	http://elec3004.com					
Digital Filters: <u>FIR</u> & Adaptive Windows						
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh						
Lecture 14 elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u> © 2019 School of Information Technology and Electrical Engineering at The University of Queensland	April 12, 2019					

rturo	Scł	مطيبا	0.	
cluie		ieuui	с.	1
	Week	Date	Lecture Title	
	1	2/-Feb	Introduction	
		I-Mar	Systems Overview	
	2	0-iviar	Systems as Maps & Signals as Vectors	
		8-1VIAI	Systems: Linear Differential Systems	
	3	15-Mar	Alianian & Anticlinaian	
		20 Mar	Allasing & Anualiasing	
	4	20-Iviai	Second Order I TID (& Convolution Barriew)	
		22-Mar	Encound Order LTID (& Convolution Review)	
	5	27-Mar	Files Archivia	
		29-Mar	Filter Analysis	
	6	3-Apr	Digital Filters (IIK) & Filter Analysis	
		5-Apr	PS I: Q & A Direted Either (EID) & Direted Windows	
	7	12-Apr	Active Filters & Estimation	
	8	17-Apr	Introduction to Feedback Control	
		19-Apr		
		24-Apr	Holiday	
		26-Apr	·	
		1-May	Servoregulation	
	9	3-May	PID Control	
	10	8-May	Guest Lecture: FFT	
	10	10-May	State-Space Control	
		15-May	Digital Control Design	
	11	17-May	Stability	
	10	22-May	State Space Control System Design	
	12	24-May	Shaping the Dynamic Response	
	10	29-May	System Identification & Information Theory	
	13	31-May	Summary and Course Review	
Syster	ns			l 2 April 20

ELEC 3004: Systems

12 April 2019

Windowed Filter Design Example: Step 3: Compute the coefficients of the ideal filter 1. The ideal filter coefficients h_d are given by the Inverse Discrete time Fourier transform of $H_d(\omega)$. $\begin{aligned}
& x(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega e}^{\omega e} e^{j\omega n} d\omega \\
&= \frac{\omega e}{\pi} \frac{\sin \omega e n}{\omega e n}.
\end{aligned}$ Prove the observation of the ideal filter (via equation or IFFT): $\begin{aligned}
& h(n) &= \frac{\sin(0.25\pi(n-40))}{\pi(n-40)}
\end{aligned}$

10

	Windowed Filter Design Example:	
	Step 5: Evaluate the Frequency Response and Iterate	2
•	The frequency response is computed as the DFT of the filter coefficient vector	
•	 If the resulting filter does not meet the specifications, then: Adjust the ideal filter frequency response (for example, move the band edge) and repeat (step 2) Adjust the filter length and repeat (step 4) change the window (& filter length) (step 4) 	
•	 And/Or consult with Matlab: FIR1 and FIR2 B=FIR1 (N, Wn): Designs a Nth order FIR Window-Based FIR filter with passband given by B=FIR2 (N, F, M): Designs a Nth order FIR digital filter with arbitrary frequency response specified by vectors F and M. 	
	 → All elements of Wn must be [0 1): → where 1 corresponds to the Nyquist frequency: 0 < Wn < 1. The Nyquist frequency is half the sample rate or π rad/sample. 	
	ELEC 3004: Systems 12 April 2019	22

FIR Properties

- Require no feedback.
- Are inherently stable.
- They can easily be designed to be <u>linear phase</u> by making the coefficient sequence symmetric
- Flexibility in shaping their magnitude response
- Very Fast Implementation (based around FFTs)
- The main disadvantage of FIR filters is that considerably more computation power in a general purpose processor is required compared to an IIR filter with similar sharpness or <u>selectivity</u>, especially when low frequency (relative to the sample rate) cutoffs are needed.

ELEC 3004: Systems

2 April 2019 **24**

FIR as a class of LTI Filters

• Transfer function of the filter is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

 Finite Impulse Response (FIR) Filters: (N = 0, no feedback)
 →From H(z): H(ω) = h₀ + h₁e^{-iω} + ... + h_{n-1}e^{-i(n-1)ω}

$$l(\omega) = h_0 + h_1 e^{-i\omega} + \dots + h_{n-1} e^{-i(n-1)}$$

= $\sum_{t=0}^{n-1} h_t \cos t\omega - i \sum_{t=0}^{n-1} h_t \sin t\omega$

- : H(ω) is periodic and conjugate
- \therefore Consider $\omega \in [0, \pi]$

ELEC 3004: Systems

FIR Impulse Response

Obtain the impulse response immediately with $x(n) = \delta(n)$:

$$h(n) = y(n) = \sum_{k=0}^{M-1} b_k \delta(n-k) = b_n$$

- The impulse response is of finite length *M* (good!)
- FIR filters have only zeros (no poles) (as they must, N=0 !!)
 Hence known also as all-zero filters
- FIR filters also known as **feedforward** or **non-recursive**, or **transversal** filters

ELEC 3004: Systems

In Summary

- FIR Filters are digital (can not be implemented in analog) and exploit the difference and delay operators
- A window based design builds on the notion of a truncation of the "ideal" box-car or rectangular low-pass filter in the Frequency domain (which is a sinc function in the time domain)
- Other Design Methods exist:
 - Least-Square Design
 - Equiripple Design
 - Remez method
 - The Parks-McClellan Remez algorithm
 - Optimisation routines ...

