	http://elec3004.com				
Introduction to Feedback Control					
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh					
Lecture 16					
elec3004@itee.uq.edu.au/~elec3004/	May 1, 2019				
© 2019 School of Information Technology and Electrical Engineering at The University of Queensland	(cc)) BY-NO-SA				

Week	Date	Lecture Title
1	27-Feb	Introduction
1	1-Mar	Systems Overview
2	6-Mar	Systems as Maps & Signals as Vectors
2	8-Mar	Systems: Linear Differential Systems
2	13-Mar	Sampling Theory & Data Acquisition
5	15-Mar	Aliasing & Antialiasing
4	20-Mar	Discrete Time Analysis & Z-Transform
4	22-Mar	Second Order LTID (& Convolution Review)
5	27-Mar	Frequency Response
5	29-Mar	Filter Analysis
6	3-Apr	Digital Filters (IIR) & Filter Analysis
0	5-Apr	PS 1: Q & A
7	10-Apr	Digital Windows
/	12-Apr	Digital Filter (FIR)
8	17-Apr	Active Filters & Estimation
	19-Apr	
	24-Apr	Holiday
	26-Apr	
9	1-May	Introduction to Feedback Control
1	3-May	Servoregulation & PID Control
	8-Mav	Guest Lecture: FFT
10	10-May	State-Space Control
	15-May	Digital Control Design
11	17-May	Stability
	22-May	State Space Control System Design
12	24-May	Shaping the Dynamic Response
	29-May	System Identification & Information Theory
13	31-May	Summary and Course Review

Tentative Date: June 10 Tentative Time: 2:30 pm	Semester One Final Examinations, 2019 ELEC3004 Sign	nais, Systems and Control
Room: TBA	THE UNIVERSITY Student Number	
Questions:	This exam paper must not be removed from the venue	
 Some New 		
 A couple based on previous exams (2012-2017) 	School of Information Technology and Electrical E EXAMINATION Beneater One Final Examinations, 2019 ELEC3004 Signals, Systems and Contro	ingineering
"If there's no monster in the closet,	This paper is for St Lucia Campus students. Examination Duration: 180 minutes. Reading Time: 10 minutes.	For Examiner Use Only
then why am I scared?"	Exam Conditions: This is a Central Examination This is a Closed Pock Examination	0 Mark 1 0
Sometimes the backlash comes from	During reading time - write only on the rough paper provided This examination paper will be released to the Library	4
people who are genuinely, if wrongly, fearful of change.	Materials Permitted in The Exam Venue: (No electronic aids are permitted e.g. laptops, phones) Calculators - Any calculator permitted - unvestitched	8
More often it's manufactured by the	One A4 sheet of handwritten or typed notes double sided is permitted Materials To Be Supplied To Students:	10
powerful and the privileged	NVA (Everything is here, including our best visibles	11
	Additional exam materials (eg. answer booklets, rough paper) will be provided upon request.	13

Introducing Feedback

| May 2019 - 🦻

Control

Once upon a time...

- Electromechanical systems were controlled by electromechanical compensators
 - Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!)
 - But also complex and sensitive!

→Idea: Digital computers in real-time control

- Transform approach (classical control)
 - Root-locus methods (pretty much the same as METR 3200)
 - Bode's frequency response methods (these change compared to METR 3200)
- State-space approach (modern control)

→ Model Making: Control of frequency response as well as Least Squares Parameter Estimation

ELEC 3004: Systems

Many advantages

- Practical improvement over analog control:
 - Flexible; reprogrammable to implement different control laws for different systems
 - Adaptable; control algorithms can be changed on-line, during operation
 - Insensitive to environmental conditions; (heat, EMI, vibration, etc.)
 - **Compact**; handful of components on a PCB
 - Cheap

→ Discrete-time transfer function take Z-transform of system equations $x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$ yields $zX(z) - zx(0) = AX(z) + BU(z), \quad Y(z) = CX(z) + DU(z)$ solve for X(z) to get $X(z) = (zI - A)^{-1}zx(0) + (zI - A)^{-1}BU(z)$ (note extra z in first term!) hence $Y(z) = H(z)U(z) + C(zI - A)^{-1}zx(0)$ where $H(z) = C(zI - A)^{-1}B + D$ is the discrete-time transfer function note power series expansion of resolvent: $(zI - A)^{-1} = z^{-1}I + z^{-2}A + z^{-3}A^{2} + \cdots$ Source: Boyl, Lecture Notes for EE263, 13-9

	BREAK	
ELEC 3004: Systems		Mav 2019 - 3

ELEC 3004: Systems

| May 2019 - 32

- Recognise the following:
 - A root locus starts at poles, terminates at zeros
 - "Holes eat poles"
 - Closely matched pole and zero dynamics cancel

Sampling a continuous-time system

suppose $\dot{x} = Ax$ sample x at times $t_1 \leq t_2 \leq \cdots$: define $z(k) = x(t_k)$ then $z(k+1) = e^{(t_{k+1}-t_k)A}z(k)$ for uniform sampling $t_{k+1} - t_k = h$, so $z(k+1) = e^{hA}z(k)$,

a discrete-time LDS (called *discretized version* of continuous-time system)

Source: Boyd, Lecture Notes for EE263, 10-22

ELEC 3004: Systems

Piecewise constant system consider time-varying LDS $\dot{x} = A(t)x$, with $A(t) = \begin{cases} A_0 & 0 \le t < t_1 \\ A_1 & t_1 \le t < t_2 \\ \vdots \end{cases}$ where $0 < t_1 < t_2 < \cdots$ (sometimes called jump linear system) for $t \in [t_i, t_{i+1}]$ we have $x(t) = e^{(t-t_i)A_i} \cdots e^{(t_3-t_2)A_2}e^{(t_2-t_1)A_1}e^{t_1A_0}x(0)$ (matrix on righthand side is called state transition matrix for system, and denoted $\Phi(t)$). Source Boyl, Letture Notes for EE203, 10-23

Qualitative behaviour of $\mathbf{x}(t)$

suppose $\dot{x} = Ax$, $x(t) \in \mathbf{R}^n$

then
$$x(t) = e^{tA}x(0)$$
; $X(s) = (sI - A)^{-1}x(0)$

*i*th component $X_i(s)$ has form

$$X_i(s) = \frac{a_i(s)}{\mathcal{X}(s)}$$

where a_i is a polynomial of degree < n

thus the poles of X_i are all eigenvalues of A (but not necessarily the other way around)

Source: Boyd, Lecture Notes for EE263, 10-24

Emulation design process

- 1. Derive the dynamic system model ODE
- 2. Convert it to a continuous transfer function
- 3. Design a continuous controller
- 4. Convert the controller to the z-domain
- 5. Implement difference equations in software

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Back to the example!

Matched pole-zero

• If $z = e^{sT}$, why can't we just make a direct substitution and go home?

$$\frac{Y(s)}{X(s)} = \frac{s+a}{s+b} \quad \longrightarrow \quad \frac{Y(z)}{X(z)} = \frac{z-e^{-aT}}{z-e^{-bT}}$$

• Kind of!

- Still an approximation
- Produces quasi-causal system (hard to compute)
- Fortunately, also very easy to calculate.

Modified matched pole-zero We're prefer it if we didn't require instant calculations to produce timely outputs Modify step 2 to leave the dynamic order of the numeratory

- Modify step 2 to leave the dynamic order of the numerator one less than the denominator
 - Can work with slower sample times, and at higher frequencies

Discrete design process

- 2. Convert it to a discrete transfer function
- 3. Design a digital compensator
- 4. Implement difference equations in software
- 5. Platypus Is Divine!

- Handy rules of thumb:
 - Sample rates can be as low as twice the system bandwidth
 - but 5 to 10× for "stability"
 - 20 to $30 \times$ for better performance
 - A zero at z = -1 makes the discrete root locus pole behaviour more closely match the s-plane
 - Beware "dirty derivatives"
 - *dy/dt* terms derived from sequential digital values are called 'dirty derivatives' these are especially sensitive to noise!
 - Employ actual velocity measurements when possible

ELEC 3004: Systems

Lead/lag compensation

• Serve different purposes, but have a similar dynamic structure:

$$D(s) = \frac{s+a}{s+b}$$

Note:

Lead-lag compensators come from the days when control engineers cared about constructing controllers from networks of op amps using frequency-phase methods. These days pretty much everybody uses PID, but you should at least know what the heck they are in case someone asks.

