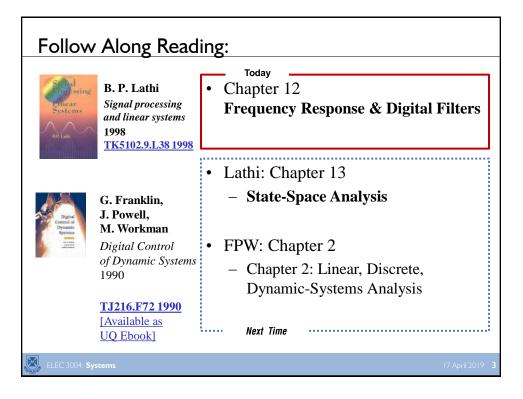
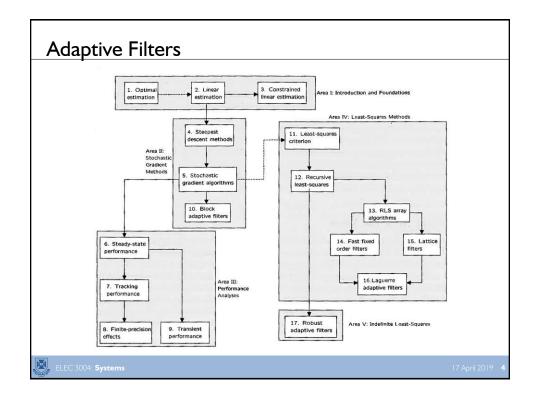
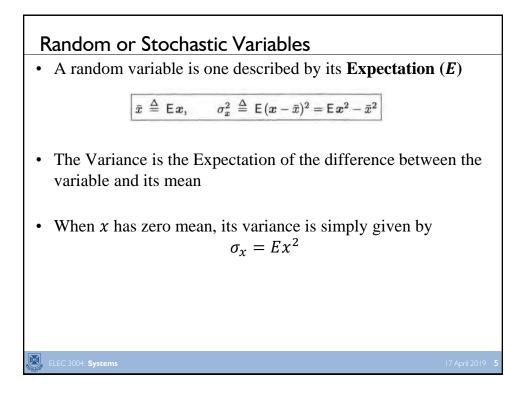
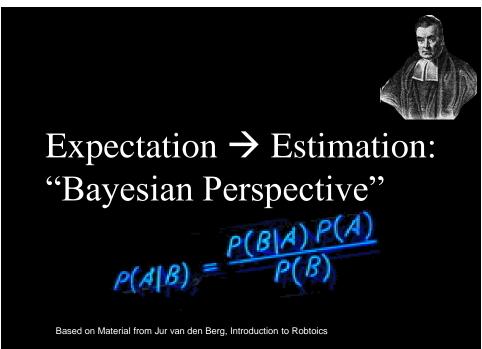
	http://elec3004.com
Digital Filters: Active Filters & Estimation	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 15	
elec3004@itee.uq.edu.au	April 17, 2019
http://robotics.itee.uq.edu.au/~elec3004/ © 2019 School of Information Technology and Electrical Engineering at The University of Queensland	(CC)) BY-NO-SA

Week	Date	Lecture Title
1	27-Feb	Introduction
1	1-Mar	Systems Overview
2		Systems as Maps & Signals as Vectors
		Systems: Linear Differential Systems
3		Sampling Theory & Data Acquisition
5	15-Mar	Aliasing & Antialiasing
4		Discrete Time Analysis & Z-Transform
4		Second Order LTID (& Convolution Review)
5		Frequency Response
5		Filter Analysis
6		Digital Filters (IIR) & Filter Analysis
		PS 1: Q & A
7		Digital Windows
	12-Apr	Digital Filter (FIR)
8	17-Apr	Active Filters & Estimation
	19-Apr	
	24-Apr	Holiday
	26-Apr	
9		Introduction to Feedback Control
"		Servoregulation & PID Control
10	8-May	Guest Lecture: FFT
10		State-Space Control
11		Digital Control Design
11		Stability
12		State Space Control System Design
12		Shaping the Dynamic Response
13		System Identification & Information Theory
1.5	21 May	Summary and Course Review







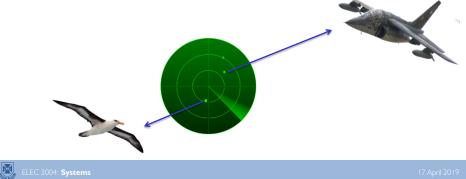


ELEC 3004: Systems

17 April 2019

Kalman Filtering

- (Optimal) estimation of the (hidden) state of a linear dynamic process of which we obtain noisy (partial) measurements
 Example: rader tracking of an airplana
- Example: radar tracking of an airplane. What is the state of an airplane given noisy radar measurements of the airplane's position?



Model

- Discrete time steps, continuous state-space
- (Hidden) state: \mathbf{x}_{t} , measurement: \mathbf{y}_{t}
- Airplane example:
- Position, speed and acceleration

$$\mathbf{x}_{t} = \begin{pmatrix} x_{t} \\ \dot{x}_{t} \\ \ddot{x}_{t} \end{pmatrix}, \quad \mathbf{y}_{t} = (\widetilde{x}_{t})$$

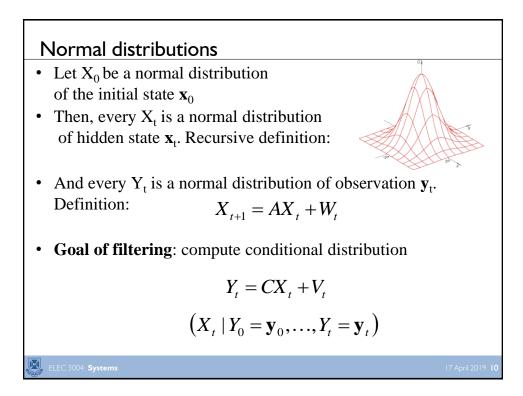
ELEC 3004: Systems

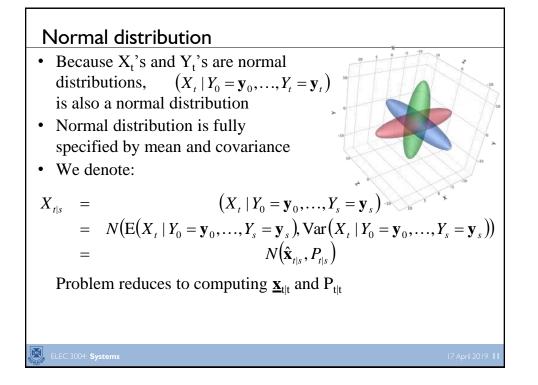
17 April 2019

Dynamics and Observation model

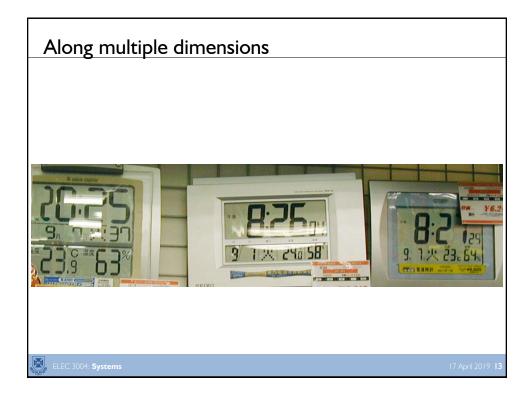
- Linear dynamics **model** describes relation between the state and the next state, and the observation:
- Airplane example (if process has time-step δ):

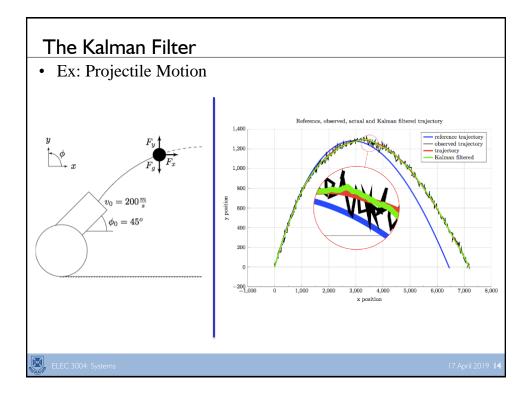
$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$
$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$
$$A = \begin{pmatrix} 1 & \delta & \frac{1}{2}\delta^2 \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$





Kalman Filter: Estimating (μ) with Confidence (σ)





The Kalman Filter

- Question: What does it do?
- Answer: It estimates x(t) based on y(t) from:

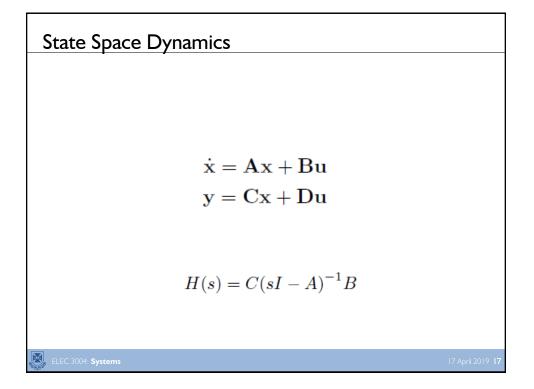
$$x(t+1) = A x(t) + u(t)$$
$$y(t) = C x(t) + w(t)$$

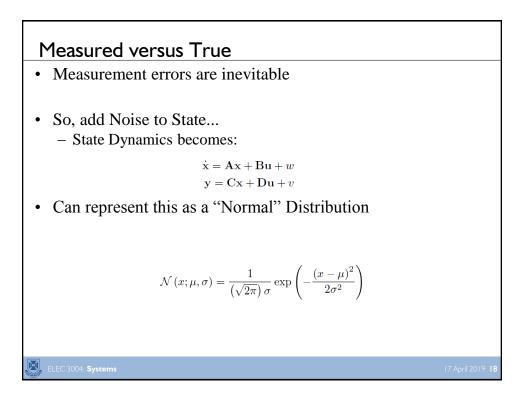
17 April 2019 |

State Space

ELEC 3004: Systems

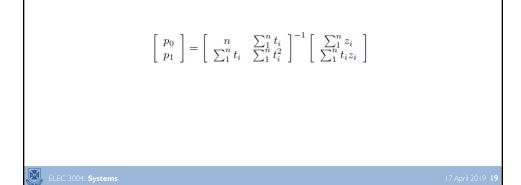
- We collect our set of uncertain variables into a vector ... $\mathbf{x} = [x_1, x_2, ..., x_N]^T$
- The set of values that **x** might take on is termed the *state space*
- There is a *single* true value for **x**, but it is unknown

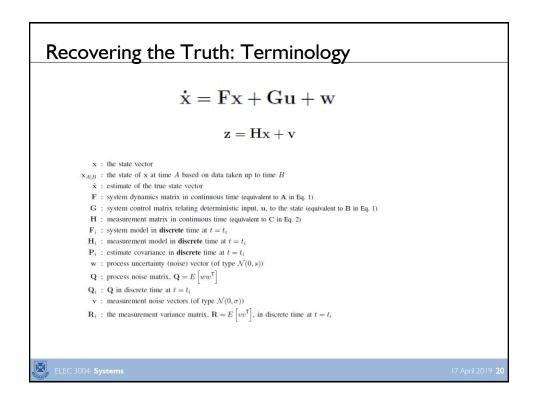




Recovering The Truth

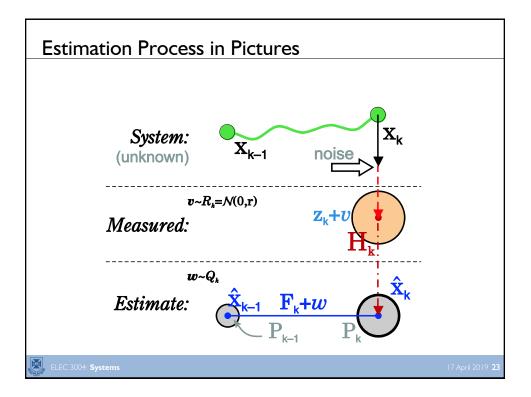
- Numerous methods
- Termed "Estimation" because we are trying to estimate the truth from the signal
- A strategy discovered by Gauss
- Least Squares in Matrix Representation

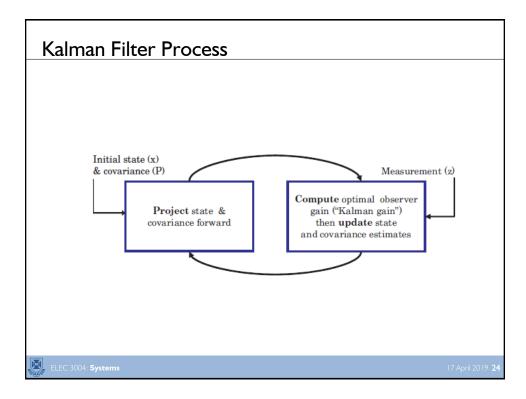


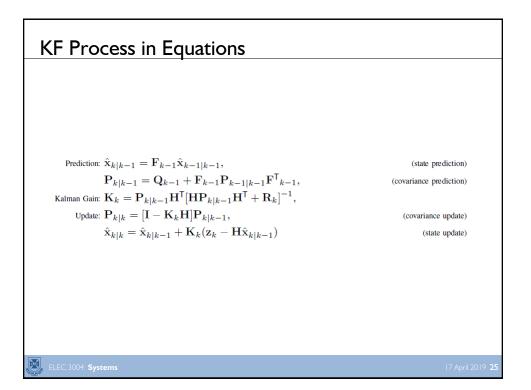


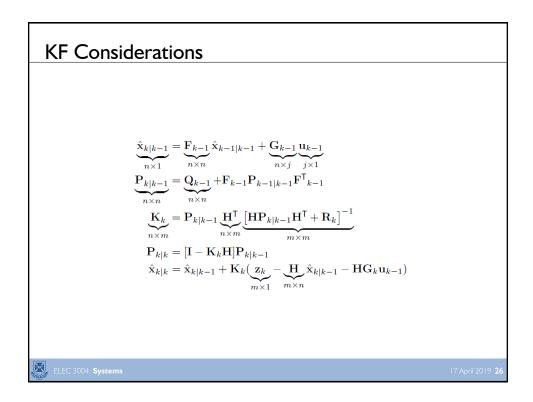


Duals and D	ual Terminology		
	Estimation		Control
Model:	$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x}$ (discrete: $\mathbf{x} = \mathbf{F}_k \mathbf{x}$)	\leftrightarrow	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \mathbf{A} = \mathbf{F}^{\top}$
Regulates:	$\mathbf{x} = \mathbf{F} \mathbf{x} \text{ (discrete: } \mathbf{x} = \mathbf{F}_k \mathbf{x})$ P (covariance)	\leftrightarrow	$\mathbf{x} = \mathbf{A}\mathbf{x}, \ \mathbf{A} = \mathbf{F}$ M (performance matrix)
Minimized function:	$Q \text{ (or } GQG^{\dagger})$	\leftrightarrow	V
Optimal Gain:	Q (or $GQG^{(*)}$		
Completeness law:	Observability	\leftrightarrow \leftrightarrow	Controllability
Completeness law.	Observability	\leftrightarrow	Controllability
ELEC 3004: Systems			17 April 2019 2 2



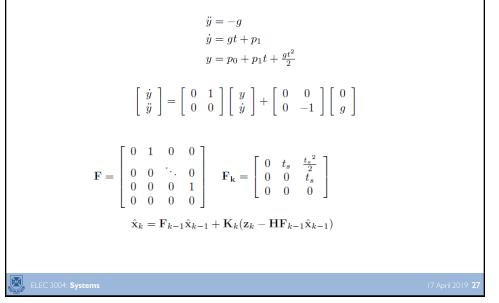


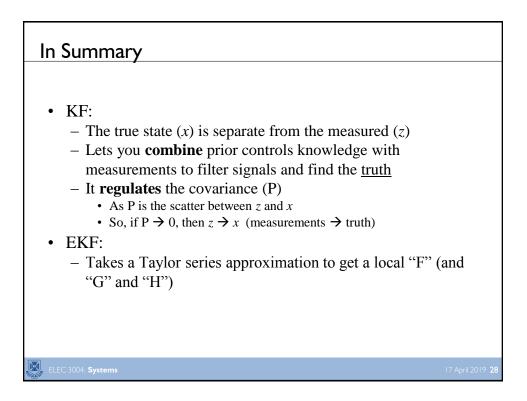




Ex: Kinematic KF: Tracking

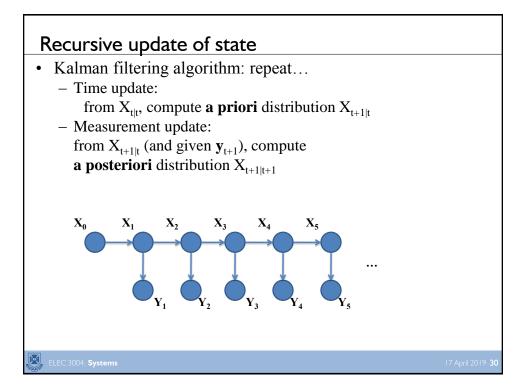
• Consider a System with Constant Acceleration





(Bayesian) Kalman Filter: A Gaussian way to beat the noise

17 April 2019 **29**



Time update • From X_{t|t}, compute a priori distribution X_{t+1|t}: $X_{t+1|t} = AX_{t|t} + W_{t}$ $= N(E(AX_{t|t} + W_{t}), Var(AX_{t|t} + W_{t}))$ $= N(AE(X_{t|t}) + E(W_{t}), A Var(X_{t|t})A^{T} + Var(W_{t}))$ $= N(A\hat{\mathbf{x}}_{t|t}, AP_{t|t}A^{T} + Q)$ • So: $\hat{\mathbf{x}}_{t+1|t} = A\hat{\mathbf{x}}_{t|t}$ $P_{t+1|t} = AP_{t|t}A^{T} + Q$

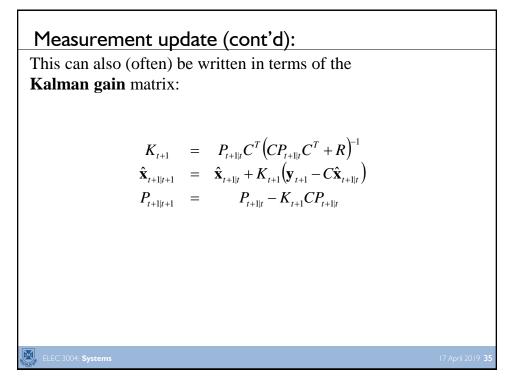
Measurement updateFrom $X_{t+1|t}$ (and given \mathbf{y}_{t+1}), compute $X_{t+1|t+1}$.1. Compute a priori distribution of the observation $Y_{t+1|t}$ from $X_{t+1|t}$: $Y_{t+1|t} = CX_{t+1|t} + V_{t+1}$ $= N(E(CX_{t+1|t} + V_{t+1}), Var(CX_{t+1|t} + V_{t+1})))$ $= N(CE(X_{t+1|t}) + E(V_{t+1}), CVar(X_{t+1|t})C^T + Var(V_{t+1})))$ $= N(C\hat{\mathbf{x}}_{t+1|t}, CP_{t+1|t}C^T + R)$

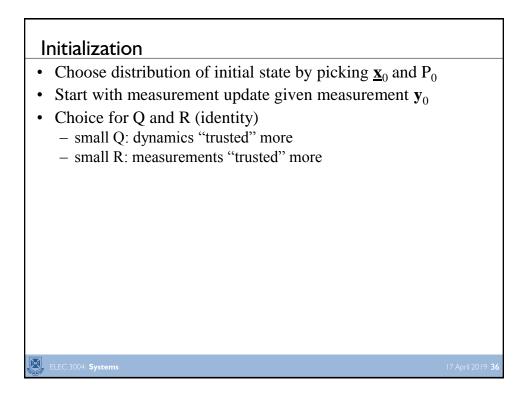
Measurement update (cont'd)
2. Look at joint distribution of
$$X_{t+1|t}$$
 and $Y_{t+1|t}$:

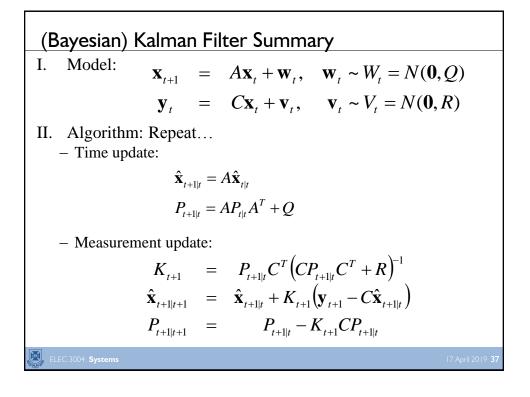
$$(\chi_{t+1|t}, \Upsilon_{t+1|t}) = N\left(\binom{E(\chi_{t+1|t})}{E(\chi_{t+1|t})}, \binom{Var(\chi_{t+1|t})}{Cov(\chi_{t+1|t}, \chi_{t+1|t})}, \binom{Cov(\chi_{t+1|t}, \Upsilon_{t+1|t})}{Var(\chi_{t+1|t})}\right) = N\left(\binom{\hat{\chi}_{t+1|t}}{C\hat{\chi}_{t+1|t}}, \binom{P_{t+1|t}}{CP_{t+1|t}}, \binom{P_{t+1|t}}{CP_{t+1|t}}, \binom{P_{t+1|t}}{CP_{t+1|t}}, \binom{P_{t+1|t}}{CP_{t+1|t}}\right)$$
where

$$E_{0}(\chi_{t+1}, \chi_{t+1|t}) = C_{0}(\chi_{t+1|t}, \chi_{t+1|t}) + C_{0}(\chi_{t+1|t}, \chi_{t+1|t}) + C_{0}(\chi_{t+1|t}, \chi_{t+1|t}) = C_{1}(\chi_{t+1|t}) + C_{1}(\chi_{t+$$

Measurement update (cont'd) • Recall that if $\begin{pmatrix} Z_1, Z_2 \end{pmatrix} = N\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \\
\text{then} \\
(Z_1 | Z_2 = \mathbf{z}_2) = N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{z}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}) \\
\text{3. Compute } X_{t+1|t+1} = (X_{t+1|t}|Y_{t+1|t} = \mathbf{y}_{t+1}) \\
X_{t+1|t+1} = \begin{pmatrix} X_{t+1|t}|Y_{t+1|t} = \mathbf{y}_{t+1} \\ = N(\hat{\mathbf{x}}_{t+1|t} + P_{t+1|t}C^T(CP_{t+1|t}C^T + R)^{-1}(\mathbf{y}_{t+1} - C\hat{\mathbf{x}}_{t+1|t}), \\
P_{t+1|t} - P_{t+1|t}C^T(CP_{t+1|t}C^T + R)^{-1}CP_{t+1|t}) \end{pmatrix}$







(Bayesian) Kalman Filter Summary [II]
Take Aways:
Kalman filter can be used in real time
• Use $\underline{\mathbf{x}}_{t t}$'s as optimal estimate of state at time t, and use $P_{t t}$ as a measure of uncertainty.
Extensions:
 Dynamic process with known control input
Non-linear dynamic process
 Kalman smoothing: compute optimal estimate of state x_t given all data y₁,, y_T, with T > t (not real-time).
• Automatic parameter (Q and R) fitting using EM-algorithm
ELEC 3004: Systems 17 April 2019 38

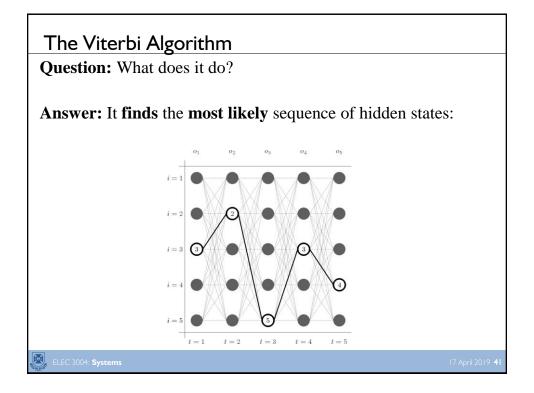
	BREAK	
ELEC 3004: Systems		22 March 2019 - 39

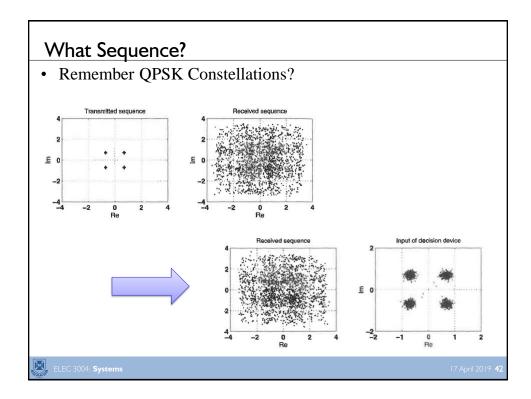
Viterbi Algorithm

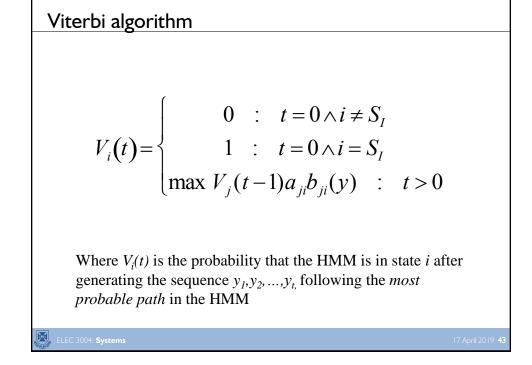
Based on Material from S Salzberg CMSC 828N

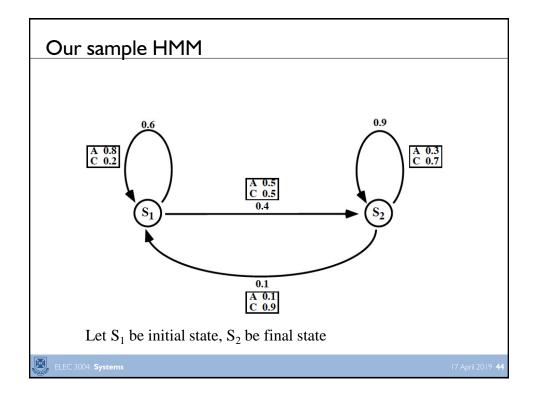
ELEC 3004: Systems

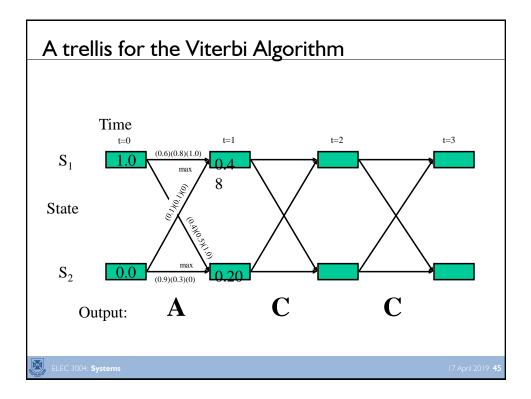
17 April 2019 **40**

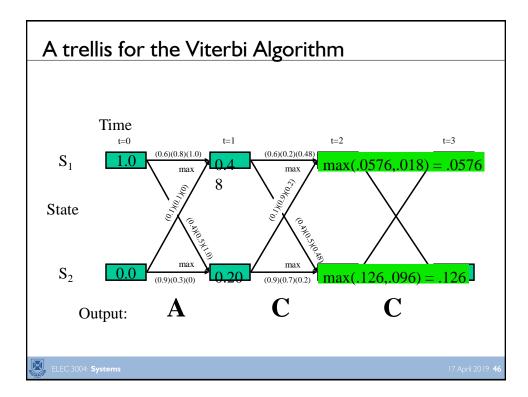


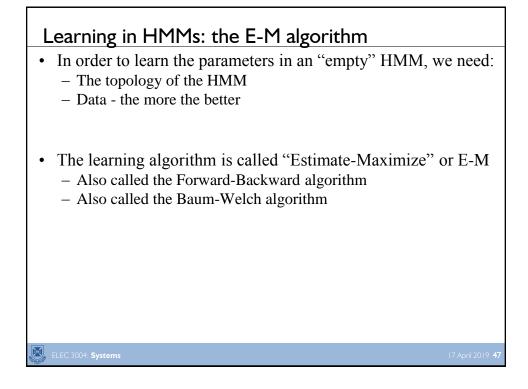


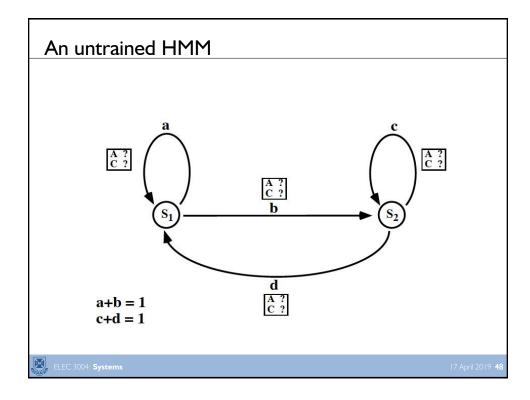








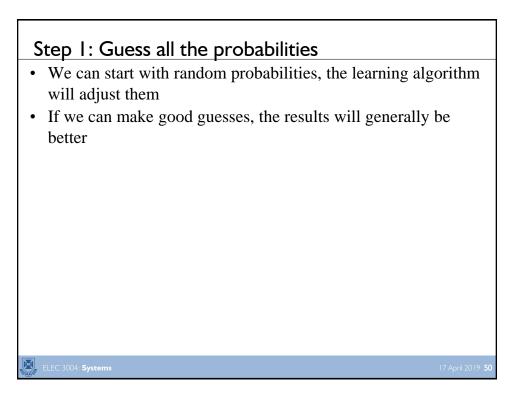


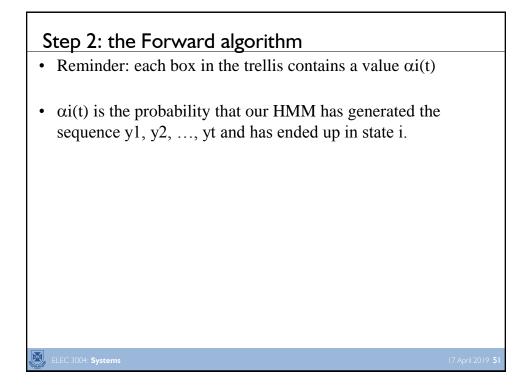


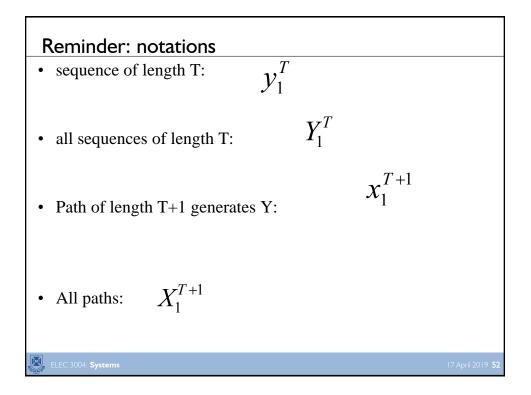
Some HMM training data

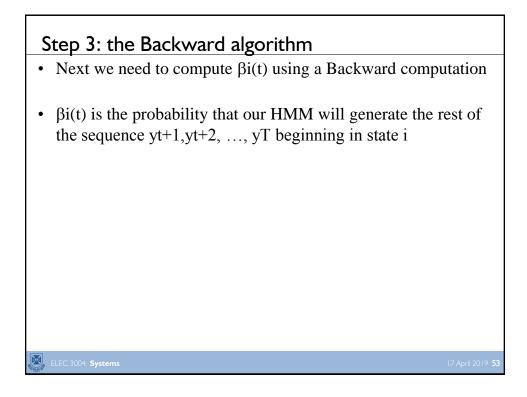
- CACAACAAAAACCCCCCACAA
- ACAACACACACACACACACAAAC
- CAACACACAAACCCC

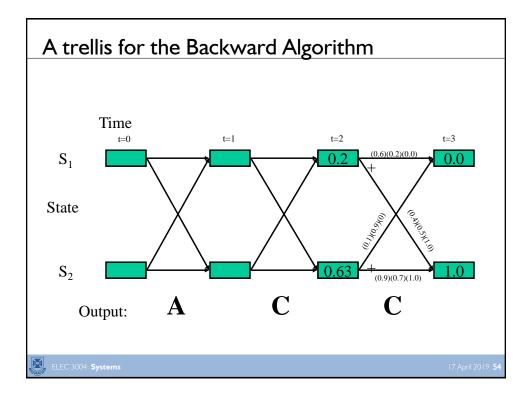
- CAACCACCACACACACACCCCA
- CCCAAAACCCCAAAAACCC
- ACACAAAAAACCCAACACACAAAA
- ACACAACCCCCAAAAACCACCAAAAA

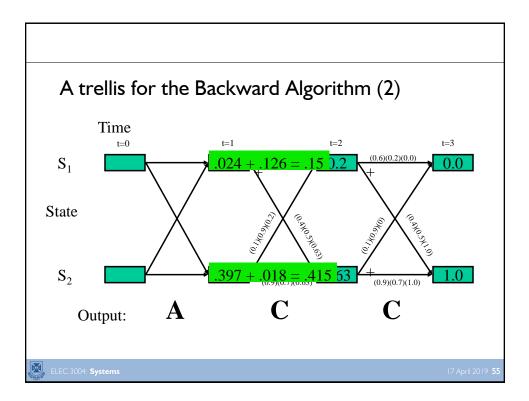










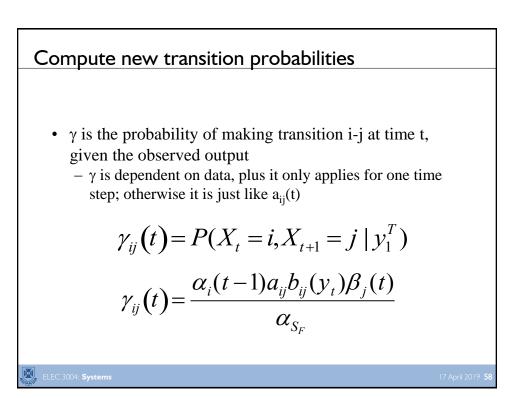




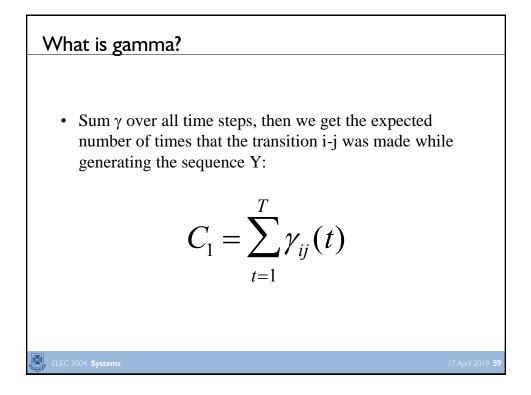
Step 4: Re-estimate the probabilities

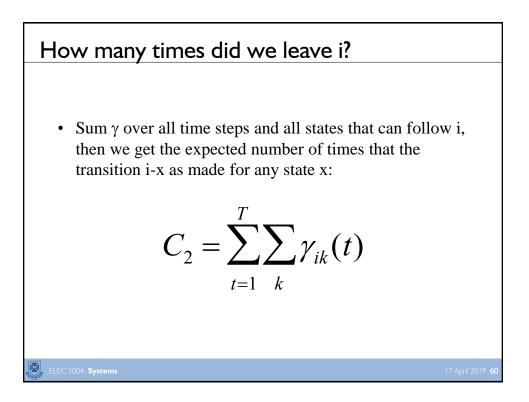
ELEC 3004: Systems

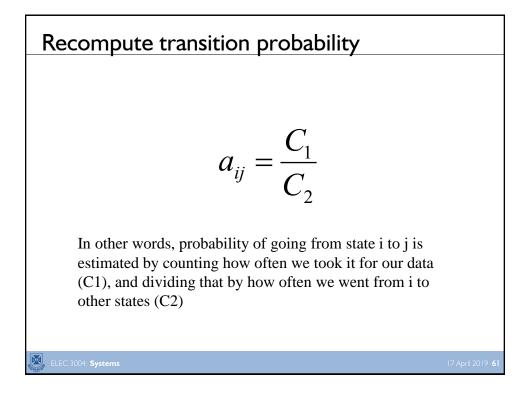
- After running the Forward and Backward algorithms once, we can re-estimate all the probabilities in the HMM
- α_{SF} is the prob. that the HMM generated the entire sequence
- Nice property of E-M: the value of α_{SF} never decreases; it converges to a local maximum
- We can read off α and β values from Forward and Backward trellises

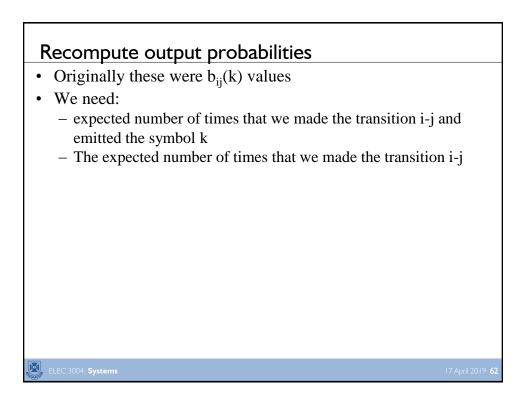


29









New estimate of
$$b_{ij}(k)$$

$$\sum_{ij} \gamma_{ij}(t)$$

$$b_{ij}(k) = \frac{t:y_t = k}{T} \sum_{ij} \gamma_{ij}(t)$$

$$t = 1$$

Step 5: Go to step 2 Step 2 is Forward Algorithm Repeat entire process until the probabilities converge Usually this is rapid, 10-15 iterations "Estimate-Maximize" because the algorithm first estimates probabilities, then maximizes them based on the data "Forward-Backward" refers to the two computationally intensive steps in the algorithm

Computing requirements

- Trellis has N nodes per column, where N is the number of states
- Trellis has S columns, where S is the length of the sequence
- Between each pair of columns, we create E edges, one for each transition in the HMM
- Total trellis size is approximately S(N+E)

