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Follow Along Reading:
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B. P. Lathi > P-1 -D

Signal processing
and linear systems « FPW

1998 — Chapter 4:
TK5102.9.1 38 1998 . . .
Discrete Equivalents to Continuous
Transfer Functions: The Digital Filter

G. Franklin,
J. Powell,

M. Workman
Digital Control "
of Dynamic Systems : FPW

1990

:  — Chapter 5: Design of Digital Control
TJ216.F721990 Systems Using Transform Techniques
[Available as :
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Purely Discrete Design
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Designing in the Purely Discrete...

Analyse/design a discrete controller D(z):

! [ pac | ul) G(s) }"(")’samp\e 1 Vi

e o Gk . !
e D(z) 17| +hold +ADC

= |
_T G)

by considering the purely discrete time system:

'8 e, "
Koy * D(z) £ G(z) »

Y

Closed loop system tranfer function: ;Ei) =73 r(éggggz)

How do the closed loop poles relate to — stability?
— performance?

Now in discrete
 Naturally, there are discrete analogs for each of these controller

types:

Leadlag. =
ead/lag.

g 1-Bz~1

. 1 1
PID: k(1+ m‘l“[d(l—z ))

But, where do we get the control design parameters from?
The s-domain?




Sampling a continuous-time system

suppose & = Axr

sample = at times t; <ty < ... define z(k) = x(t)
then z(k + 1) = e(tkr1—tA (k)
for uniform sampling tpy1 — (g = h, so

2(k+1) = M2k,

a discrete-time LDS (called discretized version of continuous-time system)

Source: Boyd, Lecture Notes for EE263, 10-22

Piecewise constant system

consider time-varying LDS & = A(t)x, with
140 0 <t <1y

jl(f) = 441 t <t <ty

where 0 < t; < t3 < --- (sometimes called jump linear system)
for t € [t;,1ix1] we have
x(t) = -t 6-,(?3342)1420(?52*31)141tﬁtler(U)
(matrix on righthand side is called state transition matrix for system, and
denoted (1))

Source: Boyd, Lecture Notes for EE263, 10-23




Qualitative behaviour of x(t)

suppose = = Ax, x(t) € R"
then z(t) = etz (0); X(s) = (s — A)~x(0)

ith component X;(s) has form

where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other
way around)

Source: Boyd, Lecture Notes for EE263, 10-24

Qualitative behaviour of x(t) [2]

first assume eigenvalues \; are distinct, so X;(s) cannot have repeated
poles

then z;(t) has form
Ii(ﬂ = Z ,;{'}ij(‘)\)i
j=1

where 3;; depend on x(0) (linearly)

eigenvalues determine (possible) qualitative behavior of x:

e eigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing

term ¢ in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term %! cos(wt + &) in solution
Source: Boyd, Lecture Notes for EE263, 10-25




Qualitative behaviour of x(t) [3]

first assume eigenvalues A; are distinct, so X;(s) cannot have repeated
poles

then z;(t) has form
n
zi(t) = Byyett
=1

where 3;; depend on x(0) (linearly)

eigenvalues determine (possible) qualitative behavior of :

e cigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing

term e in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term ¢7% cos(wt + ¢) in solution
Source: Boyd, Lecture Notes for EE263, 10-26

Qualitative behaviour of x(t) [4]

e R)\; gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

e I\ gives frequency of oscillatory term (if # 0)

. Cke
eigenvalues s
'\II o -
y
x
- Rs
x
x

Source: Boyd, Lecture Notes for EE263, 10-27




Qualitative behaviour of x(t) [5]

now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as Ay, ..., A, (distinct) with multiplicities 7y
respectively (ny + -+ +n, = n)

then x;(t) has form

zi(t) =Y piy(t)e™’

j=1
where p;;(t) is a polynomial of degree < n; (that depends linearly on x(0))

Source: Boyd, Lecture Notes for EE263, 10-28

Emulation vs Discrete Design

* Remember: polynomial algebra is the same, whatever symbol
you are manipulating:
eg. s?+2s+1=(s+1)?
722+ 2z+1=(z+1)>
Root loci behave the same on both planes!
» Therefore, we have two choices:
— Design in the s-domain and digitise (emulation)
— Design only in the z-domain (discrete design)
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Some standard approaches

« Control engineers have developed time-tested strategies for
building compensators

 Three classical control structures:
— Lead
— Lag
— Proportional-Integral-Derivative (PID)
(and its variations: P, I, Pl, PD)

How do they work?




Lead/lag compensation

« Serve different purposes, but have a similar dynamic structure:

Sst+a

D(s)=s+b

Note:

Lead-lag compensators come from the days when control engineers
cared about constructing controllers from networks of op amps using
frequency-phase methods. These days pretty much everybody uses
PID, but you should at least know what the heck they are in case
someone asks.

Lead compensation: a < b

Faster than
system dynamics Img(s)
FSlN! ‘

[

-b

Re(s)

Slow open-loop
plant dynamics

o
A4
-a
s-plane (A-plane)

« Acts to decrease rise-time and overshoot
— Zero draws poles to the left; adds phase-lead
— Pole decreases noise

* Set a near desired w,,; set b at ~3 to 20x a




Lag compensation: a > b

Very slow Img(s)
Close to pole \\ ‘
O \ Re(s)
plant -a -b
dynamics

s-plane (A-plane)

» Improves steady-state tracking
— Near pole-zero cancellation; adds phase-lag
— Doesn’t break dynamic response (too much)

» Set b near origin; setaat ~3to 10x b

ELEC 3004: Systems
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PID

» Three basic types of control:
— Proportional
— Integral, and
— Derivative

» The next step up from lead compensation
— Essentially a combination of
proportional and derivative control

w

2 i W u ; Y

I'A% D 2 G >
RN




Proportional Control

A discrete implementation of proportional control is identical to continuous;
that is, where the continuous is

u(t) = Kpe(t) = D(s)=K,,

the discrete is

u(k) = Kpe(k) = M

where e(t) is the error signal as shown in Fig 5.2.

v'<

+ e u
r D G
+

Integral: P Control only

 Consider a first order system with a constant load
disturbance, w; (recall as t = oo, s = 0)

y=k r=y)+w

s+a

k (s+a)
= r+ w
st+k+a st+k+a

Steady state gain = a/(k+a) \/‘Y
(never truly goes away) w

+ - € u 1

r k > —>Y
s+a

y

12



Integral

+ Integral applies control action based on accumulated output
error

— Almost always found with P control
* Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!

Integral Control

For continuous systems, we integrate the error to arrive at the control,

K, K,

-7 /t“c(f,)dt . D)o

u(t) = T8’

sum all previous errors, yielding

u(k) = u(k—1)+

of reduced stability.

where T7 is called the integral, or reset time. The discrete equivalent is to

KT o T KTz -
e el " Ti(-2) Tz(z«;' )

Just as for continuous systems, the primary reason for integral control is to
reduce or eliminate steady-state errors, but this typically occurs at the cost

13



Now with added integral action

1 1
=k(1+— -
y k< +Tl-S>S+a(r y)+W

Same dynamics

k(s +z,71) s(s +a)

= r At w
Must go to zero Y (s?+(k+a)s+== k(s -|-'Lrl.—1)

for constant w!

w
+ - u
: () oy
i st+a

Derivative Control

For continuous systems, derivative or rate control has the form
u(t) = KpTpe(t) = D(s)=K,Tps

where Tp is called the derivative time. Differentiation can be approximated
in the discrete domain as the first difference, that is,

(k) =ek=1)) ';(k =1 o b= K,Tp = e K,Tp2—1

u(k) = KpTD Tz

In many designs, the compensation is a sum of proportional and deriva-
tive control (or PD control). In this case, we have

T -1
D(Z) = Kp (1 + ‘%) »
or, equivalently,
D(z) =Kk:=%
zZ

14



Derivative Control [2]

 Similar to the lead compensators
— The difference is that the pole isatz=0

[Whereas the pole has been placed at various locations
along the z-plane real axis for the previous designs. ]

* In the continuous case:

— pure derivative control represents the ideal situation in that there
is no destabilizing phase lag from the differentiation
— the poleisats =-w

* In the discrete case:
- z=0
— However this has phase lag because of the necessity to wait for
one cycle in order to compute the first difference

Derivative

 Derivative uses the rate of change of the error signal to
anticipate control action
— Increases system damping (when done right)

— Can be thought of as ‘leading’ the output error, applying
correction predictively

— Almost always found with P control*

*What kind of system do you have if you use D, but don 't care
about position? Is it the same as P control in velocity space?

15



Derivative
« Itis easy to see that PD control simply adds a zero at s = —
with expected results ’

— Decreases dynamic order of the system by 1
— Absorbs a pole as k —» o

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

IC(w) /

Bode plot of !
a zero w

|~

PD for 2" Order Systems

1
R(s) ++<}E(s) KotKgs 3 ( A B) Y(s)}—»

Consider:

Y(s) (Kp + Kps)
R(s) Js2+ (B+Kp)s+ (1+Kp)

Steady-state error: egg =

(1+Kp)
« Characteristic equation: /s2 + (B + Kp)s + (1 + Kp) = 0
. . B+Kp
* Damping Ratio: { = ———
ping ¢ 2y (1+Kp)J]

=> 1t is possible to make e, and overshoot small (]) by making
B small (|), K; large 1, K such that {:between [0.4 — 0.7]




PID — Control for the PID-dly minded

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional ij
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

PID

 Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors

» Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

17



PID Implementation

* Non-Interacting

]
[ — D EE—

* Interacting Form

—*
(=)
o/

EESCE

C(s) =K<1 +$+5Td> C'(s) =K<1+$>(1+5Td)

l

» Note: Different K,T; and Ty

Operational Amplifier Circuits for Compensators

Type of _ Vs
Controller Gels) = V(s)

 RiRs
PD G, = ——=(R,C; 1 —

¢ = Rgr, PGS T ‘F il : 7 [%

. |
Rl
. RRA(RsCos + 1)
C RaRy(RCas)

o . RR(RCys + 1)
Lead or lag G, = —R]kl(—Rz_(_‘ ‘_1.,_
Lead if R|C; > R,C,

Lag if R\C) < R:C»

* (Yet Another Way to See PID)

Source: Dorf & Bishop, Modern Control Systems, p. 828

18



PID Control

- T T =D
D(z)_k"(l+T1(z~1)+ Ts )’

The user simply has to determine the best values of
- K,

« Tpand

. TI

PID as Difference Equation

R(z, E(z) D(”) U(z) > G(7) Y(z) >

F Y

H(z)

U(z) Tz z—1
E(Z) ID(Z) IKp+Ki<:>+Kd< T2 )

u(k) = [Kp + K;T + (54)] - e(k) — [KqT1 - e(k — 1) + [K;] - u(k — 1)

19



PID Algorithm (in various domains):

FPW § 5.8.4 [p.224]
» PID Algorithm (in Z-Domain):

Tp(z — 1))

D(z)=Kp<1+TI(Z_1)+ o

 As Difference equation:
u(tp) = u(tp—1)+Kp [(1+ 5§+ 22) e(t) + (-1 = Zf) e(te1) + Re(tp_2)]

» Pseudocode [Source: Wikipedia]:

previous_error = 0, integral = 0
start:
error = setpoint - measured_value
integral = integral + error*dt
derivative = (error - previous_error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait (dt)
goto start

PID Intuition

ELEC 3004: Systems 3 May 2019 - 40
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Another way to see P || D

+ Derivative * Integral

D provides: — Eliminates offsets
— High sensitivity (makes regulation ©)
— Responds to change — Leads to Oscillatory
— Adds “damping” & behaviour

< permits larger Kp — Adds an “order” but

i it instability

~ Noise sensitive (Makes a 2" order system 3™ order)
— Not used alone

(~ its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control”

- “Interesting cake of control”

Seeing PID — No Free Lunch

» The energy (and sensitivity) moves around
(in this case in “frequency”)

Serious design

Log magnitude

Frequency

« Sensitivity reduction at low frequency unavoidably leads to
sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.

21



PID Intuition & Tuning

* Tuning — How to get the “magic” values:
— Dominant Pole Design
— Ziegler Nichols Methods
— Pole Placement
— Auto Tuning

« Although PID is common it is often poorly tuned
— The derivative action is frequently switched off!
(Why - it’s sensitive to noise)
— Also lots of “T” will make the system more transitory &
leads to integrator wind-up.

PID Intuition

Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time  Steady-state error  Stability
K, ! n Minimal change l l
K; l i f Eliminate l
Improve
Kp Minor change ! l .N.O effect / (if Kp
minimal change
small)




PID Intuition

de(t)
dr

Lo
ut) = K [e(:) = [ e(ds + T,

. P:
— Control action is proportional to control error
— It is necessary to have an error to have a non-zero control signal

— The main function of the integral action is to make sure that the
process output agrees with the set point in steady state

PID Intuition

de(t)
dr

u(l) = K [e(:) ¥ l? [ e(s)ds + Ty,

— The purpose of the derivative action is to improve the closed loop
stability.

— The instability “mechanism” “controlled” here is that because of
the process dynamics it will take some time before a change in
the control variable is noticeable in the process output.

— The action of a controller with proportional and derivative action
may e interpreted as if the control is made proportional to the
predicted process output, where the prediction is made by
extrapolating the error by the tangent to the error curve.

23



PID Intuition: P and PI

1.8 1.8
1.6 1.6
14 l\ 14
PI PI

12 / 12 X /
wl AL 1 s

Al =g {

2 0.8 4 0.8 I T~

. \V/ A .
54 Proportional OE

; : Proportional
04 04 ,
0.2 02 }’

0 0

0.0 100.0 200.0 300.0 400.0 0.0 100.0 200.0 300.0 400.0
Time (sec) Time (sec)
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PID Intuition: P and Pl and PID
» Responses of P, PI, and PID control to
8 1.8
6 L6 MPm
4 /P 14 'f“‘\ PI
=T
) E . P W T Y e
TV
vV I
i oa i1
4 PID
v 0.2
-6 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (msec) Time (msec)
(a) step disturbance input (b) step reference input
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Ziegler-Nichols Tuning — Reaction Rate

FPW § 5.8.5 [p.224]

R0}

K
= reaction rate

/
/Slope R=

Ak

/ T

¢
|
|
|
|
|

/)
—L=ta—k ] ,

lag

Table 5.2 Ziegler-Nichols tuning
parameters using transient response.

K, Ti Tp
P 1/RL
PI 0.9/RL 3L

PID 1.2/RL 2L 0.5L

25



Quarter decay ratio

$ (0

14 Period

0.25

N

Vi

Ziegler-Nichols Tuning — Stability Limit Method

FPW § 5.8.5 [p.226]

* Increase K, until the system has continuous oscillations
=Ky, : Oscillation Gain for “Ultimate stability”
= Py, : Oscillation Period for “Ultimate stability”

Table 5.3 Ziegler-Nichols tuning
parameters using stability limit.

K T} Tp
P 0.5K,
PI 0.45K,, P,/1.2
PID 0.6K, P,/2 P,/8

26



Ziegler-Nichols Tuning / Intuition

Im P{iw)

I/‘\
Nx

P n

Re Pliw)

Nyquist Plot

Clioy) = K (1 i@y - -_1_)) ~ 0.6Ku(1 + 0.467i)

wdy

« For a Given Point (%), the effect of increasing P,l and D
in the “s-plane” are shown by the arrows above Nyquist plot

PID Example

A 3" order plant: b=10, {=0.707, ©,=4

G =
(s) s(s + b)(s + 2¢w,,)
 PID: ’ | ifi'iﬁ“
_.T\_._A e O T
» Kp=855: - 40% Kp =370
| 1 ] _/; : /M | uaricr amplitude
7 AN NS
A : // | N ‘ I\\\ /.’/‘: .
B “ ; Il.' L
[ " | 151§
B -~ B
} w0 Tin
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Next Time...

+ Digital Feedback Control

* Review:
— Chapter 2 of FPW

* More Pondering??

28



