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Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 
6-Mar Systems as Maps & Signals as Vectors 

8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 
27-Mar Frequency Response 

29-Mar Filter Analysis 

6 
3-Apr Digital Filters (IIR) & Filter Analysis 

5-Apr PS 1: Q & A 

7 
10-Apr Digital Windows 

12-Apr Digital Filter (FIR) 

8 17-Apr Active Filters & Estimation 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation & PID Control 

10 
8-May Guest Lecture: FFT 

10-May State-Space Control 

11 
15-May Digital Control Design 

17-May Stability 

12 
22-May State Space Control System Design 

24-May Shaping the Dynamic Response 

13 
29-May System Identification & Information Theory 

31-May Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 12  
Frequency Response & Digital Filters 

 

 

Today 

• Lathi: Chapter 13 

– State-Space Analysis 

 

• FPW: Chapter 2 

– Chapter 2: Linear, Discrete, 

Dynamic-Systems Analysis 

 

 

G. Franklin,  

J. Powell,  

M. Workman 

Digital Control  

of Dynamic Systems 

1990 

 

TJ216.F72 1990  

[Available as  

UQ Ebook] 
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Adaptive Filters 
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• A random variable is one described by its Expectation (𝑬) 

 

 

 

• The Variance is the Expectation of the difference between the 

variable and its mean 

 

• When 𝑥 has zero mean, its variance is simply given by  
𝜎𝑥 = 𝐸𝑥2 

Random or Stochastic Variables 
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Expectation  Estimation:  

“Bayesian Perspective” 

 

Based on Material from Jur van den Berg, Introduction to Robtoics 
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• (Optimal) estimation of the (hidden) state of a  

linear dynamic process of which we obtain noisy (partial) 

measurements 

• Example: radar tracking of an airplane.  

What is the state of an airplane given noisy radar 

measurements of the airplane’s position?  

Kalman Filtering 

17 April 2019 ELEC 3004: Systems 7 

Model 
• Discrete time steps, continuous state-space 

• (Hidden) state: xt , measurement: yt  

 

• Airplane example: 

 

• Position, speed and acceleration 

 

 tt

t

t

t

t x

x

x

x
~, 

















 yx





17 April 2019 ELEC 3004: Systems 8 



5 

Dynamics and Observation model 
• Linear dynamics model describes relation between the state 

and the next state, and the observation: 

 

• Airplane example (if process has time-step ):  
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• Let X0 be a normal distribution  

of the initial state x0 

• Then, every Xt is a normal distribution 

 of hidden state xt. Recursive definition: 

 

• And every Yt is a normal distribution of observation yt. 

Definition:  

 

• Goal of filtering: compute conditional distribution 

Normal distributions 

ttt WAXX 1

ttt VCXY 

 ttt YYX yy  ,,| 00 
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• Because Xt’s and Yt’s are normal  

distributions,                            

is also a normal distribution 

• Normal distribution is fully  

specified by mean and covariance 

• We denote: 

 

 

  

  

 Problem reduces to computing xt|t and Pt|t 

Normal distribution 

 

    
 stst

sstsst

sstst

PN

YYXYYXN

YYXX

||

0000

00|

,ˆ

,,|Var,,,|E

,,|

x

yyyy

yy











 ttt YYX yy  ,,| 00 

17 April 2019 ELEC 3004: Systems 11 

Kalman Filter:  
Estimating (μ) with Confidence (σ) 
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Along multiple dimensions 
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• Ex: Projectile Motion 

The Kalman Filter 

ELEC 3004: Systems 17 April 2019 14 
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• Question: What does it do? 

 

• Answer: It estimates 𝑥(𝑡) based on 𝑦(𝑡) from: 
 

The Kalman Filter 

ELEC 3004: Systems 17 April 2019 15 

x(t +1) = Ax(t) +u(t)

y(t) =C x(t)+w(t)

State Space 
• We collect our set of uncertain variables into a vector … 

    x = [x1, x2,…, xN]T 

 

• The set of values that x might take on is termed the state space 

 

• There is a single true value for x,  

but it is unknown  
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State Space Dynamics 
 

17 April 2019 ELEC 3004: Systems 17 

Measured versus True 
• Measurement errors are inevitable 

 

• So, add Noise to State... 
– State Dynamics becomes: 

 

 

• Can represent this as a “Normal” Distribution 
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Recovering The Truth 
• Numerous methods 

• Termed “Estimation”  because we are trying to estimate the 

truth from the signal 

• A strategy discovered by Gauss 

• Least Squares in Matrix Representation 
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Recovering the Truth: Terminology 
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General Problem… 
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Duals and Dual Terminology 
 

17 April 2019 ELEC 3004: Systems 22 
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Estimation Process in Pictures 
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Kalman Filter Process 
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KF Process in Equations 
 

17 April 2019 ELEC 3004: Systems 25 

KF Considerations 
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Ex: Kinematic KF: Tracking 
• Consider a System with Constant Acceleration 
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In Summary 

• KF: 
– The true state (x) is separate from the measured (z) 

– Lets you combine prior controls knowledge with 

measurements to filter signals and find the truth 

– It regulates the covariance (P) 
• As P is the scatter between z and x 

• So, if P  0, then z  x  (measurements  truth) 

• EKF:   
– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”) 

 

17 April 2019 ELEC 3004: Systems 28 
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(Bayesian) Kalman Filter:  

A Gaussian way 

to beat the noise 

17 April 2019 ELEC 3004: Systems 29 

• Kalman filtering algorithm: repeat… 
– Time update:  

 from Xt|t, compute a priori distribution Xt+1|t 

– Measurement update:  

from Xt+1|t (and given yt+1), compute  

a posteriori distribution Xt+1|t+1 

Recursive update of state 

X0 X1 X2 X3 X4 X5 

Y1 Y2 Y3 Y4 Y5 

… 

17 April 2019 ELEC 3004: Systems 30 
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Time update 
• From Xt|t, compute a priori distribution Xt+1|t: 
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From Xt+1|t (and given yt+1), compute Xt+1|t+1. 

 

1. Compute a priori distribution of the observation  

Yt+1|t from Xt+1|t: 
 

 

 

 

 

 

Measurement update 
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2. Look at joint distribution of Xt+1|t and Yt+1|t: 

 

 

 

 

 

 

  

 where 

  

 

Measurement update (cont’d) 
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• Recall that if 

 

 

 then 

 

  

3. Compute Xt+1|t +1 = (Xt+1|t|Yt+1|t = yt+1): 

Measurement update (cont’d) 
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This can also (often) be written in terms of the  

Kalman gain matrix: 

 

Measurement update (cont’d): 
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• Choose distribution of initial state by picking x0 and P0  

• Start with measurement update given measurement y0   

• Choice for Q and R (identity) 
– small Q: dynamics “trusted” more 

– small R: measurements “trusted” more 

 

Initialization 

17 April 2019 ELEC 3004: Systems 36 
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I. Model: 

 

 

II. Algorithm: Repeat… 
– Time update: 

 

 
 

– Measurement update: 

 

(Bayesian) Kalman Filter Summary 
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Take Aways:  

• Kalman filter can be used in real time 

• Use xt|t’s as optimal estimate of state at time t, and use Pt|t as a 

measure of uncertainty. 

 

Extensions: 

• Dynamic process with known control input 

• Non-linear dynamic process 

• Kalman smoothing: compute optimal estimate of state xt 

given all data y1, …, yT,  

with T > t (not real-time). 

• Automatic parameter (Q and R) fitting using EM-algorithm 

(Bayesian) Kalman Filter Summary [II] 

17 April 2019 ELEC 3004: Systems 38 
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BREAK 
 
  

22 March 2019 - ELEC 3004: Systems 39 

Viterbi Algorithm 

Based on Material from S Salzberg CMSC 828N 

17 April 2019 ELEC 3004: Systems 40 
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The Viterbi Algorithm 
Question: What does it do? 

 

Answer: It finds the most likely sequence of hidden states: 
 

17 April 2019 ELEC 3004: Systems 41 

• Remember QPSK Constellations?  

What Sequence? 

17 April 2019 ELEC 3004: Systems 42 
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Viterbi algorithm 

Where Vi(t) is the probability that the HMM is in state i after 

generating the sequence y1,y2,…,yt, following the most 

probable path in the HMM 


Vi t 

0 : t  0 i  SI

1 : t  0 i  SI

max V j (t 1)a jib ji(y) : t  0








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Our sample HMM 

Let S1 be initial state, S2 be final state  

17 April 2019 ELEC 3004: Systems 44 
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A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 0.4

8 

0.20 
max 

17 April 2019 ELEC 3004: Systems 45 

A trellis for the Viterbi Algorithm 

State 

1.0 

0.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.6)(0.8)(1.0) 

(0.9)(0.3)(0) 

max 

max 

0.4

8 

0.20 

(0.6)(0.2)(0.48) 

(0.9)(0.7)(0.2) 

.0576 

.126 

max(.0576,.018) = .0576 

max(.126,.096) = .126 
max 

max 
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• In order to learn the parameters in an “empty” HMM, we need: 
– The topology of the HMM 

– Data - the more the better 

 

 

• The learning algorithm is called “Estimate-Maximize” or E-M 
– Also called the Forward-Backward algorithm 

– Also called the Baum-Welch algorithm 

Learning in HMMs: the E-M algorithm 

17 April 2019 ELEC 3004: Systems 47 

An untrained HMM 
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Some HMM training data 
• CACAACAAAACCCCCCACAA 

• ACAACACACACACACACCAAAC 

• CAACACACAAACCCC 

• CAACCACCACACACACACCCCA 

• CCCAAAACCCCAAAAACCC 

• ACACAAAAAACCCAACACACAACA 

• ACACAACCCCAAAACCACCAAAAA 

17 April 2019 ELEC 3004: Systems 49 

• We can start with random probabilities, the learning algorithm 

will adjust them 

• If we can make good guesses, the results will generally be 

better 

Step 1: Guess all the probabilities 

17 April 2019 ELEC 3004: Systems 50 
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• Reminder: each box in the trellis contains a value i(t) 

 

• i(t) is the probability that our HMM has generated the 

sequence y1, y2, …, yt and has ended up in state i. 

Step 2: the Forward algorithm 

17 April 2019 ELEC 3004: Systems 51 

• sequence of length T: 

 

 

• all sequences of length T: 

 

 

• Path of length T+1 generates Y: 

 

 

 

• All paths:  

Reminder: notations 



y1

T



Y1

T



x1

T 1



X1

T 1
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• Next we need to compute i(t) using a Backward computation 

 

• i(t) is the probability that our HMM will generate the rest of 

the sequence yt+1,yt+2, …, yT beginning in state i 

Step 3: the Backward algorithm 
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A trellis for the Backward Algorithm 

State 

0.0 

1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 
0.2 

0.63 
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A trellis for the Backward Algorithm (2) 

State 

0.2 .15 0.0 

0.63 .415 1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 

(0.9)(0.7)(0.63) 

+ 

+ 

(0.6)(0.2)(0.2) 
.024 + .126 = .15 

.397 + .018 = .415 
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A trellis for the Backward Algorithm (3) 

State 

0.2 .15 0.0 

0.63 .415 1.0 

S1 

S2 

Time 
t=0 t=2 t=3 t=1 

Output: A C C 

(0.9)(0.7)(1.0) 

+ 

+ 

(0.6)(0.2)(0.0) 

(0.9)(0.7)(0.63) 

+ 

+ 

(0.6)(0.2)(0.2) (0.6)(0.8)(0.15) 

(0.9)(0.3)(0.415) 

.155 

.114 

.072 + .083 = .155 

.112 + .0015 = .1135 
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Step 4: Re-estimate the probabilities 
• After running the Forward and Backward algorithms once, we 

can re-estimate all the probabilities in the HMM 

• SF is the prob. that the HMM generated the entire sequence 

• Nice property of E-M: the value of SF never decreases; it 
converges to a local maximum 

• We can read off  and  values from Forward and Backward 
trellises 

17 April 2019 ELEC 3004: Systems 57 

Compute new transition probabilities 

•  is the probability of making transition i-j at time t, 

given the observed output 
–  is dependent on data, plus it only applies for one time 

step; otherwise it is just like aij(t) 



 ij t  P(Xt  i,Xt1  j | y1

T )



 ij t 
 i(t 1)aijbij (yt ) j (t)

SF
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What is gamma? 

• Sum  over all time steps, then we get the expected 

number of times that the transition i-j was made while 

generating the sequence Y: 



C1   ij (t)
t1

T



17 April 2019 ELEC 3004: Systems 59 

How many times did we leave i? 

• Sum  over all time steps and all states that can follow i, 

then we get the expected number of times that the 

transition i-x as made for any state x: 



C2   ik(t)
k


t1

T



17 April 2019 ELEC 3004: Systems 60 
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Recompute transition probability 



aij 
C1

C2

In other words, probability of going from state i to j is 

estimated by counting how often we took it for our data 

(C1), and dividing that by how often we went from i to 

other states (C2) 
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Recompute output probabilities 
• Originally these were bij(k) values 

• We need: 
– expected number of times that we made the transition i-j and 

emitted the symbol k 

– The expected number of times that we made the transition i-j 
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New estimate of bij(k) 



bij (k) 

 ij (t)
t:yt  k



 ij (t)
t1

T


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Step 5: Go to step 2 
• Step 2 is Forward Algorithm 

• Repeat entire process until the probabilities converge 
– Usually this is rapid, 10-15 iterations 

• “Estimate-Maximize” because the algorithm first estimates 
probabilities, then maximizes them based on the data 

• “Forward-Backward” refers to the two computationally 
intensive steps in the algorithm 
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Computing requirements 
• Trellis has N nodes per column, where N is the number of 

states 

• Trellis has S columns, where S is the length of the sequence 

• Between each pair of columns, we create E edges, one for each 
transition in the HMM 

• Total trellis size is approximately S(N+E) 
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Advanced Application: Optical Proximity Correction 
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• State-Space & Digital Control! 

 

– State-space filters add feedback and becomes a  

“control filter” 

 

Next Time… 
 
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