PS I: Q\&A

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh

Lecture 12
elec3004@itee.uq.edu.au
April 5, 2019
http://robotics.itee.uq.edu.au/~elec3004/

Lecture Schedule:

	Week	Date	Lecture Title		
		27-Feb	Introduction		
	1	1-Mar	Systems Overview		
		6-Mar	Systems as Maps \& Signals as Vectors		
	2	8-Mar	Systems: Linear Differential Systems		
		13-Mar	Sampling Theory \& Data Acquisition		
	3	15-Mar	Aliasing \& Antialiasing		
		20-Mar	Discrete Time Analysis \& Z-Transform		
	4	22-Mar	Second Order LTID (\& Convolution Review)		
	5	27-Mar	Frequency Response		
		29-Mar	Filter Analysis		
		3-Apr	Digital Filters (IIR) \& Filter Analysis		
	6	5-Apr	PS 1: Q \& A		
	7	10-Apr	Digital Filter (FIR) \& Digital Windows		
		12-Apr	FFT		
	8	17-Apr	Active Filters \& Estimation \& Holiday		
		19-Apr			
		24 -Apr	Holiday		
		26-Apr			
		1-May	Introduction to Feedback Control		
	9	3-May	Servoregulation/PID		
	10	8-May	PID \& State-Space		
	10	10-May	State-Space Control		
	11	15-May	Digital Control Design		
		17-May	Stability		
	12	22-May	State Space Control System Design		
	12	24-May	Shaping the Dynamic Response		
	13	29-May	System Identification \& Information Theory		
		31-May	Summary and Course Review		
				3 April 2019	2

Question I

Q1. Linearity: Starting Straight Away [10 points]

This question explores some of these interesting properties of Linear systems, notably superposition. This gives that if several inputs are acting on a linear system, then the total response of this system is the sum of the outputs from each input on its own.

Please determine and justify if these equations are linear

- $w(t)=300 t+4$
- $y(t)=300 \frac{d x}{d t}+4 x(t)$
- $z(t)=300 \cdot t \cdot \frac{d x}{d t}+4 t^{2} x(t)$

Please determine and then generally prove (or disprove) if these statements about linearity are true.

- Linearity and the Converse. Consider $\mathrm{f}(\mathrm{x})=[\mathbf{A}] \mathrm{x}$.

For this case, is matrix multiplication a linear operation?
The Converse: Can any linear function f always be written as $f(x)=[A] x$?

- Uniqueness.

For any linear function f there is only one matrix $[\mathrm{A}]$ for which $\mathrm{f}(\mathrm{x})=[\mathrm{A}] \mathrm{x}$ for all x .

```
(%u) ELEC 3004: Systems
```


Question 2

Let us consider the interplay between linearity, circuits and signals. A Magic Elf proposes the following following circuit consisting of ideal elements:

- Is the voltage output for this circuit (noted $\left.Y_{m e}(t)\right)$ a linear system?
- If so, show that the output of the Magic Elf's circuit, $Y_{m e}(t)$, satisfies the conditions of linearity with respect to the input, $\mathrm{V}(\mathrm{t})$ and the initial conditions.
- If not, what element(s) could be removed to make it linear?

Question 3

Pink has a new song, Noise, a highlight of which is a loud Mezzo-soprano A_{5} note $(880 \mathrm{~Hz})$. This was recorded live at the recent concert at 1E6 Dreams \dagger Stadium via a microphone connected to a preamp that approximates a consumer line level signal.

Upon inspection the signal recorded was found to be (in Volts):

$$
V_{\text {microphone }}(t)=0.42 \cos (1760 \pi t)+0.314 \cos (100 \pi t)+1
$$

It appears that joint between the 3.5 mm connector and the unbalanced wire was not properly shielded and thus introducing a 50 Hz whine. To add insult to injury, the recording was rushed to get ahead of a demolition for refurbishment, so by accident it was sampled at $1,044 \mathrm{~Hz}$ (instead of the expected 44.1 KHz).

- Please plot the voltage signal from the microphone $\left(V_{\text {microphone }}(t)\right)$ for $\mathrm{t}=0$ to 1 second.
- Please plot the sampled, digitized signal captured on a basic audio card with simple line level (i.e., no negative voltage rail). Again, for $\mathrm{t}=0$ to 1 second.
- It is proposed that all this can be solved "easily" by changing the anti-aliasing (or bandlimiting) filter to add a high-pass filter with a cut-off of 100 Hz between the pre-amp and the line-level input on the audio card. Briefly discuss if this will work?

Question 4

Let $\boldsymbol{f}(\boldsymbol{t})$ be a periodic continuous time signal with Period \mathbf{P}. Then, let $\mathbf{f}[\mathbf{k}]$ be the discrete time signal generated from $\boldsymbol{f}(\boldsymbol{t})$ with equally spaced samples of period \mathbf{Q}; that is,

$$
f[k]=f(k Q)
$$

- Show that the sequence $\mathbf{f}[\mathbf{k}]$ will be periodic if and only if the ratio \mathbf{P} / \mathbf{Q} is itself rational.

Question 5

An interconnect circuit is being considered as part of a new logic architecture.

- Initially, assume unit circuit elements. That is, the capacitors $\mathrm{C}_{1}, . ., \mathrm{C}_{10}=1 \mathrm{~F}$, the resistors $\mathrm{R}_{1}, . ., \mathrm{R}_{10}=1 \Omega$ and voltage, $\mathrm{V}(\mathrm{t})=1 \mathrm{~V}$. At $t=0$, the switch is closed.
- The voltages across the capacitors ($\mathrm{C}[\mathrm{i}]$, here C_{1} to C_{10}) are $\mathbf{x}_{\mathbf{i}}$

(1)
 Systems

Question 5 [continued]

- What are the steady-state values (i.e., the static gain matrix) of the voltages across the capacitors in this circuit. That is, what are the final values of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{10}$?
- Let's write this system as an LDS model. What are the $[\mathrm{A}]$ and $[\mathrm{B}]$ matrices? What are the eigenvalues and resolvent of [A]. And, importantly, what do the eigenvalues, transfer matrix, and QR [or Gram-Schmidt] decomposition indicate/signify about the system?
- Which of the ten voltages will reach within 99% of its steady-state values last? How long will it take for it (and thus the circuit) to reach within 99% of these final values?
- Please plot the step response of the system. That is, please plot the voltages (or states) $\mathrm{x}_{1}, \ldots, \mathrm{x}_{10}$ as a function of time from 0 to the settling time found in (b)
- What is the effect of doubling the voltage on the overall settling time? Based on this, would it be possible to select a voltage such that the system will deliver 1 Volt across C 10 in $\mathrm{t}=0.3004 \mathrm{~s}$ (i.e., $\mathrm{x}_{10}(\mathrm{t}=0.3004 \mathrm{~s})=1$ Volt $)$.

Question 6

Remember that a signal (vector) need not only be written in the standard basis (\mathbf{S} consisting of basis vector $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathbf{n}}$, where $\mathbf{s}_{\mathbf{i}}$ are columns of an identity matrix (i.e., $\mathbf{S}=\mathbf{I}$))

- Consider $x=[1,10,100,1000]$.

For this case, what are the standard basis vectors s1,..., s4?

- Consider a small (4×4) wavelet basis given byid $\left[\begin{array}{cc}-1 \\ -1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Using this basis, determine the basis matrix W and its inverse W^{-1}
- Now, please find the coefficients for the vectors:
- $\times 1=[1,10,100,1000]$
- $\times 2=1000,100,10,1]$
- $\mathrm{x} 3=[3,5,3,2]$
- $\mathrm{x} 4=[3,0,0,4]$
- $\mathrm{x} 5=[3,1,4,1]$
- x6=[1,-1,0,1]
- For the case (b) above, it has been postulated that the coefficients, c , should always be given by $c=$ $W^{-1} x$. Please prove or disprove this.
- For case (b), how does the coefficient c 1 relate to the values $\mathrm{x}_{1}, \ldots, \mathrm{x}_{4}$?
(2) ELEC 3004: Systems

