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Lecture Schedule:

Week Date ‘ Lecture Title

27—Fcb‘lntroduction

! 1-MarSystems Overview
6-Mar|Systems as Maps & Signals as Vectors

8-MarSystems: Linear Differential Systems

13-MarSampling Theory & Data Acquisition

15-MarAliasing & Antialiasin,
20-ManDiscrete Time Analysis & Z-Transform

“ 22-MarSecond Order LTID (& Convolution Review)
27-Mar|Frequency Response

5 29-ManFilter Analysis
3-ApnDigital Filters (IIR) & Filter Analysis

6 S5-ApfPS 1: Q & A
7 10-AprDigital Windows
12-AEjDiEital Filter (FIR)
8 17-AprActive Filters & Estimation
19-Apry
24-Apr Holiday
26-Apr)
9 1-Mayl|Introduction to Feedback Control

3-May|Servoregulation & PID Control

10 |__8-MayState-Space Control

10-MaylAdvanced PID

15-May|Guest Lecture: FFT

17-May State Space Control System Design

22-May|Digital Control Design

12
24-May|Shaping the Dynamic Response
13 29-May|System Identification & Information Theory & Information Space

31-May|Summary and Course Review
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LI Signal processing
and linear systems
1998 FPW
TK5102.9.L.35 1998 — Chapter 4: Discrete Equivalents to
Continuous
G. Franklin, — Transfer Functions: The Digital
J. Powell, Filter
M. Workman

Digital Control = s
of Dynamic Systems : e |_athi Ch. 13

1990 :  — §13.2 Systematic Procedure for
Determining State Equations

TJ216.F721990 i  _ ; :

Available as 8§ 13.3 Solution of State Equations :

UQ Ebook I T P :
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NEXT WEEK: Lab 4 — Levilab II:

« AKA “Revenge of the TUNING!”



https://library.uq.edu.au/record=b1604253~S7
http://robotics.itee.uq.edu.au/~elec3004/tutes.html#FPW
http://robotics.itee.uq.edu.au/~elec3004/tutes.html#FPW
http://robotics.itee.uq.edu.au/~elec3004/tutes.html#FPW
http://robotics.itee.uq.edu.au/~elec3004/tutes.html#FPW
http://robotics.itee.uq.edu.au/~elec3004/tutes.html#FPW
http://library.uq.edu.au/record=b2013253~S7

Friendly computing tale...

« Please save (as) often ©

 Use Platypus, (€loud-baged © )

Final Exam: Room Update (49-301 or 9-217)

Exam Code Exam Title Campus Date Time  |Notes| Student Split Venue Description
Code
ELEC3004 [Signals, Systems and Control STLUC 110/06/2019| 2:30 PM JAinslie, Lewis - Varun, Kumar |Advanced Engineering Building (49) - Room 301
ELEC3004 [Signals, Systems and Control STLUC 10/06/2019| 2:30PM [Vecchi, Thoma - Zemek, Reid Michie Building (9) - Room 217
ELEC7312  [Signals, Systems and Control STLUC 110/06/2019| 2:30 PM All Students Michie Building (9) - Room 217
* Date: June 10 @ THE UNIVERSITY A
OF QUEENSLAND
e Time: 2:30 pm AR L e
* Room: See Above
ol e ormaton Tochnclons ind isoinal rosnrivg
* Venue may change — Please see I
notifications box on —
. I
https://my.ug.edu.au/ for updates I
!
|
T
|
« Thank You!
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Final.Exam.Tip:. Longhand Notes > Typed

[EDUCATION.
Attention, Students: Put Your Laptops Away OpS

The Pen Is Mightier Than the Keyboard:
Advantages of Longhand Over Laptop

Note Taking P
o

Pam A, Mucller' and Danicl M. Oppenheimer

e http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away|
e doi: 10.1177/0956797614524581

PID Recap

ELEC 3004: Systems 8May2019- 8
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Effects of Increasing Gain

Effects of inCreaS| n g a parameter independently

Settling

Parameter | Risetime | Overshoot | > ST Stability™™!
time error

KP Decrease Increase el Decrease Degrade
change

K Decrease Increase Increase Eliminate Degrade

- Minor No effect in Improve
Ky change Decrease | Decrease theory it K small
Matlab helps with PID tuning: . o

G system=[???]; H=[1];

D_compensator = pidtune(G_system, 'PIDEF')

CL_system = feedback(series(D_compensator,

step (CL_system)

G_system), H)

When Can PID Control Be Used?

When:

» “Industrial processes” such
that the demands on the
performance of the control
are not too high.

— Control authority/actuation
— Fast (clean) sensing
Pl: Most common

— All stable processes can be
controlled by a Pl law
(modest performance)

— First order dynamics

PID (Pl + Derivative):

Second order
(A double integrator cannot
be controlled by PI)

» Speed up response
When time constants differ
in magnitude
(Thermal Systems)

Something More Sophisticated:
* Large time delays

 Oscillatory modes between
inertia and compliances




Seeing PID — No Free Lunch

» The energy (and sensitivity) moves around
(in this case in “frequency”)

Serious design

Log magnitude

Frequency

« Sensitivity reduction at low frequency unavoidably leads to
sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.

Another way to see P || D

+ Derivative * Integral

D provides: — Eliminates offsets
— High sensitivity (makes regulation ©)
— Responds to change — Leads to Oscillatory
_ Adds “damping” & behaviour

- permits larger Kp — Adds an “order” but

i it instability

— Noise sensitive (Makes a 2" order system 3™ order)
— Not used alone

(v its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control”

- “Interesting cake of control”




State-Space
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Or more aptly...

Welcome to

State-Space!

(It be stated -- Hallelujah!)

More general mathematical model
— MIMO, time-varying, nonlinear

Matrix notation (think LAPACK = MATLAB)
Good for discrete systems
More design tools!




State-Space Control

X = Fx

(That can not be all of it? There has to be more to it than this...)

State-Space Control

x = Fx 4+ Gu

Benefits:

+ Characterises the process by systems of coupled, first-order
differential equations

» More general mathematical model

— MIMO, time-varying, nonlinear

Mathematically esoteric (who needs practical solutions)

Yet, well suited for digital computer implementation

— That is: based on vectors/matrices (think LAPACK = MATLAB)




State-Space Terminology

(7] [

x(0) ‘(L
u®| 3 Tx(t) _Axero) A

& (t) = Az (t) + B () u(t)
y(@)=C @)z (t)+ D) u(t)

LTI State-Space

i (t) =A@z () + B (@) u(t)
y(@)=C@® =z )+ D#)u(?)

* If the system is linear and time invariant,
then A,B,C,D are constant coefficient

— = Ax + Bu

—y = Cx + Du




Discrete Time State-Space

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

* If the system is discrete,
then x and u are given by difference equations

Salk+1] = Ak = [k] + B[k w[k]
y [k] = C[k] z [k] + D [k] u [K]
—>ac+=A:c—|—Bu

y=Cx+ Du

Block Diagram Algebra in State Space

» Series:

X(s) Y(s) 4 Ae BgCr| |ta BaDr
F(s)G o=
/5 )= )] e

System 1: Ya
.l';_— = Apxp + Bru Ur
yr = Cprp + Dru

System 2:

-l'rc = Agrg + Bgyr
Yo = Carg + Dgyr

10



Block Diagram Algebra in State Space

« Parallel:

X(s) F(s) Y(s)
G(s) 3

a8 a5 E )

=| Cz}[ié]—l—(DrFDz)u

Introduction to state-space

 Linear systems can be written as networks of simple dynamic

elements:

s+2 2 N -1
s2+7s+12 s+4 s+3

1
u % 2 :%)_>y

(AN

—12

11



Introduction to state-space

» We can identify the nodes in the system
— These nodes contain the integrated time-history values of the
system response
— We call them “states”

1
X X
u 1 y y 2%—»)’
S

—12

[

Linear system equations

» We can represent the dynamic relationship between the states
with a linear system:

Xy ==7x1 —12x, + u
X, = x1+ 0Oxp+0u
y = x1+ 2x,+0u

12



State-space representation

» We can write linear systems in matrix form:

¢ =[7 s [l
y =[1 2]lx+0u

Or, more generally:

X = Ax + Bu “State-space
y =Cx+Du equations”

State evolution

 Consider the system matrix relation:
x=Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = et x(t,) + f = eFt=) Gu(r)dr
to

If you didn’t know, the matrix exponential is:

1 1
eXt =1+ Kt + 5, Kot +§K3t3 + -

13



Difference Equations & Feedback

|anuIz_> H _oyusz> SN 5]\—><%>—> k H

» Start with the Open-Loop:
y = kHu
* Close the loop:
u=ke=k(@-y)2y=Hk@ -]
Hk .
= 1+Hk

» Alleasy! (yesa!)

Difference Equations & Feedback

£

Input H +put y % k H

* Now add delay (image the plant is a replica with a delay 1)
y(@) =u(t—1)
 Close the loop:
ut—1)=ke(t—1)=k[yt—1) -yt —-1)]
2y®) =k [yt —1) -yt —1)]

 Notice we have a difference equation!

14



Difference Equations & Feedback

|npli_> H output :> y %: k

« What happens with a single delay and a unit step?
u(t) = kforO<t< t
y(t) = u(t — 1) for 1<t<2t
« Then with feedback we get:
u(®) =k(1—k) =k —k?
y&) =k —k*+k3+ -+ (1" k"1
« Ifk<1: then:

. k
=>lim y(t) = Tk

ELEC 3004: Systems

8 May 2019 - 33
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Solving State Space

Solving State Space...

* Recall:

r= f(x,u,t)
» For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

 ForLTI:
—x = Axz + Bu

—y = Cx + Du

16



=» Solutions to State Equations

x = Ax + Bu
sX(s) —x(0) = AX(s) + BU(s)
X(s) = (sl —A)x(0) + (sI — A)~1BU(s)

X(s) = L[e4t]x(0) + L[e4t]BU(s)

t
x(t) =j et Bu(t)dr
0

= eAt

=» State-Transition Matrix ©

o O(t) =edt =L7(sI — A)™]

« It contains all the information about the free motions of the
system described by x = Ax

LTI Properties:

o ®(0) =e% =1

o ®71(t) = P(-t)

o D(t; +1ty) = P(t)P(t;) = P(t)P(ty)
o [®(O]" = ®(nt)

=>» The closed-loop poles are the eignvalues of the system matrix

17



Great, so how about control?

» Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F—GK) <0

+ In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

Digital State Space:

« Difference equations in state-space form:

xn+ 1] = Az[n| + Bun]
yn] = Cx|n] + Du|n]

» Where:
— u[n], y[n]: input & output (scalars)
— x[n]: state vector

18



Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% =Fx + Gu, (6.1)
and (2.44),
y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k + 1) = &x(k) + Tulk),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /n eF1dnG, (6.4b)

A Systematic Procedure for Determining State Egs.

1.

Choose all independent capacitor voltages and inductor
currents to be the state variables.

Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)

19



An Example

. AV

at

dV2(5)

at

. Q'-_-\'_E-‘I’E

Iris

dN4(¢

dt

Bismuth-211*

B
36 minutes

Lead-211"

—— A \N1(f)

= L 3N3(D)

L oN2(8) + A (N1(D)

— ) sN3() + A N2(D)

a

Thallium-207

2.1 minutes

Lead-207 (stable)

4.8 minutes

An Example

X =FX —

Bismuth-211*

[
36 minutes

Lead-211*

_)\1
A1
0
0

«

Thallium-207

2.1 minutes

Lead-207 (stable)

4.8 minutes

0]
iAQ
A2
0]

0
0
A3

O oo

20



An Example

Bismuth-211*

@ | 2.1 minutes

B
36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes

Thallium-207

* Ny(1)=N,(0)exp(-A,1)

A

i (exp(= A y1) — exp(= & 1))

hoh,

e N2(f) = N2(0)exp(~ k ,1) - N1(0)

- B - I exp(—h 1) | exp(—h 1) ) exp(=h 57)
* N3O =rANIO) [oT e T 0 o T 0T 3)]

° AT A — % A I expl(=h ;1) \ expl=. 51) . expl(—h 31) 1
NAD) =2 1220 :N1O0) [ o000 T oD oo 00 oo 3)]

Another Ex: Linear Algebra & KVL!

We can write this as:

11 1\ /L 0 ﬁ'—t L
2 3 0|(L) =24 > > >
0 -3 6/ \I, 0 ; 10 ; 10 ; 60
> S >
So we have: = i i
lll hlz h13

I 1 1 1\ '/o0
Li=1-2 3 o 24
Iy 0 -3 6 0

Using a computer algebra system to perform the inverse and multiply by the constant matrix, we get:

I1=-6A
In=4A
Is=2A

We observe that I; is negative, as expected from the circuit diagram.
Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.php

21
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Another Example: Linear Algsebra & KCL!

We solve this using a computer as follows. We just write the coefficient matrix on the left, find the inverse (raise the matrix to the
power -1) and multiply the result by the constant matrix.

You can use Matlab, Mathcad or similar math software to do this. Wolfram|Alpha is a free alternative.

(72 0 17 35 0 0 07 '[-26

0 122 35 0 0 0 87 34
0 87 34 0 0 72 233 4

X=|-17 -35 149 0 28 35 -3

0 0 28 43 105 31 0 27

0 0 3 0 34 141 72J { J

=35 0 0 105 43 0 0

0.46801
0.42932
5.193 x 103
= 0.22243
0.27848
0.21115
| 0.20914 J

Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.phi

Discretisation (FPW!)

» We can use the time-domain representation to produce
difference equations!
kT+T

x(KT +T) = T x(kT) + f eFT+T=0 Gy (1) dr
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) = u(kT), kT <t <kT+T

22
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State-space z-transform

We can apply the z-transform to our system:
(z1 - ®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2) _
X0 - G(z) = H(zl — @)~ 1T

Ex: State-space control design

 Design for discrete state-space systems is just like the

continuous case.
— Apply linear state-variable feedback:
u=-Kx
such that det(zl — @ +T'K) = a,.(2)

where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[I ®r &?r .- & 1r] to be full-rank.

23



Example: PID control

» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
—2

y=1[0 1 0]x+0u

x — Ku

X, 1s the output state of the system;
x11s the value of the integral;
x5 1S the velocity.

Example: PID control [2]

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
-2 — K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.
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Next Time...

+ Digital Feedback Control

* Review:
— Chapter 2 of FPW

* More Pondering??
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