	http://elec3004.com
PS I: Q&A	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 12 elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	April 5, 2019

Week	Date	Lecture Title
1	27-Feb	Introduction
	1-Mar	Systems Overview
2	6-Mar	Systems as Maps & Signals as Vectors
	8-Mar	Systems: Linear Differential Systems
3	13-Mar	Sampling Theory & Data Acquisition
	15-Mar	Aliasing & Antialiasing
4	20-Mar	Discrete Time Analysis & Z-Transform
4	22-Mar	Second Order LTID (& Convolution Review)
5	27-Mar	Frequency Response
5	29-Mar	Filter Analysis
	3-Apr	Digital Filters (IIR) & Filter Analysis
6	5-Apr	PS 1: Q & A
7	10-Apr	Digital Filter (FIR) & Digital Windows
/	12-Apr	FFT
8	17-Apr	Active Filters & Estimation & Holiday
	19-Apr	
	24-Apr	Holiday
	26-Apr	
9	1-May	Introduction to Feedback Control
,	3-May	Servoregulation/PID
10	8-May	PID & State-Space
	10-May	State-Space Control
11	15-May	Digital Control Design
	17-May	Stability
12	22-May	State Space Control System Design
	24-May	Shaping the Dynamic Response
13	29-May	System Identification & Information Theory
15	31-May	Summary and Course Review

Question 3
Pink has a new song, Noise, a highlight of which is a loud Mezzo-soprano A_5 note (880 Hz). This was recorded live at the recent concert at 1E6 Dreams [†] Stadium via a microphone connected to a preamp that approximates a consumer line level signal.
Upon inspection the signal recorded was found to be (in Volts): $V_{microphone}(t) = 0.42\cos(1760\pi t) + 0.314\cos(100\pi t) + 1$
It appears that joint between the 3.5 mm connector and the unbalanced wire was not properly shielded and thus introducing a 50 Hz whine. To add insult to injury, the recording was rushed to get ahead of a demolition for refurbishment, so by accident it was sampled at 1,044 Hz (instead of the expected 44.1 KHz).
• Please plot the voltage signal from the microphone $(V_{microphone}(t))$ for t=0 to 1 second.
• Please plot the sampled, digitized signal captured on a basic audio card with simple line level (i.e., no negative voltage rail). Again, for t=0 to 1 second.
• It is proposed that all this can be solved "easily" by changing the anti-aliasing (or band- limiting) filter to add a high-pass filter with a cut-off of 100 Hz between the pre-amp and the line-level input on the audio card. Briefly discuss if this will work?
ELEC 3004: Systems 3 April 2019 5

Question 4

Let f(t) be a periodic continuous time signal with Period P. Then, let f[k] be the discrete time signal generated from f(t) with equally spaced samples of period Q; that is,

$$f[k] = f(kQ)$$

• Show that the sequence **f**[**k**] will be periodic **if and only** if the ratio **P**/**Q** is itself rational.

