highli as $W_8^4 =$          | ight repeated computations on odd samples<br>- $W_8^0$ , $W_8^5 = -W_8^1$ , $W_8^6 = -W_8^2$ , $W_8^7 = -W_8^3$ |                        |
| $\left\lceil X(0) \right\rceil$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                              | $\left[ x(0) \right]$  |
| X(1)                            | $W_8^0 - W_8^0 - W_8^2 - W_8^2 = W_8^1 - W_8^1 - W_8^1 - W_8^3 - W_8^3$                                         | x(4)                   |
| X(2)                            | $W_8^0 = W_8^0 = -W_8^0 = -W_8^0 = W_8^2 = W_8^2 = -W_8^2 = -W_8^2$                                             | x(2)                   |
| X(3)                            | $W_8^0 - W_8^0 - W_8^2 - W_8^2 = W_8^3 - W_8^3 - W_8^1 - W_8^1$                                                 | <i>x</i> (6)           |
| X(4) =                          | $W_8^0  W_8^0  W_8^0  W_8^0  -W_8^0  -W_8^0  -W_8^0  -W_8^0  -W_8^0$                                            | x(1)                   |
| X(5)                            | $W_8^0 - W_8^0 W_8^2 - W_8^2 - W_8^1 W_8^1 - W_8^3 W_8^3$                                                       | x(5)                   |
| X(6)                            | $W_8^0 = W_8^0 = -W_8^0 = -W_8^0 = -W_8^2 = -W_8^2 = W_8^2 = W_8^2$                                             | x(3)                   |
| $\lfloor X(7) \rfloor$          | $W_8^0 - W_8^0 - W_8^2 - W_8^2 - W_8^3 - W_8^3 - W_8^1 - W_8^1$                                                 | $\lfloor x(7) \rfloor$ |
|                                 | Upper & lower left-hand quarters are identical<br>Right hand quarters identical except sign difference          | ce!                    |
| ELEC 3004: System               | ems                                                                                                             | 10 May 2019 <b>83</b>  |

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

# <text><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

![](_page_42_Figure_0.jpeg)

| Applications of the FFT                                              |
|----------------------------------------------------------------------|
| Fast (circular) Convolution                                          |
| – Convolution requires $N^2$ MAC operations $\otimes$                |
| – more efficient alternative via the FFT $\odot$                     |
| • Take FFT of both sequences                                         |
| • Multiply them together (point-wise)                                |
| • Take IFFT to get the result                                        |
| ["Hello <u>FFT-W!</u> Bonjour <u>cuFFT!</u> "]                       |
| <ul> <li>Zeropad and you have linear convolution</li> </ul>          |
| Spectral Analysis                                                    |
| <ul> <li>Estimate (power) spectrum with less computations</li> </ul> |
| - i.e., what frequencies in our signal are carrying power (i.e.,     |
| carrying information) ?                                              |
|                                                                      |
| Fast Cross-correlation                                               |
| - E.g., correlation detector in digital comm's                       |
| ELEC 3004: Systems 10 May 2019 93                                    |
|                                                                      |

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

## Spectral Analysis

- Power Spectral Density (PSD) defined as
  - Fourier Transform of Autocorrelation function

$$S_{xx}(w) = \sum_{m=-\infty}^{\infty} \varphi_{xx}(m) \exp(-jwm\Delta t)$$

- In practice, we estimate  $S_{xx}(w)$  from  $\{x[n]\}_0^{N-1}$ 
  - i.e., a finite length of sampled data
- This can be done using *N* point DFT
  - and implemented using the FFT algorithm

## Spectral Analysis

ELEC 3004: Systems

• Estimate of PSD is given by

$$\widehat{S}_{xx}[k] = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-jnk2\pi}{N}\right) \right|^2$$

- This is known as a **periodogram** 
  - DFT effectively implements narrow-band filter bank
  - calculate power (i.e., square) at each frequency k

### • Again, window functions often required

- to improve PSD estimate
- e.g., Hanning, Hamming, Bartlet etc

## Spectral Analysis

- Alternatively, we can estimate PSD as
  - DFT (FFT) of the estimate of the autocorrelation

$$\hat{S}_{xx}[k] = \sum_{m=-M}^{M} \hat{\varphi}_{xx}[m] \exp\left(\frac{-jmk2\pi}{2M+1}\right)$$

Where:  $\hat{\varphi}_{xx}[m] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+m]$ 

- Assuming *x*[*n*] is ergodic (at least stationary)
- Normally restricted range of PSD - e.g.,  $0 < M < \frac{N}{10}$

![](_page_45_Figure_8.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Picture_1.jpeg)

ELEC 3004: Systems

10 May 2019**101** 

![](_page_47_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

## Summary

- FT of sampled data is known as
  - discrete-time Fourier transform (DTFT)
  - discrete in time
  - continuous & periodic in frequency
- DFT is sampled version of DTFT – discrete in both time and frequency
  - periodic in both time and frequency
     periodic in both time and frequency
    - due to sampling in both time and frequency
- DFT is implemented using the FFT
- Leakage reduced (dynamic range increased) – with non-rectangular window functions

ELEC 3004: Systems

# Summary FFT exploits symmetries in the DFT Successively splits DFT in half odd and even samples Reduction to elementary butterfly operation with 'twiddle factors' Reduce computations from N<sup>2</sup> to (<sup>N</sup>/<sub>2</sub>) log<sub>2</sub>(N) ☺ FFT can be used to implement DFT for PSD estimates (periodogram and correlogram) Circular (fast) convolution (and correlation) Requires zero padding to obtain "correct" answer