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The Complex Plane Properties
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The Complex Plane Properties
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Figure 10.3  (a) Multiplying e times ¢, (b) The nth power of ¢*
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The Inner product as a projection

Length = [u] cos 6

u-v

— = U
IElR

PT‘Oj{u_)v} =

* What happens if v is unit length?
* What can be said about the error (pink dotted trace) wrt. v?
* What about multiple projections?

+ what condition between v,, v,, v5 ... would we like?
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The Fourier Transform

» The continuous-time Fourier Transform

X(w) = T X(t) exp(— joot)dt

« What happens if we sample X(t)|zac = X:(1)?
 Represent x.(t) as sum of weighted impulses

x. ()= Y x(nAYS(t—nAt)

N=-o0

X_ ()= T{i x(nAt)5(t—nAt)}exp(— jot)dt

—oo LN=—00




Discrete-time Fourier Transform

» Changing order of integration & summation
— and the simplifying (multiplication by impulse) gives

X, (@)=Y x(nAt) T&(t—nAt)exp(— jot)dt

n=—w

— i X(nAt) exp(— jonAt)

N=—o0

 This is known as the DTFT
— Requires an infinite number of samples x(nAt)
— discrete in time
— continuous and periodic in frequency

DTFT of Finite Data Samples

« Assume only N samples of x(nAt)
— fromn={0,N-1}
 Therefore, can only approximate X (w)

N-1

X, (@) =" x(nAt) exp(— jonAt)
n=0

« How good an estimate is this?

— Finite samples are same as infinite sequence
multiplied by a rectangular time domain
‘window’

X(nAt) = x(nAt) H(%} where T = NAt

Where rect(t) = H(t) =u [t + %j_u (t _TEJ




DTFT and the DFT

« Fourier transform, X_(w), of sampled data is
— continuous in frequency, range {0, w }
— and periodic (wy)
— known as DTFT

« If calculating on digital computer
— then only calculate X, (w) at discrete frequencies
— normally equally spaced over {0, w.}
— normally N samples, i.e., same as in time domain
— i.e, samples Aw apart

2
w=—-
N At

’ Can reduce Aw by increasing N ‘
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The DFT

* Discrete Fourier Transform (DFT)
— samples of DTFT, X" (W)l =k aw

X (kAw) = X[K] = fx[n] exp (%]

n=0
where 0<n,k <N -1

* Interpretation:
— N equally spaced samples of X(t)|; -, ac
— Calculates N equally spaced samples of X(W)|,, = kaw
— k often referred to a frequency ‘bin’: X[k] = X(w,)

The DFT
N—-1 .
_jomnk
X[ =S :c[n]exp( Jemn )
n=0 N

« Sample number n where0<n<N —1
« time 0 to NAt

» Frequency sample (bin) number k where0<k < N —1

» frequency 0 to o, (0)5 = %)
* Discrete in both time x[n] and frequency X[k]
» Periodic in both time and frequency (due to sampling)
* Remember: H(w) = H(z)|, = exp(jwt)

I.e., DFT samples around unit circle in the z-plane




Fourier Matrix
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Naive DFT in Matlab

%% function X : MyNiaveDFT(x)

% ELEC3004 - Lecture 13

function X = MyNiaveDFT(x)

% Niave/direct implementation of the Discrete Fourier Transform (DFT)

% Calculate N samples of the DTFT, i.e., same number of samples
N=length(x);

% Initialize (complex) X to zero
X=[complex(zeros(size(x)),zeros(size(x)))];

for n = @Q:N-1
for k=0:N-1
% Calculate each sample of DFT uSIng each sample of input.
% Note: Matlab indexes vectors from 1 to N,
% whilst DFT is defined from from @ to (N-1)
X(k+1) = X(k+1) + x(n+1)*exp(-i*n*k*2*pi/N);
end
end
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Computational Complexity

 Each frequency sample X[K]
— Requires N complex multiply accumulate (MAC) operations

.. for N frequency samples
— There are N2 complex MAC

» Example:
— 8-point DFT requires 64 MAC
— 64-point DFT requires 4,096 MAC
— 256-point DFT requires 65,536 MAC
— 1024-point DFT requires 1,048,576 MAC
— i.e., number of MACs gets very large, very quickly!

DFT Notation
N-1
X[k= Y z[n] - Wit
n=0

—j32mnk
Where:  WRF = exp (%)

Wy are called “N™ roots of unity”
e.g., N=8:
Wg0 = exp(0) = 1;
Wt = exp(-jn/4) = cos(r/4) — jsin(n/4) = 0.7 —jO.7;
Wg? = -j; Wg3=-0.7-j0.7; Wg*=-1; etc

10



Nt Roots of Unity

ima
A g

|[W,"™| = 1 (unit length vectors)
and W84 = 'Wso, W85 = 'W81,

P W0 =1 (= Wgb) > real

All 27t/N apart

DFT Expansion
N-1
X[k]= YA}y
n=0
X(k=0) =x(0) + x@ +..+ x(N-I
X(k:l) = X(O) + X(l)W,i 4 e+ X(N _l)WNNfl
X(k=2) = X(O) + X(:I_)WN2 4 e+ X(N _1)WNN72
X(k=N-1) = x(0) + X(]_)WNN_1 + -+ Xx(N —1)W,i
Remember W\ * =1
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DFT Matrix Formulation

DFT expansion can also be written as a matrix operation:

X@0) ] [1 1 1 . 1 ][ x@©) ]
X (1) 1 Wy W oowg't x(1)
X(2) |=]1 WS Wy W2 x(2)

X(N=D) ] [TW W™ o Wy | [ X(N=1) ]

%(_/ \_ ~ /) %(_}

X[K] DFT Matrix x[n]

Example: 8-point DFT Matrix

no rotation 1 rotation 2 rotations  etc
/ DC row

(X (0)] PW W W W W W W W [ x(0) ]
X () x(1)
X(2) x(2)
X3) | Wy W W Wy Wt W, W W || x(3)
X(4) | |We W W2 WS W WS W2 W | x(4)
XG) [ (W W W W Wt W W W || x(5)
X(6) | W WS W, W2 WY W, W, W2 | | x(6)

XD (W W W W W W W W || (7)) |

Increasing rotational frequency down the rows of the DFT matrix

12



Example: 8-point DFT Matrix

_X(O)_ _WBO W80 W80 W80 W80 W80 W80 WSO_ _X(O)_

_X (7)_ _WSO \N87 W86 VVB5 VVB4 VVB3 W82 \/\/81 X(7) i

x(0) x(2) x(4) X(6) Even samples

X (1) WBO W81 W82 W83 W84 W85 W86 W87 x(1)
X (2) Wso W82 W84 W86 Wso W82 W84 W86 X(2)
X@) | W2 W2 we W WA W W2 WE | | x(3)
X (4) | W W W2 wt wi W W w || x(4)
X(G)| (W2 W iw2 W W W WE W2 | | x(5)
X(6) | (W Wy | Wy W2 (W Wt [W,T W2 | | x(6)

Repeated complex multiplications in EVEN rows

Properties
of the DTFT

and DFT

ELEC 3004: Systems 10 May 2019 26
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Window Effects

» Multiplication in time with rectangular window

» Equivalent to convolution in frequency
— with ‘sinc’ function

X (o) :%Xc(w)*T sinc(;—w]

T

* In general, with arbitrary window function

%,(0) = %,(0) W, (1)

This is exactly same

A 1 effect we saw in FIR
XC (a)) = z XC (a)) *WT (a)) filter design
Original signal Fourier transform
T T T 35 T T
3r i
25¢ R
2 |- -
) 3
B3 X
151 4
1r i
05 R
1 L L L O L L L
0 5 Tir%g 15 -20 0 Freq%%ncy 40 60
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Discrete-time (sampled) signal Discrete time Fourier transform (DTFT)

T T T T 35 T T T
1k 4
0.8+ \ [ R 3+
0.6+ 1
25
0.4 A
2+ -
.0 oL v
= | €l
% 00 © O] (0] (0] 0] X
151
-0.2 b 5
-0.4H 4
1k
-0.6 L |
0.8+ 4 05
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1 Il Il Il 0 Il Il Il
0 5 10 15 -20 0 20 40
Time Frequency (periodic)
Windowed discrete-time signal DTFT of finite number of samples
T T T 4 T T T
1k 4
35
0.8 B
3 |-
0.6+ B
0.4 R 251
0.2 R 2r
0 o) £ 15F
= )
< X
-0.2 B 1k
-0.4+ b 05l
-0.6- B
oH
-0.81 B
-0.51
s 4
Il Il Il Il -l I Il I
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Time Frequency (smeared)




Reducing Window Effects

» We cannot avoid using a window function
— as we must use a finite length of data

» Aim: to reduce window effect

1. By choosing suitable window function
+ Hanning, Hamming, Blackman, Kaiser etc

2. Increase number of samples (N)
+ reduces window effect (larger window)
« increases resolution (No. samples)

— Not true for most non-deterministic signals
— e.g., speech, images etc

» Assumes signal is ‘stationary’ within sample window

1
05 sinewave
S /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ frequency 20Hz
e rectangular window
= \/ \/ \/ \/ \/ U \/ U \/ \/ (1 second long)
-0.5
-10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (Seconds)
0 Note difficulty
o in detecting the
S 20 . .
2 [JMW single sinewave
= 0 MVMM !\N\M | | \MVA 4
g (M ™ frequency
-20 [ V\UNWMV ’fW\VM “ f\vMVN \A\M VMUA/ AUWV AUWW present in tlme
40 domain due to
0 10 20 30 40 50 60 70 80 90 100 ¢ 3 ’
Frequency (Hertz) Smearing.
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_ 05 sinewave

;go A /\ A /\ /\ A A /\ /\ frequency 20Hz

g \/ U U U U U \/ U U Triangular window
05 (AKA Bartlett)

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (Seconds)
40

&

2 20

Il

©

= 20 I\MV W“ Wider main lobe

il VVU WU[ . Increased side lobe
“% 10 20 20 40 0 s 70 80 9 10 attenuation
Frequency (Hertz)
1
05 .

AR RAR IR ARAA ] rvme

R frequency 20Hz

= \/ U U U U U \/ U U Hanning window
-0.5

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (Seconds)
40

&

7]

g JJ \A single sine wave
-20 M easier to detect
-40 ¢

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hertz)
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Original signal

Fourier transform

T 4 T T
1k
35 B
3 |- -
0.8
25 B
0.6
c 2
% X 2r b
04r 151 4
1t i
0.2
051 B
0 L 0 L = —
-2 -1 0 1 -20 0 20 40 60
Time (continuous) Frequency (continuous)
S
Discrete-time (sampled) signal Discrete time Fourier transform (DTFT)
T T T 4 T T T
1 |-
I 35 i
\ 3L 4
0.8 \
Q| ®
| 25 .
El
50.6 r 2
X
1 X 2r a
=
=
041 15 i
1 |- -
0.2
05 B
0 ﬂ‘\ ‘/l\ 0 L L
-2 -1 0 1 - 0 n 2n 3n

Time (discrete)

Frequency (continuous and periodic)
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Discrete-time signal Discrete Fourier transform (DFT)

T T T 4 T T T
16 o) 4
| Ui | 35F T
\ | 3k il i“? B
0.8 \ \ ) ‘1 ‘; ;‘ 1‘
o} 10) o} ‘: ‘} }1 :‘
| 25 i i 1
Jo6F | ‘ 1 2 )0} 0l0)
= \ \ X L i
" | | "
g ] 0 oL j %
oal | I 15F i R
| / 1k 1
o} O |
02f I\ / R
05+ ¢ ® g
0 'S & o(}nmép %Mn g
-2 -1 0 1 2 -1 0 b 2n 3n
Time (discrete and periodic; Frequency (discrete and periodic
( p ) quency ( p )
e
Discrete-time signal
T T
1 |- -
®
0.8 i
=06 _
=
0.4 B
02 | TT T T )
Il It
0 5 10 15 20 25 30 35
n
Discrete Fourier transform (DFT)
4 T T T T T
""" X(®)
N O XK
3¢ .
=~
2k i
1+ J
0 T ?Qr\ e PPP PO b 0 PP s a? ? T
0 5 10 15 K 20 25 30 35
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Inverse DFT

— time domain samples

x[n] = Z X [k]exp

* Relates frequency domain samples to

jnk272'

* Note, differences to forward DFT
— 1/N scaling and sign change on exponential
— DFT & IDFT implemented with same algorithm
* i.e., Fast Fourier Transform (FFT)
» Require both DFT and IDFT to implement (fast)
— convolution as multiplication in frequency domain

Note, 1/N scaling can be on DFT only OR
as 1/sqgrt(N) on both DFT and IDFT

Fourier Transforms

. . Frequenc
Transform Time Domain ik ) y
Domain
Fourier Series (FS) Cor_mn_uous & Discrete
Periodic
Fourier Transform (FT) Continuous Continuous
Discrete-time Fourier Transform (DTFT) Discrete Continuous &

Periodic

Discrete Fourier Transform (DFT)

Discrete & Periodic

Discrete & Periodic

20



Properties of the DFT

if... Then...

« x [n]is real « X[-K] =X [k]*
— R{X[K] } is even
— 3 {X[k] }is odd
— |X[K]| is even

— ZX [K] is odd
« X [n] is real and even « X [K] is real and even
— i.e., zero phase
« x [n]is real and odd * X[k] is imaginary and odd
x[n] (Even Symmetry) real{X[K]}
3 8¢ T T
25¢ 6
2
al
151
2
W+
05 0r @)
0 -2
0 1 2 3 0 1 2 3
imag{X[K]} angle{X[k]}
1 4
0.5 3
g O O] 2
-0.5 1
-1 oG
0 1 2 3 0 1 2 3
Note: DC at k =0 & x[n] = x[n + N] & X[K] = X[k +N]
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Properties of the DFT

+ Periodic in frequency

— period w, 1.e., the sampling frequency, or

— period 27 (in normalised frequency)

Repeats after N samples

— X[N+Kk] =X [K]

Mirror image (even) symmetry at w/2, i.e., w
— X[N-r]=X*[r], where r <N/2

Shift property

— X [n - m] = exp(-jkm2n/N) X [K]
— i.e., X [K]| stays the same as input is shifted
— only (phase) «X [K] changes

abs(X[K])

= N w e

N

o8

o 1~ N w S

o

[l N w e

1.1

4 6 8 .
spectrums shifte

0

4

d to show —w,/2 to + w,/

8

4




Analogies for the DFT

* Analogy for DFT is a Filterbank
— Set of N FIR bandpass filters

— with centre frequencies kw/N
e kinrange {0, N -1}
— often called ‘frequency bins’

* e.g., 8 point DFT
— 8 bandpass filters (bins), spaced Aw = w/8 apart

— Bandwidth of each filter Aw/2 therefore
* output can be down-sampled by factor of 8
* i.e., one sample, x[k], per filter output (frequency bin)

Filterbank Analogy of DFT

X[0]
N —tap FIRw_ =0 N{
X[1]
1 N —tap FIR W, = wyN N
{xInl}y "
X[2]
N —tap FIR w, = 2w,/N N{
X[N-1]
N —tap FIR w, = (N - )wy/N N{

Down sample factor N

23



Filterbank Analogy of DFT

—]

Bandpass filters
IX(w)[?

kwy/N

o1 2 3 4 5 6 7 w W

AWZ Aw frequency ‘bin’ number k
bandwidth bin resolution
DFT Resolution

* Resolution is ability to distinguish
— 2 (or more) closely spaced sinusoids

* Minimum resolution of DFT given by
— Aw = Wy/N = 2t/NAt

+ defined by sampling frequency, w
 and number of samples, N

* Minimum resolution occurs when

— integer number of complete cycles of input signal
— in the N samples analysed
— This is a ‘best case’ scenario

* ‘sinc’ smearing always zero in adjacent frequency bins

24



DFT Resolution: Example

Consider two sinusoids: frequencies 3w,/16 and 5w,/16

[X(w)|?4+ sample length T = 16At
/7] 7 N RS 7 N 7 N RS 7 N RS
’ ’ A A A A A A \
] ] Vo Vo Vo Vo Vo Vo \
1 ‘' ‘' ‘' ‘' ‘' ‘' ‘' \
1 Vi Vi 1 1 1 1 Vi \
1 i i i i Vi i i |
1 ] ] I Vi I V] ] !
I \ \ \ 1
1 | | | !
1 | | | | | | | !
1 | | | | | | | !
1 | | | | | | | !
1 | | | | | | | !
1 | | | | | | | !
1 | | | !
1 | | I I | | |
I I I I I I /‘\/‘\
0 1 2 3 4 5 6 7 w/2 w
+—>
DTFT: ‘sinc’ shape Aw frequency ‘bin’ number k

due to window effect  bin resolution

DFT Resolution: Example

IX(w)[?

16 point DFT: results in samples of DTFT. As sinusoids are
at nw,/N (in middle of bins) only 1 non-zero sample each.

7N 7N 7N 7N 7N 7N 7N

1
|

i
i
i

6 7 w/2 w
Aw frequency ‘bin’ number k
bin resolution

1 2 3 4 5

25



Leakage Effects

* In general, we can not capture

— integer number of cycles of input
« i.e., input will not be at bin frequencies nwy/N

— therefore, actual DFT resolution < Aw

* This is due to energy ‘leakage’
— between adjacent frequency bins

 Leakage due to finite data length
— 1.e., the ‘window’ effect
— which ‘smears’” X(w) -> X[K]
— aim: to minimise window effect
« using other than rectangular window

DFT Resolution: Example

Consider two sinusoids: frequencies 3.1w,/16 and 5.1w,/16

sample length T = 16At
IX(w)I?

5 6 7 w/2 w

Aw frequency ‘bin’ number k
bin resolution

o
=
N

26



DFT Resolution: Example

IX(w)[?

16 point DFT: Sinusoids no longer at nw¢/N
(not in middle of bins) therefore many non-zero samples.

’ VAR ’ VAR VAR 7 N VAR VARRY
/ vy vy vy vy vy vy \
! vy vy vy vy vy vy \
\ \ \ \ \ \ \ \
vy vy vy vy vy vy vy \
1y 1y 1y 1y 1y 1y 1y \
I I I I I I I 1
? ? ? ? ? ? ? |
I I I I I I I I
I I I I I I I !
I I I I I I I I
I I I I I I I !
I I I I I I I I
| ‘ s | L [ | ‘ |
I I I I I I I I
Te I,‘I’ I T | I I I I I I T,T !
0 1 2 3 4 5 6 7 w/2 w
Aw frequency ‘bin’ number k

I: actual DFT samples

bin resolution

DFT
o‘
10| DFT two sinusoids
w,; = 10w/N (Amp =1)
2or w, = 16w/N (Amp =0.01)
0| only 2 non-zero samples
resolution = Aw
g “or i.e., best case scenario
g oo Note, N = 128
,60,
70+
-80+
wS
-90 l?
-10055 Vi a YoV Vo oy ooy VoV NV
0 10 20 30 40 50 60
frequency bin w
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DFT

or . .
DFT two sinusoids
10~ w; = 10.1w /N
ol 5 w, = 16.1w¢/N
many non-zero samples
30~ no longer two peaks visible
® .
= resolution < Aw
% 40y o OOOO)OQ OOOO
% ol (]
£
-60
_70,
_80,
_go,
-100
0 10 20 30 40 50 60
frequency bin
DFT
ol DFT two sinusoids
w; = 10.5w /N
_10,
w, = 16.5w /N
20l g many non-zero samples
0 . .
o7 o i.e., worst case scenario
-30(4 (
g 40+
’% 50
£
,60,
70+
-80
_90,
-100
0 10 20 30 40 50 60
frequency bin

28



DFT

0‘
10k DFT two sinusoids
w,; = 10.9w /N
2r w, = 16.9w,/N
0| many non-zero samples
g a0t
% 50
g
-60
_70,
-80 -
90+~
-100
0 10 20 30 40 50 60
frequency bin
DFT
07 - -
DFT two sinusoids
108 w; = 11w, /N
W, = 17wg/N
-20‘ - - -
again two peaks visible
30 resolution = Aw
g -40f
2 sop
£
-60
70+
-80+
-90
10055 YoV Vi NVaVaVaY YoV VeV VaVaVe YaVaV N YoV Navay
0 10 20 30 40 50 60

frequency bin
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Reducing Leakage with Window Functions: Example

»  Consider, two sinusoids,
1. sin(10.5w¢/N): amplitude 1
2. 0.01sin(16.5w/N): amplitude 0.01
* i.e, significantly smaller (-40dB)

» This produces worst case leakage as
— both sinusoids fall at edge of frequency bins
— leakage due to large sinusoid > amplitude of smaller sinusoid
(will be ‘masked”)

« Leakage can be reduced by using
— non-rectangular window (Hanning/Hamming)
— asused in FIR filter design

——— DTFT (rectangular window)
ok O DFT samples (rectangular window)
0 ' .
o0 Smaller sinusoid completely masked
1ok ‘q‘ \‘ by leakage from larger sinusoid
il
®|
wii
aobarfI || 1] 1Re
e (1T 1|\ Ry o
| ‘\ W“HH‘WW@W@@@@@@@ W@@@@ww\\‘wm
| it |
$ |
TR
g
£
,70,
-80H
_90;
-100 1 1 1 1 1 1
0 10 20 30 40 50 60

frequency bin of 64-point transform
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—— DTFT (Hanning window)

o

ok QO DFT samples (Hanning window)
Leakage reduced
1o /‘P??‘ Smaller sinusoid now detectable
¢
-301 | “
\
g -40f “\ )
8 | \
E a1l fgﬁi
c -50r | |
3 I
£ ﬁ)‘u ‘M\ \
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700 @ﬁ“ | & I
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| {lit il
-90H ' \ %fq ﬂﬁ“\\u‘\\ ‘
100 L] %WM il w‘u“..“J'
0 10 20 40 50
frequency b|n of 64-point transform
0‘
¢
100 [ ~ DTFT (Hamming window)
[ DFT samples (Hamming window)
201 d; 6“3 Leakage reduced, smaller sinusoid detectable
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frequency bin of 64-point transform
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Window Functions

. Sidelobe roll
Window bar-ls(;(\fin; dth Loss (dB) Peak((sjlg)e lobe off
(dB/octave)
Rectangular 0.89/NAt 0 -13 -6
Hanning 1.4/NAt 4 -32 -18
Hamming 1.3/NAt 2.7 -43 -6
Dolph- 1.44/NAt 3.2 -60 0
Chebyshev ' '

Note, trade-off between increased sidelobe attenuation
And increased 3dB (peak) bandwidth

Inverse and
Interpolati

on

(Mini-section)
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Inverse DFT

» One powerful property is the inverse fourier transform is
simply the fourier transform with time-reversed basis functions

» So, IDFT and DFT obtained by
— changing sign of wy_,

— scaling by%

Interpolation using the DFT

* DFT samples the DTFT
— Normally N samples in both time & Frequency
— But we can increase the (DFT) sample density!
— By zero padding

+ Zero Pad in time domain
— Calculates additional samples of DTFT

 Zero Pad in frequency domain
— Adds additional high frequency components (zero)

— DFT zero padding = sinc interpolation
» Windowed by length, N, of DFT (not ideal sinc)
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Original Sequence: x[n]

Amplitude (x[n])

o
(o]
T

o
(6]
T

o
IS
T

0.2-

0.1+

T

Pany

3

4

5

Sample number (n/time)

Zero-padded Sequence: xp[n]

Amplitude (x_[n])

1Y

0.9

0.2+

0.1r

T

Pany

Fan

Fan

6

8

10

12

Sample number (n/time)

14

16

18
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Increased sampling of DTFT

Spectrum: Xp[k]

—

~
0.5

x

1
ES

0.9

0.8

0.7+

0.6

0.4+

0.3r

0.2r

0.1r

0

-4

-1

0

1

Angular Frequency

Zero Pad DFT

Zero-padded Spectrum: Xl[k]

Amplitude (X[K])

1
S

0.9

o
(o]
T

o
\l
T

o
»
T

o
[6)]
T

o
»
T

o
w
T

o
N
T

0

2

Angular Frequency

ING
(o]
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Increased samplin%; in time domain
nverse DFT of )$[k] (Interpolated Sequence: x i[n])

1 T T T T

0.9

0.8

Amplitude (xI [nD)
© o o o
N [6)] o ~
)
©

o
w
T

o
N
T

) [ ]

0 2 4 6 8 10 12
Sample number (n/time)

14

16

Interpolation via DFT (FFT)

* Interpolation of X[k]

— zero pad sequence x[n]
« either start or end of x[n] (or both)

— increased sampling of DTFT spectrum, X(w)

* Interpolation of x[n]

— zero pad discrete spectrum X[K]
« evenly, both at start or end of the sequence
+ toensure xu[n] remains real
* i.e., pad to preserve symmetry of X[k]
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Example: 8-point DFT Matrix

X (O)]

XD
X(2)
X(3)
X(4)
X(5)
X (6)

X(7) ]

Repeated complex multiplications in EVEN rows

1 x(4)

x(0) x{2) x{4) %(6) Even samples

()]

X(1)

x(2)
X(3)

X(5)
x(6)
x(7) |
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Re-ordered DFT Matrix

Separate even and odd row operations (and re-order input vector)
RO TR AR AR TARTARARARTARANRPI())
X@) [ W Wy W W Wy Wy W W | x(4)
X2 | wy Wy Wt Wt W2 W W W || x(2)
XE@) | (WS WS WS W2 W W, W W || x(6)
X(4) | W2 W2 W W2 WS WS WS W || x()
XG) | (WS W wwe W W W W || x(5)
X(6) | WS W) W' WS WS WS W Wz | x(3)
X@) ] W W WS WA W W W W || x(7)

- AN /
YT hd

Even samples Odd samples

Phasor Rotational Symmetry

To highlight repeated computations on odd samples
as W84 = 'W80, W85 = 'W81, W86 = 'W82, W87 = 'W83

X (0)] Wy W2 W W | [x(0)]
X (1) Wy —Wy W, —W; | | x(4)
X(2) W W —WE W | | x(2)
X(3) W' —We Wy =W | | x(6)
X(4) W2 W W WY || x(@D)

X(5)
X (6)
X (7).

Wy Wy -W. W || x(5)
~WS W W2 W2 || x(3)
“We W =W Wy | [ x(7)

Upper & lower left-hand quarters are identical
Right hand quarters identical except sign difference!
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Adding “Twiddle Factors”

WL WY
w2 —w

ARRIA
ARSATA

(ARRNTA
W72 —W,

Wy W) Wy —wW,]
W —W. —W7 W

W, W

W2 —W,.2

WS WS —We —we -

WS —WE —W2 W —WEKW,
—

W, xW,”
Wsl N W80
WS2 W80

—WI W | =W | xW,| =W [x W,
—W, k=W =W, kW =Wy x—W]
—W W | =W x-Wg —W % —W,]

~W2k-WJ —W2x-W, —W.>2xW;

i.e., 8-point DFT reduced
to two 4-point DFT’s
only need calculate upper

left and right quarters

Twiddle Factors make the left
and right hand quarters identical

8-Point DFT as Two 4-Point DFTs

Even
Samples
X[0] , X[0]
X[2] ., X[1]
X[4] 4-Point C X[Z]
DFT o) —
odd X Mo X3l
Samples B
x[1] : | X[4]
X[3] N
4-Point E X[5]
X[5] DFT R , X[6]
X[7] . X[7]
Combiner adds twiddle factors to data
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Radix-2 FFT

Each 4-point DFT can be reduced to two 2-point DFT’s
we w® w® w° wWo wW? woxw?®  wxw?
wWe —w° w? —w? 3 WO —W? W2xwW° WwW?2x-w°
WO WS WO WO | [W® W% —WOxW® —W°xW°
wWe —w° —w? w? WO —W? —WZxW°? —W2x-W?°
2x2 Quadrants are identical (with twiddle factors)
Two-point “Butterfly” operation

{X(O)}_ we we° _[x(oq
X@) | |w° —we| | x@

X(0)] 1 17[x(©)
{X(l)}_{l —1][x(1)}

Two Point Butterfly

x(0)

X(0) = x(0) + x(2)
\o /—>
x(1) J k. X(1) =x(0) —x(2)

With twiddle factors:

()
X \o /@\NSO—’
x(1) J \g)—r
Wg?
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8-point radix-2 DIT FFT flowgraph:
x(0) & ___ & 2 )

AVAfa\Y
N X(0)

X(6) Wg?

x(4) ’ X(1)
o Q‘ &
0%

X(3)
7K A
x(1) s A’ "’ X(4)
&
X(5) ‘ X(5)
& &
X(3) » ; X(6)
NI &
7).\ J\ We? ! 8’
X( ) Pass 1 pFIZQ7 P::m:g X(7)

Features of the FFT

« Reduce complex multiplications from N? to:
N
- (3) log2 (V)
— As there are log, (N) passes
— Each pass requires g complex multiplications

+ Disadvantages

— More complex memory addressing
» To get appropriate samples pairs for each butterfly

— FFT can be slower (than DFT) for small N (< 16)

» What about the IFFT? We can use same FFT algorithm
— change sign of twiddle factors
— and scale output to get x[n]
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N-point DFT and FFT Complex Multiplications

1000

900 —— DFT
FFT

800 -

700

600 -

500

400 -

300+

No. complex multiplications (x1000)

200

100+

0 t I 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Transform Size, N

What does it let us do

 For high performance applications, the FFT can be the
difference between feasible and infeasible

« EG-4K video:
— There are ~8M pixels
- N?2=64-10% N-Log,(N) =1.6-108
— You need to do this 30x per second
— So the flops is on the order of 2 - 1015 = 2 PFlops using the DFT

vs 4 - 10°=4 Gflops using the FFT

« An Nvidia V100 maxes out at 120TFlops, a standard CPU is

about 100GFlops
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Alternative FFT Algorithms

» Only case covered so far is
— (one case of) radix-2 decimation in time (DIT) FFT
— requires sequence length, N, to be a power of 2
— achieved by ‘zero padding’ sequence to desired, N

» Decimation in Frequency
— similar to DIT, twiddle factors on outputs

+ Alternatives to radix-2 decomposition
— Radix 3: for sequence length, N = power of 3

— Radix 4: twice as fast as radix 2 FFT
* half number of passes, log4(N)

— Split radix: mixtures of the above

Applications of the FFT

« Fast (circular) Convolution
— Convolution requires N2 MAC operations ®

— more efficient alternative via the FFT ©
» Take FFT of both sequences
« Multiply them together (point-wise)
» Take IFFT to get the result
[“Hello FET-W! Bonjour cuFET!”]

— Zeropad and you have linear convolution
» Spectral Analysis
— Estimate (power) spectrum with less computations
— 1.e., what frequencies in our signal are carrying power (i.e.,
carrying information) ?

» Fast Cross-correlation
— E.g., correlation detector in digital comm’s



http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://docs.nvidia.com/cuda/cufft/#axzz4e5zwxpCF
http://docs.nvidia.com/cuda/cufft/#axzz4e5zwxpCF

(Linear) Convolution

h[n]={1111} x[n] = {0.50.75 1.0 1.25}

i il

y[n] = x[n]*h[n] = {0.5 1.25 2.25 3.5 3.0 2.25 1.25}

S

In general: length(y[n]) = length(x[n]) + length(h[n]) - 1

Circular Convolution

Given X[k] = DFT{x[n]} and H[K] = DFT{h[n]}

from convolution theorem we know
IDFT{X[K]- H[K]} = x[n]*h[n]

IDFT{X[K]- H[K]} = {3.5 3.5 3.5 3.5} « Wrong Length!

Solution: zero pad both sequences to required length
hn]={11110003} x,[n]={0.50.751.01.2500 0}

IDFT{X,[K]- H,[k]} = [0.51.25 2.25 3.5 3.0 2.25 1.25]
i.e., x[n] and h[n] \t@
are periodic in time
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Spectral Analysis

» Power Spectral Density (PSD) defined as
— Fourier Transform of Autocorrelation function

Sza(w) = Z pzz(m) exp(—jwmAdt)

m=—0oo

In practice, we estimate S, (w) from {x[n]};""*
I.e., a finite length of sampled data

This can be done using N - point DFT
and implemented using the FFT algorithm

Spectral Analysis

+ Estimate of PSD is given by

. 1 (Nt —jink2mw 2
n=0

 This is known as a periodogram
— DFT effectively implements narrow-band filter bank
— calculate power (i.e., square) at each frequency k

« Again, window functions often required
— to improve PSD estimate

— e.g., Hanning, Hamming, Bartlet etc




Spectral Analysis

« Alternatively, we can estimate PSD as
— DFT (FFT) of the estimate of the autocorrelation

*j'f??-k‘-?ﬁ)

M
Sexlkl = 3 @aalml] exp(2M+1

m=—M
1 N-1

Where Pea[m] = N Z x[n]x[n + m)
n=0

« Assuming x[n] is ergodic (at least stationary)

» Normally restricted range of PSD
-e0,0< M < 1%

Spectral Analysis

« When finding PSD as DFT of ¢**Iml
- ¢**I™l has an odd length! (2M + 1)

Therefore, to use the radix-2 FFT we need to
— zero pad ¢**[™] to length = power of 2

e.g., for M = 2, ¢ **Ml is of length 5

— we need to zero pad to length 8, i.e.,

. {d)xx[—z] (bxx[—l] d)xx[o] d)xx[l] ¢xx[2] 00 0}
— Note, sequence made causal (no change to PSD)

This estimate of PSD is known as correlogram
— Note, periodogram is most common estimate of PSD
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Limitations of Fourier Analysis

0.5
Low — high 0

-0.5

-1
o]

VT
l

05/

High — low 0

-0.5

Mixed

2
0

500 1000 1500 2000

Time Domain
50

PSD (dB)

-50

. -100
500 1000 1500 2000 0

50

PSD (dB)

50}

-100

50

-50

PSD (dB)

-100

. AL 450
200 400 600 800 1000 0

0.2

0.2

0.2

Frequency Domain

i
0.4 0.6
Frequency

0.4 0.6
Freguency

04 08
Frequency

0.8 1

0.8 1

0.8 1

Note: These signals differ in Phase. PSD is zero phase as F{¢,.(k)} real & even

Time

Fregquency

(Mini-section)
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Spectrum Analysis

of Non-Stationary Signals

 Spectrum of non-deterministic Signal X(w)
— is only valid if x(t) is stationary
— i.e., statistics of x(t) do not change over time
 Real-world signals often only stationary over a short time

period of time
— e.g., speech: assumed stationary over t < 60ms

* Therefore, take ‘short-time’ DFT of signal
— 1i.e., take multiple DFT’s over stationary periods
— plot how frequency components change over time

— for speech the plot of time V frequency V power
« is called a Spectrogram

Speech waveform (‘matlab’) time domain
4 T T T
2F i
o
2+ -
-4 1 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 tign2g(s) 0.3 0.35 0.4 0.45 0.5
Speech waveform frequency domain
T T T T T T
100~ B
@ 50 E
©
X
O -
-50 1 1 1 1 1 1 1
-3000 -2000 -1000 0 1000 2000 3000
frequency (Hz)
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Spectrogram: Time and frequency versus power

Frequency

Colour Shows Signal power

0 = - e
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
. . . Til .
Speech is short time stationary, $0 perform DFT on short time sequences
ELEC 3004: Systems 10 May 2019104

Next Time...

Estimation! (Kalman Filters!)

Digital Control!

Review:
— Chapter 12 of Lathi
— FPE Chapter 1 and 2

Ponder? ylk] = £I6] « h[k] Y(0) = F(Q)H ()

where F(R), ¥(f), and H (1) are DTFTs of f[k], y[k], and h[k], respectively; that
is,

flk] == F(), ylk] == Y(0), and &lk] <= H(Q)

ELEC 3004: Systems 10 May 2019105
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Summary

* FT of sampled data is known as
— discrete-time Fourier transform (DTFT)
— discrete in time
— continuous & periodic in frequency

» DFT is sampled version of DTFT

— discrete in both time and frequency

— periodic in both time and frequency
+ due to sampling in both time and frequency

« DFT is implemented using the FFT

 Leakage reduced (dynamic range increased)
— with non-rectangular window functions

Summary

» FFT exploits symmetries in the DFT

— Successively splits DFT in half
+ odd and even samples

— Reduction to elementary butterfly operation
 with ‘twiddle factors’

— Reduce computations from N2 to (%) log,(N) ©

* FFT can be used to implement DFT for
— PSD estimates (periodogram and correlogram)

— Circular (fast) convolution (and correlation)
* Requires zero padding to obtain “correct” answer
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