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Follow Along Reading:

Today
"ﬁ‘ B. P. Lathi « Chapter 10
Picar Signal processing i -Ti i
R - lincar systems (Dl_screte Time System Analysis
o 1998 Using the z-Transform)

TK5102.9.L.38 1998

— §10.3 Properties of DTFT

— 8§ 10.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

Chapter 12
(Frequency Response and Digital Filters)

§ 12.1 Frequency Response of Discrete-Time Systems
§ 12.3 Digital Filters :
8§ 12.4 Filter Design Criteria
i+ 8127 Nonrecursive Filters :
HY Next Time ~ ssssssssssssssssssssssnsssnsnnnsssnnsannnnnnsn ,
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Periodic Signals:
Writing them in the Fourier Domain & z-Domain

 Synthesis:

The function X (¢’*) defined by
X(e™) D, x|n)e (7.1.1)

(if it converges) is called the discrete-time Fourier transform (DTET) of the
signal x[n]. In particular, if the region of convergence for the z transform

X(z) = Z v[n|z ™"
includes the unit circle, then the DTEFT equals X (z) evaluated on the unit

circle, that is,
X(e™) = X(z)

“ (7.1.2)

2= ptSh

Euler’s Identity: sin([wt]) = ?i (etlotl — g-ilwtl)

* The Discrete-Time Fourier Transform of a sinusoid

1 .
x[n} = sin Qun = — (¢S — o

is simply

X (") = 2 V)[a(sz ~ Q) - 8(Q + Q)

1
2
= —a[o(R — Q) — o(L2 + Q)]
for |Q], |€,| = m, while that of the cosine signal
yln] = cos Qun = e 4 o1
1s likewisc
Y(e'?) = 2n()[6(Q — Q) + 8(Q + Q)]
= 7[S(Q — Q) + S(Q + Q).
In addition, the DTFT pair for the de signal x[n] = 1 is simply
| & 21 6(Q), |£2] = m,
as opposed to the dual relationship

on| < 1, all €.




Recap:
lIR Filters = “Analog Filters” in Digital Form ©
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Filter Specification in the Frequency Domain

Where:
8, = passband ripple (dB)
[H(w)| 8, = stopband attenuation (dB)
, = passhand edge (Hz)
S, Ry w,; = stopband edge (Hz)
T RN . = cutoff frequency (@ 3dB)
\
i \
N N: filter type/order to meet
\ specification
\
\
\
\
62 7 \\\ - -~ o -
W, W, Wy 0]
%f—/ —— - N -
Passband Transition Stopband




Butterworth Filters

!
[ H(jow)l

ideal (n = o)

0.707 |+

&

Butterworth Filters

 Butterworth: Smooth in the pass-band

 The amplitude response |H(jw)| of an nt" order Butterworth
low pass filter is given by:

B ()] = —em

» The normalized case (0,=1)

. _Qn-
14 ( %)
1

[H(jw)| = W :> H{jw)H(—jw) = [H{w)[* =

Recall that: |H (jw)|? = H (jw) H (—jw)

)




Analog Filter Summary ©

Filter Type Pas_sband Stopband Transition MATLAB Design
Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheby
Chebyshev Type Il .
(Inverse Chebyshev) No es Tight cheby2
Eliptic Yes Yes Tightest ellip

lIR Filter Design Methods
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lIR Filter Design Methods

» Normally based on analogue prototypes
— Butterworth, Chebyshev, Chebyshev 2, Elliptic, etc.

Then transform H(s) - H(z)

 Three popular methods:

1. Impulse invariant
- H(z): whose impulse response is a sampled version of h(t)
(also step invariant)
2. Matched z-Transform

— poles/zeros H (s) directly mapped to poles/zeros H(z)
3. Bilinear z — transform
— left hand s — plane mapped to unit circle in z — plane

Impulse Invariant

Simplest approach, proceeds as follows:

=

Select prototype analogue filter
Determine H(s) for desired W, and  wyg
cutof?freq. stoz;vflreq.

N

3. Inverse Laplace
« Calculate impulse response, h(t)
4. Sample impulse response h(t)|i=na¢,
* h|n] = Aty h(nAt,)
5. Take z-Transform of h[n] = H(z)
— Poles: p; maps to exp(p;Aty)
— Zeros: have no simple mapping ®




Impulse Invariant [2]

Useful approach when:

* Impulse (or step) invariance is required
— e.g., control applications

 Designing Lowpass or Bandpass filters

Has problems when:

e H(w) doesnot > 0as w — o
 EXx: highpass or bandstop filters

« If H(w) is not bandlimited, aliasing occurs!

Matched z - transform

» Maps poles/zeros in s — plane directly
—to poles/zeros in z — plane

 No great virtues/problems

» Fairly old method
—not commonly used
—so we won’t consider it further ©




Bilinear z - transform

» Maps complete imaginary s —plane (+«)
— to unitcircle in z -plane

« That is: map analogue frequency w, to discrete frequency wg,

« Uses continuous transform:

2 [a)d At]
w, =—1an
At 2

This compresses (warps) w, to have finite extent i%
=> this removes possibility of any aliasing ©

tan transform maps w, to w,
Analogue w, A2
Filter\ / 3
IH(@,)l (

- 0 i 2n 3t 4n wAl?2

Spectral compression | | IH(@4)|
due to the bilinear 1
Z -transform

Digital/%v

Filter

-wf2 0 w2  w 3wf2 2w, wy
@&ote‘, H(w.) periodic, due to sampling




Bilinear Transform

The bilinear transform

Transforming to s-domain
Remember: s = jo,
and tand = sin6/coso

Where 6 = wyAt/2

Using Euler’s relation
This becomes...
(note: j terms cancel)

Multiply by exp(-j0)/exp(-j0)

As z = exp(ssAt) = exp(josAt)

@, jran( d )
. t
5 Jsin )
At wa At
AT cos( 22

, g At —jow At
y Hilexp(TE—) - exp(Z51)

&

—jow At
2

A
D)+ exp(—L2420 )

2 (1 -exp(-jwAD))
At (14 exp(—jw A1)

5 =

C2(1-:h

s= T2
Ar(1+=z71)

Bilinear Transform

« Convert H(s) = H(z) by
substituting,

2(1— z‘l)

°= Atll+z27)

from tan transform

Note: this comes directly

However, this

transformation compresses

the analogue frequency

response, which means

— digital cut off frequency
will be lower than the
analogue prototype

Therefore, analogue filter
must be “pre-warped” prior
to transforming H(s) = H(z)

10



Bilinear Pre-warping

w, = itan [a)d—Atj

20 | At

0.8 >

0.4

0 02 04 06 08 1.0
(O F]

Bilinear Transform: Example

» Design digital Butterworth lowpass filter
— order, n = 2, cut off frequency w, = 628 rad/s
— sampling frequency wg = 5024 rad/s (800Hz)

» Pre-warp to find w, that gives desired wg,

Note: w, < w,
due to compression

( 2 \tn( 628

) =663 rad/s

wa=L Ja 2 %800
%oo X

 Butterworth prototype (unity cut off) is,

1
H(s) = ————
®) s? + /25 +1

11



Bilinear Transform: Example [2]

+ De-normalised analogue prototype (s’ = wi)

Cc

- w, = 663 rad/s (required w, to give desired w )
1

(5)2 +@+1

663 663

H(Sd)=

2(1— z‘l)

AtlL+zY)

— Convert H(s) = H(z) by substituting s=

1
- BN ]
2x800(1—_z1 ) .73 2x800(1—_z1 )4
663(1+z7) 663(1+z7)
0.098z2 +0.195z +0.098 Note: H(z) has both
H (z) == ’ ’ poles and zeros
z°—-0.9427+0.333 H(s) was all-pole

Bilinear Transform: Example [3]

Y(z) 0.098z°+0.195z +0.098
X (2) 2> —-0.942z +0.333

H(z) =

* Multiply out and make causal:

Y (z)(z% -0.9427 +0.333) = X (2)(0.0982° +0.195z + 0.098)
Y (z)(1-0.9427 " +0.3332 %) = X (2)(0.098+0.195z * +0.098z ?)

 Finally, apply inverse z-transform to yield the difference equation:

y[n]=0.098x[n]+0.195x[n —1] +0.098x[n — 2]
+0.942y[n-1]-0.333y[n-2]

12



Bilinear Transform: Example [4]

Magnitude response

o ——
1-\\

10 TSR
T analogue

-20 ®¢

bilinear

gain (dB)

-100 L L
V] 500 1000 1500 2000 2500

equency (radis)

Digital compared to Analod:
1. Increased roll off and attenuation in stopband

2. Nearly o attenuation at ‘”7

Bilinear Transform: Example [5]

Pole/Zero Plot

= [ [ [
0.8~
0.6 -
0.4~

0.2~

Imaginary Part
)

02~

-0.6 —

208~

Y= L

-2 -1.5 -1 -0.5 0 0.5 1 15
Real Part
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Bilinear Transform: Example [6]

Phase response

~—__analogue

bilinear e ——

500

1500 2000 2500
frequency (rad/s)

Increased phase

delay

Bilinear transform has
effectively increased
digital filter order
(by adding zeros)

Bilinear Transform: Example [7]

Impulse Response

0.35F~

0.3~

0.25

0.2~

Amplitude
)
e
o
I

3 3 3 T 3

0.1¢- T
0.05 [~ T
0 ? e © © o e o o o
o ¢ o
r r r [ r r [
0 4 6 8 10 12 14 16
Samples
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Bilinear Transform: Example [8]

y[n]

x[n]

——— =

0.042 L -0.333
—X)

>

71

z14

0.098_,® 0.195,® 0.098

Canonical Implementation

y[n] =0.098y'[n]+0.195y'[n—1] +0.098y'[n — 2]
y'[n]=x[n]+0.942y'[n—-1]-0.333y'[n—2]

of the difference equation

y[n] =0.098x[n]+0.195x[n—1]+ 0.098x[n—2]
+0.942y[n—1]-0.333y[n-2]

y[n]

Bilinear Design Summary

+ Calculate pre-warping analogue cutoff frequency

De-normalise filter transfer function using pre-warping cut-off

Apply bilinear transform and simplify

Use inverse z-transform to obtain difference equation

15
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Tutorial 3 (Week 6 & 7!)

» Week 6: PS 1 Review
 Week 7: FIR Filters
« DCT, FFT & More!

16



Fun Demo! Resize a “Screen Shot”

« 10:1 Reduction of Picture of an LCD Screen...

[ Without
1K Gaussian

Filter First

WITH

aussian Filter
0=2)

* Moire - of Aliasing of a
Non Band-limited Signal

This site can't be reached
Togin. g.edu.au's sareet P address cotld ol be found.

My
= [Checking the cannection
| Chncking the

RR NAME NOT RESOLVED

‘“|' petats |

s

This site can't be reached
login.uq.edu.au's server IP address could not be found.

Try
« Checking the connection

* Checkiny xy, firewall and DNS configuration

ERRNAME NOT RESOLVED

Detads

iy, firenvall and DNS configiration

Direct Synthesis (in the Z-Domain)

ELEC 3004: Systems

3 April 2019 34

17



Direct Synthesis

» Not based on analogue prototype
— But direct placement of poles/zeros

» Useful for

— First order lowpass or highpass
* simple smoothers

— Resonators and equalisers
+ Single frequency amplification/removal

— Comb and notch filters
+ Multiple frequency amplification/removal

First Order Filter: Example

» General first order transfer function
— Gain, G, zero at -b, pole ata (a, b both < 1)

Remember: H(w) = H2)| ;- expjmns

G(1+bz?)
H(z)=
O]
with a +ve & b-ve
this is a lowpass filter
i.e., G(1+b o
H(0) = ﬁ exp(jr) = -1 u);/h exp(jo)
G(1l-b
Am)= (1(+ a)) o2

18



First Order Filter: Example

* Possible design criteria

— cut-off frequency, w,
e 3dB = 201log(|H (wo)|)
* eg,atw, = g.
o b _ 2

1+a

— stopband attenuation

* assume wgop = m (Nyquist frequency)

. = _H(TE) —i-
eg.8; = H@O) 21 "

H(z) @-b(-a) 1
HO) @+b)(l+a) 21

two unknowns (g,b)
two (simultaneous)
design equations.

Digital Resonator Design Prototype

» Second order ‘resonator’

— single narrow peak frequency response
— i.e., peak at resonant frequency, w,

s |Hw)|?

Aw = 3dB width

/2 T @

19



Quality factor (Q-factor)

« Dimensionless parameter that compares
— Time constant for oscillator decay/bandwidth (Aw) to

— Oscillation (resonant) period/frequency (»0)
» High Q = less energy dissipated per cycle

Q=2 _To
Aw Af
« Alternative to damping factor (£) as
_1 o} o
Q 24 H(S)_sz+2;’a)os+a)§_ 2, Do g 2

S

* Note: Q <% overdamped (not an oscillator)

Digital Resonator Design

* To make a peak at w, place pole
— Inside unit circle (for stability)
— Atangle w, distance R from origin
* i.e, atlocationp = R exp(jwy)
— R controls Aw
» Closer to unit circle — sharper peak
« plus complex conj pole at p* = R exp(-jw0)

1
(1-R-exp(ja,)z *)(1- R-exp(— jo,)z )
1
1—R(exp( jo,) +exp(—jay,))z "+ R’z
G

l+az'+a,z?
Where (via Euler’s relation)

a, = —2Rcos(w,) and a, = R?

H(z) =

-2

20



Digital Resonator Design

« Frequency response H(W) = H(2)]; = exp(w)

H(w) =

G

(1-R-exp(ja,)exp(- jo))(1- R-exp(- jo,) exp(- jo))
G

1+a exp(— jo)+a, exp(-2 jo)

Note: we know the form of the 2nd equation from the previous slide

And a, and a, remain the same

Digital Resonator Design

« Fixing unity gain at w, (pole frequency)
— e, |Hwy)| =1

H (w,)|=1=

solving for

G

[1-R-exp(jo,) expl ) (1~ R-exp( o) exp(- joy))
G,

G = (1- R)y1- 2Rcos(2m,) + R’

Design relationship between
gain G and pole radius R
(at resonant frequency wy)

21



Digital Resonator Design

» Magnitude squared response is given by
G2

H@)f = (1-2Rcos(w - ay) + R*)(1- 2R cos(w + ;) + R

» The 3dB bandwidth, Aw, occurs when
— |H(w)? = % (remember G selected for [H(w,)| = 1)
— two points w, and w, (on either side of w,)
- Aw=w;- 0w,

» when pole, p, is close to the unit circle (R =< 1)

~ — i.e., closer pole is to unit circle,
AC() 2(1 R) the sharper the peak

Note: (1 - R) is pole distance to unit circle

Resonator Design “Formula”

1. For specified resonant frequency w,
— and 3 dB bandwidth A®

2. Calculate pole angle 6 = £2nw/w,
- e, Q __ %

T w2

Aw

Calculate pole radiusR = 1 — -

w

4. Calculate G =(1-R),[1-2Rcos(2w,) + R’

5. Calculate filter coefficients (a,, a,)

a, = —2Rcos(w,) and a, = R?

22



Digital Resonator: Example

» Design a 2-pole resonator with
* peak, f, = 500Hz
« 3dB width, Af = 32Hz
» sampling frequency f; = 10kHz

Normalise specification

c w, = 212 = 01n
fs
- Aw= 21 = 002

Calculate R (from Aw = 2(1 — R))

« R=0.99
* Then calculate G and a; and a,
* G = 0.0062,a; = —1.8831anda, = 0.9801

Discrete Filter Transformations

« By convention, design Lowpass filters
— transform to HighPass, BandPass, BandStop, etc.

 Simplest transformation
— Lowpass H(z’ ) — highpass H(z)
= Hyp(z) = Hp(2)lz— -,
- reflection about imaginary axis (%)
+ changing signs of poles and zeros

 LP cutoff frequency, w.;p becomes

» HP cut-in frequency:

Weyp= 1/2 — Wcpp

23



Lowpass — highpass (' = -z)

z- plane
Lowpass

prototype

Were

pPL= 1/41 Z = -1

Highpass
transform

Wenp

Py = '1/41 Zy = 1

Poles/zeros reflected in imaginary axis: Wepp = V2 - Wep
Same gain @ w,/4 (i.e., n/4)
[HWp)| = [H(7/2 - wip)|

Discrete Filter Transformations

H(2)
— Cut-off (3dB) frequency =
wc (remains same)

S cos(w,At) -z

- 1—cos(w,At)z

. -1
—az+1

yA

» Lowpass H(z’ ) — highpass e+ Lowpass H(z’ ) — Bandpass

H(2)
— Centre frequency =w0 &
3dB bandwidth = wc

_cos(w,At)
cos(w_At)

Note: these are not the only possible BP and BS transformations!

24



Discrete Filter Transformations

» Lowpass H(z’ ) — Bandstop H(z)

— Centre frequency = w, 3dB bandwidth = w,

22— (2a/ (k+1)) 2+ (1-K)/ (1+K)

_ Ccos(w,At)
cos(w At)

£ 1+(2a/ (k+1))z+((1-k)/ (1+k))z?

k =tan’(w,At)

Note: order doubles for bandpass/bandstop transformations

z- plane Lowpass Highpass
/\prototype / transform
Bandpass Bandstop
transform transform
ﬁﬁ / o
J X X

25



Notch and Comb Filters

By positioning multiple pole/zero pairs
— equally spaced around the unit circle

Design a filter that removes/amplifies
— frequencies at n - w,
— i.e., frequency harmonics

Can also remove/amplify multiple arbitrary frequencies

Notch filter
— removes multiple/single frequencies

Comb filter
— amplifies multiple/single frequencies

Comb and Notch Filters

Comb Filter
|H(w)|
0 /2 )]
[H(w)] Notch Filter
0 /2 7))

26



Summary

+ Digital Filter Structures
— Direct form (simplest)
— Canonical form (minimum memory)

« |IR filters
— Feedback and/or feedforward sections
* FIR filters

— Feedforward only
« Filter design
— Bilinear transform (LP, HP, BP, BS filters)
— Direct form (resonators and notch filters)
— Filter transformations (LP — HP, BP, or BS)
« Stability & Precision improved
— Using cascade of 1st/2nd order sections

Next Time...

« Digital Windows #

& FIR!

* Review:
— Chapter 10 of Lathi

« A signal has many signals ©
[Unless it’s bandlimited. Then there is the one]

o

27



