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Follow Along Reading:

p— Today

1 .

i« B.P.Lath

i » Chapter 4
Signal processing i . .
and linear systems — 84.9 Data Truncation: Window Functions
1998 » Chapter 12

TK5102.9..381998 (Frequency Response and Digital Filters)

— 812.1 Frequency Response of Discrete-Time
Systems

— §12.3 Digital Filters

— 8124 Filter Design Criteria

— §12.7 Nonrecursive Filters

i+ Chapter 10

: (Discrete-Time System Analysis Using the z-Transform)
—  §10.3 Properties of DTFT
— §10.5 Discrete-Time Linear System analysis by DTFT

—  §10.7 Generalization of DTFT
to the Z—Transform

: —  One of the davs! ©
. Next Time ~ eesereesssssssssssssnansssnnnsnnnnnsnnnnnns

Announcement: LaTeX Copy/Paste

Question 5

(a) deriving the equation of the circuit would give us
w? < 2 then by deriving it again and dividing by L, we have our 2nd order ODE

2 « 2 jtis linear and causal because it's values will only change with respect to time and does not look into the future for other

w” <
values.

(b) the oscillating frequency is a standard formula given as

2
wT <o
(c) by simply deriving the first derivative of the equation and not dividing it by L we get:

w? < (2 substituting q and getting the auxiliary equation

w? < (2 getting the roots by quadratic formula ;2 = 2

» When using external tools, be sure to copy the LaTeX not the
image (because it might change)

* In this case, the “image” is a web-link which has expired!
- https://www.latex4technics.com/l4ttemp/ysiodz.png?1458878525541



http://library.uq.edu.au/record=b2013253~S7
https://www.latex4technics.com/l4ttemp/ysio4z.png?1458878525541
https://www.latex4technics.com/l4ttemp/ysio4z.png?1458878525541

ELEC

04: Systems

Digital Windows!

i

10 April 2019 5

Not this type o

System Hmwsa'l

f vD_ivgi_ta_I_ Windows

| Collections-5eque
|| Collections-Text

] Collections-Suppor]

Collections-Arrays
Collections-Stream

Graphics=Primitives
Graphics-Display g
Graphics-Media
Graphics-Paths

interval
LinkedList
MappedCollection
FOrderedCollection
SortedCollection

accessing

copying do:

adding do:andBetweenDo:
removi promotefirstSuchT

revarse
reverse

select:

instancell class

Usar Interrupt

collect: aBlock

“Evoivate aBlock with each of my elements as the argument. O
rezulting velves fato a coliection that is like me
collection, Override superclass in order o uwse add:, not at:put:.

rnawCollection

| newCallection |
newCollection + self spacies new
salf do: [1each | newCoflection add: (aBlock value: each)]

Answer with

il

Paragraph>>characterBlockAtPoint:
Paragraph>>mouseSelectito
CodeContraller(ParagraphEditer)processRedButton
CodeComrollar(Parggr_aphEditor)))procassMouseBu(wns

F CodeTantroller{ParagraphEdITer)IScantrolAC vty
1] CodaController{Controllar)>>controllocp

Source: Xerox PARC Alto, “A History of the GUI,” https://arstechnica.com/features/2005/05/qui/3/
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Recall: Windowing for the DFT
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Think Inside The Box: The “Rect” Window Functions

Rectangular
w(n) =1

Rectangular window Fourier transform
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Windowing and its effects/terminology
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Truncation = Window Functions (Lathi 4.9)

» We often need to truncate data
— Ex: Fourier transform of some signal, say e ~‘u(t)
— Truncate beyond a sufficiently large value of t
(typically five time constants and above).
— ~ in numerical computations: we have data of finite duration.
— For example: the impulse response h(t) of an ideal lowpass filter
is noncausal, and approaches zero asymptotically as |t| — oo

« Data truncation can occur in both time and frequency domain
— In signal sampling, to eliminate aliasing, we need to truncate the
Signal spectrum beyond the half sampling frequency % using an

anti-aliasing filter




Truncation = Window Functions (Lathi 4.9) [2]

Truncation operation may be regarded as multiplying a signal of a large width
by a window function of a smaller (finite) width. Simple truncation amounts to
using a rectangular window wg(t) (Fig, 4.48a) in which we assign unit weight
to all the data within the window width (Jt| < £), and assign zero weight to all
the data lying outside the window (J¢| > Z). It is also possible to use a window in
which the weight assigned to the data within the window may not be constant. In
a triangular window wr(t), for example, the weight assigned to data decreases
linearly over the window width (Fig. 4.48b).

Consider a signal ()} and a window function w(t). If f(t) & F(w) and
w(t) &= W(w), and if the windowed function f,(t) += Fy(w), then

fu®=fOu®)  ad  Fulw) = o Fw) « W W)

Window Functions [ 1]

Ful) = FORE)  wmd  Fulo) = - P) s )

According to the width property of convolution, it follows that the width of F,(w)
equals the sum of the widths of F{w) and W{w). Thus, truncation of a signal
increases its bandwidth by the amount of bandwidth of w(t). Clearly, the truncation
of a signal causes its spectrum to spread (or smear) by the amount of the bandwidth
of w(t). Recall that the signal bandwidth is inversely proportional to the signal
duration (width). Hence, the wider the window, the smaller is its bandwidth, and
the smaller is the spectral spreading. This result is predictable because a wider
window means we are accepting more data (closer approximation), which should
cause smaller distortion (smaller spectral spreading). Smaller window width {poorer
approximation) causes more spectral spreading (more distortion). There are also
other effects produced by the fact that W (w) is really not strictly bandlimited, and
its spectrum — 0 only asymptotically. This causes the spectrum of Fy(w) — 0
asymptotically also at the same rate as that of W (w), even though the F(w) may
be strictly bandlimited. Thus, windowing causes the spectrum of F(w) to leak in
the band where it is supposed to be zero. This effect is called leakage. These twin
effects, the spectral spreading and the leakage, will now be clarified by an example.




Window Functions [2]

For an example, let us take (i) = cos wgt and a rectangular win}iow wg(t) =
rect(£), illustrated in Fig. 4.46b. The reason for selecting a sinusoid fo.r f (t). is
that its spectrum consists of spectral lines of zero width (Fig. 4.46a). This choice
will make the effect of spectral spreading and leakage clearly visible. The spectrum
of the truncated signal f,(t) is the convolution of the two impulses of F(w) w‘ith
the sinc spectrum of the window function. Because the convolution of} any function
with an impulse is the function itself (shifted at the location of the 1.mpulse), the
resulting spectrum of the truncated signal is (1/2x times) the two sinc pulses at
+wp, as depicted in Fig. 4.46¢c. Comparison of spectra F(w) and Fy,(w) reveals the
effects of truncation. These are:

r
r F(w) ’x /\ T F (@) /\Munhbe
. . o N
NN TN s

-
o
—w, lo 0 @ e (©) e

Sidelobes

-

Window Functions [3]

1 The spectral lines of F(w) have zero width. But the truncated signal is spread
out by 4r /T about each spectral line. The amount of spread is equal to the
width of the mainlobe of the window spectrum. One effect of this spectral
spreading (or smearing} is that if f(¢) has two spectral components of frequen-
cies differing by less than 4z /T rad/s (2/T Hz), they will be indistinguishable
in the truncated signal. The result is loss of spectral resolution. We would like
the spectral spreading (mainlobe width) to be as small as possible.

2 In addition to the mainlobe spreading, the truncated signal also has sidelobes,
which decay slowly with frequency. The spectrum of f (t) is zero everywhere
except at Zwp. On the other hand, the truncated signal spectrum Fy(w) is zero
nowhere because of sidelobes. These sidelobes decay asymptotically as 1/w.
Thus, the truncation causes spectral leakage in the band where the spectrum
of the signal f(t) is zero. The peak sidelobe magnitude is 0.217 times the
mainlobe magnitude (13.3 dB below the peak mainlobe magnitude). Also, the
sidelobes decay at a rate 1/w, which is —6 dB/octave (or —20 dB/decade). This
is the rolloff rate of sidelobes. We want smaller sidelobes with & faster rate
of decay (high rolloff rate). Figure 4.46d shows {Wg(w)| (in dB) as a function
of w. This plot clearly shows the mainlobe and sidelobe features, with the first
sidelobe amplitude —13.3 dB below the mainlobe amplitude, and the sidelobes
decaying at a rate of —6 dB/octave (or —20 dB per decade).




Other than Rect: Some More Window Functions ...

2. Triangular window

n_N-1

w(n) =1— |—xyz1-
2

Triangular window Fourier transform
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« And Bartlett Windows

— A slightly narrower variant with zero weight at both ends:

N-1

n——5—
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T2

w(n) =1 —
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Some More Window Functions...

3. Generalized Hamming Windows
w(n) = o — B cos (ﬁ,’;ﬂl)

- Hanning Window
— w(n) =0.5 (1 — COs (277—”))

Hann window Fourier transform
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Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
Adds more shifted sinc functions for less side-lobe levels

w(n) = ag—aj COS (]%Tl)—kag cos (ﬁ'ﬂ”‘l)—ag cos (%)

Blackman-Harris window Fourier transform
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Some More Window Functions...

5. Kaiser window
— A DPSS (discrete prolate spheroidal sequence)
Maximize the energy concentration in the main lobe

— w(n) = fo (Wa\/;o—(iﬁ—lﬁ)

Where: |, is the zero-th order modified Bessel function of the
first kind, and usually a = 3.

Kaiser window (a = 3)

Fourier transform
S —— ———

T 1T

. decibels
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Together: Remedies for Side Effects of Truncation

For better results, we must try to minimize the truncation’s twin side etfects,
the spectral spreading (mainlobe width) and leakage (sidelobe). Let us consider
each of these ills.

1 The spectral spread {mainlobe width) of the truncated signal is equal to the
bandwidth of the window function w(t). We know that the signal bandwidth
is inversely proportional to the signal width (duration). Hence, to reduce the

:> spectral spread (mainlobe width), we need to increase the window width.

2 To improve the leakage behavior, we must search for the cause of the slow decay
of sidelobes, In Chapter 3, we saw that the Fourier spectrum decays as 1/w for
a signal with jump discontinuity, and decays as 1/w? for a continuous signal
whose first derivative is discontinuous, and so on.} Smoothness of a signal is
measured by the number of continuous derivatives it possesses. The smoother
the signal, the faster the decay of its spectrum. Thus, we can achieve a given
leakage behavior by selecting a suitably smooth window.

3 For a given window width, the remedies for the two effects are incompatible.
If we try to improve one, the other deteriorates. For instance, among all the
windows of a given width, the rectangular window has the smallest spectral
spread (mainlobe width), but has high level sidelobes, which decay slowly. A
tapered (smooth) window of the same width has smaller and faster decaying
sidelobes, but it has a wider mainlobe.f But we can compensate for the in-
creased mainlobe width by widening the window. Thus, we can remedy both
the side effects of truncation by selecting a suitably smooth window of sufficient
width.

- T T

Remedies for Side Effects of Truncation

There are several well-known tapered-window functions, such as Bartlett (irl-
angular), Hanning (von Hann), Hamming, Blackman, and Kaiser, which truncate
the data gradually. These windows offer different tradeoffs with respect to spectral
spread (mainlobe width), the peak sidelobe magnitude, and the leakage rolloff rate
as indicated in Table 4.3.5:9 Observe that all windows are symmetrical about the
origin (even functions of ¢). Because of this feature, W (w) is a real function of w;
that is, LW (w) is either 0 or =. Hence, the phase function of the truncated signal
has a minimal amount of distortion.

Figure 4.47 shows two well-known tapered-window functions, the von Hann
(or Hanning) window wuan(z) and the Hamming window wyam(z). We have
intentionally used the independent variable z because windowing can be performed
in time domain as well as in frequency domain; so z could be t or w, depending on
the application.

10



Remedies for Side Effects of Truncation

! ww( x) ! Wk X )

X o
2 2

=

xll
z
Fig. 4.47 Hanning and Hamming windows.

There are hundreds of windows, each with differing characteristics. But the
choice depends on a particular application. The rectangular window has the nar-
rowest mainlobe. The Bartlett (triangle) window (also called the Fejer or Cesaro)
is inferior in all respects to the Hanning window. For this reason it is rarely used

|:> in practice. Hanning is preferred over Hamming in spectral analysis because it has
faster sidelobe decay. For filtering applications, on the other hand, the Hamming
window is the choice because it has the smallest sidelobe magnitude for a given
mainlobe width. The Hamming window is the most widely used, general purpose
window. The Kaiser window, which uses In(a), the Bessel function of the order 0,
is more versatile and adjustable. Selecting a proper value of o (0 < a < 10) allows
the designer to tailor the window to suit a particular application. The parameter
o controls the mainlobe and sidelobe trade-off. When a = 0, the Kaiser window
is the rectangular window. For & = 5.4414, it is the Hamming window, and when
a = 8.885, it is the Blackman window. As a increases, the mainlobe width increases
and the sidelobe level decreases.

Comparison of Alternative Windows —Time Domain

Windaow functions M=16

08

0.7

08
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0.2
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017

A \\,. Hanning
= — Hamming
09 ’ — - Blackman H

Sample number

15 punskaya, Slide 90
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Comparison of Alternative VVindows
Frequency Domain

Fourier transforms of windows M=16

20 -

—20

dB

—40

—80

—80

-100
o]

—— Hanning
— — Hamming
— - Blackman

35
Punskaya, Slide 91

Adding Order

+ Transition and Smoothness
— Increased Size

X TN SO SN 1 e~ S-S~ 0 R H 1
H ol

Punskaya, Slide 94
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Summary Characteristics of Common Window Functions

Rolloff Peak

Mainlobe Rate Sidelobe Peak 20logod
No. Window w(f) Width (dB/oct) level (dB)
Rectangular: rect ( ;) i; —6 —13:3 _21(:1]3
Bartlett 3( d o 12 26.5
artlett: A [ — = —12 _26.
j 2T T
He 05| 1 2 L 18 31.5
ANIIN, 4008 | — ks S0 =44
3 & cos | = = 14dB
H 0.54 + 0.4¢ (" s 6 427
amming 5 o bt T —42. .
4 amming; cos | = J - -53dB
Blackman: 0.42 + 0 ( ) (/ St Loy 1 58.1
5 ackman: 0.42 + 0.5 cos + 0.08 cos ) - —18 —58.
) . / -74dB
I |ay/1-4 (=)
{ {u\" ’]} 11.27
6 Kaiser: 0=a<10 —6 —59.9 (o = 8:168)
Iy(a) T

Lathi, Table 7.3
Punskaya, Slide 92

FIR: ':"'f" ."Er\
iIN RECT ++
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Flashback: FIR and Low Pass Filters...

 However!!
a sinc is non-causal and
infinite in duration

1if |w| <w,
Oifw, <|w|<m

Hli ("U‘) = {

Has impulse response:

o

N

o]

. |

w(‘- Slll w(-f’/ “ !
ha(n) = — 27— =
"]

e

o

T Wenl

Thus, to filter an impulse train

with an ideal low-pass filter use: | And, this cannot be
implemented in practice ®

) = (252 -8 (t—nT i €
#(0) = (SR oo 7ln] -8 (¢ =nT)) «sine (1) ** we need to know all samples of the

input, both in the past and in the futuré

Plan O: Impulse Response Truncation

After “Windows”, maybe we saw this coming...
=~ Clip off the sinc at some large n
~ sin (nw.
h(n) = ST} for |n| <M and 0 otherwise
™

M 15 I M — 30 I
1.2

* Ripples in both passband/stopband
and the transition not abrupt (i.e., a transition band).

* As M-, transition band-> 0 (as expected!)

14
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** FIR Filter Design **

» How to get all these coefficients?
H(w) =| ho+he ™ - 4 h,_jeiin=be ,\—[,,].........
FIR Design Methods: =@
1. Impulse Response Truncation

+ Simplest

— Undesirable frequency domain-characteristics, not very useful
2. Windowing Design Method

+ Simple

— Not optimal (not minimum order for a given performance level)
3. Optimal filter design methods

+ “More optimal” (treat the whole thing as a system to solve ©)

— Less simple...

FIR Filter Design & Operation
Ex: Lowpass FIR filter

 Set Impulse response (order n = 21)

* “Determine” h(t)
— h(t) is a 20 element vector that we’ll use to as a weighted sum

50

h(t)

L L L
0 2 4 8 8 10 12 14 16 18 20

* FFT (“Magic”) gives F%equency Response & Phase

|H (w)]
H

15



Why is this “hard”? Looking at the Low-Pass Example

B lLif |w| <w.
Ha(w) = { 0if we <|w| <7

« Why is this hard?
— Shouldn’t it be “easy” ??
... just hit it with some FFT “magic” and then keep the bands we
want and then hit it with some Inverse-FFT “supermagic”???

— Remember we need a “system” that does this “rectangle

function” in frequency
« It basically suggests we need an Inverse FFT of a “rectangle function”

— As noted in the Window Truncation Section: The sinc is of
infinite duration and noncausal

=» Plan Z:
FIR Filters: Window Function Design Method

« Windowing: a generalization of the truncation idea

* There many, many “window” functions:
— Rectangular
— Triangular
— Hanning
— Hamming
— Blackman
— Kaiser
— Lanczos
— Many More ... (see: http://en.wikipedia.org/wiki/Window_function)



http://en.wikipedia.org/wiki/Window_function
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=» Digital Filters Types

FIR
From H(z2):

D Hw) = ho+hie ™+ oot hy,_emin=Dw

n—1 n—1

= Z hycostw —i Z hy sintw

=0 t=0

-> Filter becomes a “multiply,
accumulate, and delay” system:

n—1

y(t) = Z hozu(t —7)

=0

y[n] = boxfn] + biafn — 1+ - - + byan — N]

IR

* Impulse response function
that is non-zero over an
infinite length of time.

Filter Design Using Windows

‘We shall design an ideal lowpass filter of bandwidth W rad/s. For this filter,
the impulse response h(t) = %sinc (Wt) (Fig. 4.48¢) is noncausal and, therefore,
unrealizable. Truncation of h(t) by a suitable window (Fig. 4.48a) makes it real
izable, although the resulting filter is now an approximation to the desired ideal
filter.t We shall use a rectangular window wg(f) and a triangular (Bartlett) win-
dow wp(t) to truncate A(t), and then examine the resulting filters. The truncated
impulse responses kg(t) and hr(t) for the two cases are depicted in Fig. (4.48d).

hr(t) = h(thwr(t)  and  hr(t) = h(t)wr()

Hence, the windowed filter transfer function is the convolution of H(w) with the
Fourier transform of the window, as illustrated in Fig. 4.48e and f. We make the

following observations.

1. The windowed filter spectra show spectral spreading at the edges, and in-
stead of a sudden switch there is a gradual transition from the passband to
the stopband of the filter. The transition band is smaller (2n/T rad/s) for the
rectangular case compared to the triangular case (4n/T rad/s).

2. Although H (w} is bandlimited, the windowed filters are not. But the stopband
behavior of the triangular case is superior to that of the rectangular case.
For the rectangular window, the leakage in the stopband decreases slowly (as
1/w) compared to that of the triangular window (as 1/w?). Moreover, the
rectangular case has a higher peak sidelobe amplitude compared to that of the

triangular window.

17
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Filter Design Using Windows
= Y F T - : =
* [ \0 —
il ¥ f f =
FIR: Rectangular & Hanning Windows
» Rectangular » Hanning
M=16 : ’ :
M=16
=» Hanning: Less ripples, but wider transition band .
| Punskaya, Slide 93
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vindowed FIR Froperty 1I:
Equal transition bandwidth

- H(e)
1y Hale?¥)

‘\ NN ‘
U V4

Punskaya, Slide 96

 Equal transition bandwidth on both sides
of the ideal cutoff frequency

Windowed FIR Property Z:
Peak Errors same in Passband & Stopband

Af‘“/

» Peak approximation error in the passband (1+6 = 1-9)
is equal to that in the stopband (6 = -0)

Punskaya, Slide 96
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Vindowed FIR Froperty 5:
Mainlobe Width

— Awy,

VY

Punskaya, Slide 99

» The distance between approximation error peaks is
approximately equal to the width of the mainlobe Aw,,

Windowed FIR Property 4:
Mainlobe Width [2]

RV
Punskaya, Slide 96
« The width of the mainlobe is wider than
the transition bandwidth

20



vindowed FIR Froperty J:

Peak AJ is determined by the window shape

I
—— H(e*)
1+ o+
AN e
14 . P
V4 :
4 |\
I
Aw
I 1
! N 1
I T
5~ ] : -
A—— | s
“e J
|
I ]
—_— = Aw
I ]
' W (eilw=8))
| /
I
\VARRY

Punskaya, Slide 96

 peak approximation error is determined by
the window shape, independent of the filter order

Window Design Method Design Terminology

|
— H(e?%)
—'—l
1+ & /
............. P N Ha(e%)
1— 6 I~ : }/—/
|
|
T Aw
! |
| |
! T
o ' T |
1 1/\/\_/ w
== I Ww.. t
DD |
| i
—_— = AW,
| |
| | W (edlw !h)
| i
Ja) Ne 0
| ]
VARV
Punskaya, Slide 96

Where:
* o cutoff frequency

e 3. maximum
passbhand ripple

* Aow: transition bandwidth

* Aoy width of the
window mainlobe

21



Passband / stopband ripples

o, and o, Corner Frequencies

Passband / stopband ripples are often expressed in dB:
« passhand ripple = 20 log,, (1+5, ) dB

* peak-to-peak passband ripple = 20 log,, (1+23,) dB

* minimum stopband attenuation = -20 log,, (3,) dB

Passband / stopband ripples

o, and w,: Corner Frequencies

Passband / stopband ripples are often expressed in dB:

» passhand ripple =26tog {6, dB = 20 log,, (5,) dB

* peak-to-peak passband ripple = 26-teg(t+25;)y¢B
= 20 log,, (25,) dB

« minimum stopband attenuation =—=20-legm-(ég-0B—
=20 log,, (8,) dB

22



Summary of Design Procedure

=

Select a suitable window function
2. Specify an ideal response Hy(®)
3. Compute the coefficients of the ideal filter hy(n)

4. Multiply the ideal coefficients by the window function to
give the filter coefficients

5. Evaluate the frequency response of the resulting filter and
iterate if necessary (e.g. by increasing M if the specified
constraints have not been satisfied).

Punskaya, Slide 105

Windowed Filter Design Example

» Design a type | low-pass filter with:

— op=0.2n
— ws=0.3n .
- 0=0.01 . - H(ei®)
L4 0 e i
b NG A Ha(e)
Lo o
. ; Au
s ! ! |
Rt

23



VWindowed Filter Design Example:
Step |: Select a suitable Window Function

Rolloff Peak
Ma 3 Sidelobe Peak 20log100
Width (dBloct) level (dB)

= -6 -3 -21dB

18 ats -44dB

7 - a1 -53dB

0.08 cos (“;') 1? 18 58.1 74dB

lackm: cos (224 4
|
n‘[uJ.,a(T)}

aaaaaa
Io(@)

e LP with: p=0.2n, ©s=0.37, §=0.01

» 6=0.01: The required peak error spec: : :
~20l0g10 (3) 2240 dBp P } Hanning Window

» Main-lobe width:

0 ®,=0.31-0.2 =0.17 > 0.1 =8n /M

—> Filter length M >80 & Filter order N > 79

« BUT, Type-I filters have even order so N = 80

Vindowed Filter Design Example:
Step 2: Specify the Ideal Response

* From Property 1 (Midpoint rule)
) o, = (o + wp)/2 = (0.21+0.3m)/2 = 0.257

An ideal response will be:

1 if |o|<0.25x
H;(w) = ]
1 () { 0 if 025m<|w<m
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VWindowed Filter Design Example:
Step 3: Compute the coefficients of the ideal filter

 The ideal filter coefficients hy are given by the
Inverse Discrete time Fourier transform of Hy()
x(n) = % :X (W) ed“dw = % [*:r ¥ dw

We SINWeN

T

Wen

+ Delayed impulse response (to make it causal)
F(n) =0 (n- 21
L (n) = (n - T)
=) Coefficients of the ideal filter (via equation or IFFT):

sin (0.257 (n — 40))
7w (n — 40)

h(n) =

Vindowed Filter Design Example:
Step 4: Multiply to obtain the filter coefficients

sin (0.257 (n — 40))
m (n — 40)

= h(n) =

» Multiply by a Hamming window function for the passband:

w(n) = 0.54 — 0.46 COS (QWWH)
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Vindowed Filter Design Example:
Step 5: Evaluate the Frequency Response and Iterate

» The frequency response is computed as the DFT
of the filter coefficient vector

« If the resulting filter does not meet the specifications, then:
— Adjust the ideal filter frequency response
(for example, move the band edge) and repeat (step 2)
— Adjust the filter length and repeat (step 4)
— change the window (& filter length) (step 4)

« And/Or consult with Matlab:
- FIR1 and FIR2
- B=FIR1 (N,Wn) : Designsa N" order FIR Window-Based FIR filter
with passband given by
- B=FIR2 (N,F,6M) : Designsa N" order FIR digital filter with
arbitrary frequency response specified by vectors F and M .

=>All elements of wn must be [0 1):
=>where 1 corresponds to the Nyquist frequency: 0 <Wn < 1. The
Nyquist frequency is half the sample rate or & rad/sample.

Vindowed Filter Design Example:
Consulting Matlab:

« FIR1 and FIR2
- B=FIR2 (N, F,M) : Designs a Nth order FIR digital filter

- F and M specify frequency and magnitude breakpoints for the
filter such that plot(N,F,M) shows a plot of desired frequency

— Frequencies F must be in increasing order between 0 and %
with F; corresponding to the sample rate.

— B is the vector of length N+1,
it is real, has linear phase and symmetric coefficients

— Default window is Hamming — others can be specified
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FIR Properties

* Require no feedback.

 Are inherently stable.

» They can easily be designed to be linear phase by making the
coefficient sequence symmetric

« Flexibility in shaping their magnitude response

» Very Fast Implementation (based around FFTS)

« The main disadvantage of FIR filters is that considerably more

computation power in a general purpose processor is required

compared to an IR filter with similar sharpness or selectivity,

especially when low frequency (relative to the sample rate)
cutoffs are needed.

FIR as a class of LTI Filters

« Transfer function of the filter is

Y(2) _ Sacobiz”t

X (Z) B 1 + 25:1 akz—k

« Finite Impulse Response (FIR) Filters: (N =0, no feedback)
= From H(z):

Hw) = ho+hie ™™+ 4 hy_eiln=be

n—1 n—1
= E hycostw — 1 E hy sin tw
t=0 t=0

H(z) =

 H(w) is periodic and conjugate
=~ Consider € [0, n]
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http://en.wikipedia.org/wiki/Linear_phase
http://en.wikipedia.org/wiki/Selectivity_(electronic)

FIR Filters

 Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
« Order - number of delays

M -1 M-1

y(n) = Z bpx (n — k) = Z h(k)x(n—Fk)

k=0 k=0

Tml_,m_l [] = uit delay
@ X--&

¥

FIR Impulse Response

Obtain the impulse response immediately with x(n)= 6(n):

M—-1

h(n)=y(n)= Z b0 (n —k) =b,
k=0

The impulse response is of finite length M (good!)

FIR filters have only zeros (no poles) (as they must, N=0 1)
— Hence known also as all-zero filters

FIR filters also known as feedforward or non-recursive, or
transversal filters
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FIR & Linear Phase

» The phase response of the
filter is a linear

function of frequency D;W:Wf e e
« Linear phase has

constant group delay, all B e e e e

frequency components have 18 i o L s

equal delay times. .. No w SN N

distortion due to different time ~ “if .

delays of different frequencies . 1 oar

Ref: Wikipedia (Linear Phase)

* FIR Filters with:
ne oo hln] -sin(w-(n—a)+ ) =0

FIR & Linear Phase = Four Types

2) FIR Filter (Type Il having Linear Phase b) FIR Filter (Tyne ) having Linear Phase
1 2
T T T T
15
05 | B Hin
0 - 05 |-
05 |- - oe [0
1k | s
* 15 [
15 | g
25 |
2k _ e
25 1 1 1 1 35
o 02 04 06 08 1 o 02 04 06 08 1

Ref: Wikipedia (Linear Phase)

Impulse response # coefs | H (w) Type
hin)=h(M—-1-n) Odd e dw(M=1)/2 (h (%) +2 Z‘k“:’j‘“ﬁ h (% — k) cos (w.".')) 1
hin)=h(M—-1-n) Even e dw(M— “”'22(”71)"% (A — k) cos (w (k= 1))

W= @ [ra

(n) =
hin)=—-h(M—-1-n) | Odd el (M-1)/2-7/2] (QZ(” Dy (”,_,’l — k) sin [;ui.'))
(n)

hin)=—h(M—1-n) | Even e il (M- ”“’V’“]Z'Zigl iy (\," — k) sin (w (k= %))

 Type 1: most versatile

» Type 2: frequency response is always 0 at o=n
(not suitable as a high-pass)

* Type 3 and 4: introduce a n/2 phase shift, 0 at ®=0

(not suitable as a high-pass)



http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Group_delay
http://en.wikipedia.org/wiki/Linear_phase
http://en.wikipedia.org/wiki/Linear_phase

In Summary

* FIR Filters are digital (can not be implemented in analog) and
exploit the difference and delay operators

« A window based design builds on the notion of a truncation of
the “ideal” box-car or rectangular low-pass filter in the
Frequency domain (which is a sinc function in the time domain)

 Other Design Methods exist:
— Least-Square Design
— Equiripple Design
— Remez method
— The Parks-McClellan Remez algorithm
— Optimisation routines ...

Advanced Application: Optical Proximity Correction

Flle v ] View ) Plot} Tools ) Printv) Properties r| Halp v |

ATHENA,

Optical Proximity Correction

Microns.

D SIVACO International

L
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Next Time...

FFTs

Review:

— Chapter 12 of Lathi
— §10. 3 of Strang on FFTs
(cached on Course Website)

Ponder?

w[k] = f[k] * h[k]

Y(Q) = F(QH(R)

where F(2), V{Q), and H({}) are DTFTs of k], y[k], and h[k], respectively; that
is,

flk] == F(), ylk] = Y(22),

and  hlk] = H(Q)
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