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il Signal processing H _Ti H
S ot (Discrete-Time System Analysis

1998 Using the z-Transform)
HEgRALImIne — §10.3 Properties of DTFT

— 8§ 10.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

Chapter 12 L
(Frequency Response and Digital Filters)

§ 12.1 Frequency Response of Discrete-Time Systems
§ 12.3 Digital Filters :
§ 12.4 Filter Design Criteria

i+ 8127 Nonrecursive Filters
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Filter Specification in the Frequency Domain

IH(w)]

8y

Where:

&, = passband ripple (dB)

8, = stopband attenuation (dB)
®, = passband edge (Hz)

w,; = stopband edge (Hz)

®, = cutoff frequency (@ 3dB)

N; filter type/order to meet

specification

Passband Transition Stopband

O

Digital Filters = DTFT Crop & Go! (Well, No!)
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— m * % Lathi, p. 621

* First Thought:

EaNE N Gl

 Howto get DTFT? FFT?
« Slightly Naive -
o For finite time span (or compact support),
H(w) cannot be exactly zero over any band of frequencies
(Paley-Wiener Theorem)




Recall: DTFT is a Convolutlion
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Fig. 10.2 Periodic sampled gate pulse and its Fourier spectrum.  Lathi, p. 623

» The frequency response is limited to 2n
* DTFT is a convolution responses in time domain...
F{x*xh} = F{z} - F{h}
N — S N —
Y (w) X(w) H(w)
yln] = a[n] + kin] = F X (w) - H(w)},

Recall: Fourier Series & Rectangular Functions

§: Fourier Tranform - 1: Inverse Fourier Tranform

Strect (0} = sine (3) | 51 [ (2)} = 20

w
A0 =rect, T (e - R
. (= X(t)
1 = ( -r )
< » \
i
I
{1
| ot | A
: VT
| | f f
O &
% # % u :T‘ 4(—“ “T“ Ref: http://cnx.org/content/m26719/1.1/
http:/i 1a.com/input/?i=IFFT%28sinc%28f%29%29
Ref: http://cnx.org/content/m32899/1.8/
http:// thefouriertransform.com/ php

» Table 7.1 (p. 702) Entry 17 & Table 9.1 (p. 852) Entry 7
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Recall: Fourier Series & Rectangular Functions [2]

* The sinc function might look familiar
— This is the frequency content of a square wave (box)

+——+ »- —% a Rf http://www.wolframalpha.com/input/2i=FFT%28rect?628t%29%29
= N i J/cnx.org/content/m32899/1.8/

« This also applles to S|qnal reconstructlon'

=>» Whittaker—Shannon interpolation formula
— This says that the “better way” to go from Discrete to Continuous
(i.e. D to A) is not ZOH, but rather via the sinc!

2(t) = Y5 oo @[] - sinc (BT )

Before we get to Filters...

(digital) Signal Types

& Corresponding Digital Filter Types!
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Two Types of Impulse Response

‘Finite impulse response” (FIR)

yln] = %y[n — 1]+ uln]
hln]
1t
21
I 1
1., n

“Infinite impulse response” (IIR)

=» Digital Filters Types

FIR
From H(z):

9 Iffw) = +h” l'.filu—\)_g

n—1 n—1
= E hftmi‘;ufig hy sin tw

t=0 t=0

ho + hie ™ 4+ ..

—> Filter becomes a “multiply,
accumulate, and delay” system:

n—1
y(t) = Zhru(" —7)

yln] = bolc[n] +biz[n — 1]+ - -+ byz[n — N]

IR

* Impulse response function
that is non-zero over an
infinite length of time.
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FIR Properties

* Require no feedback.

 Are inherently stable.

» They can easily be designed to be linear phase by making the
coefficient sequence symmetric

« Flexibility in shaping their magnitude response

» Very Fast Implementation (based around FFTS)

« The main disadvantage of FIR filters is that considerably more
computation power in a general purpose processor is required
compared to an IR filter with similar sharpness or selectivity,
especially when low frequency (relative to the sample rate)
cutoffs are needed.

FIR as a class of LTI Filters

« Transfer function of the filter is

Y(2) _ Sacobiz”t

X (Z) B 1 + 25:1 akz—k

« Finite Impulse Response (FIR) Filters: (N =0, no feedback)
= From H(z):

Hw) = ho+hie ™™+ 4 hy_eiln=be

n—1 n—1
= E hycostw — 1 E hy sin tw
t=0 t=0

H(z) =

 H(w) is periodic and conjugate
=~ Consider € [0, n]
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FIR Filters

 Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
« Order - number of delays

M -1 M-1

y(n) = Z bpx (n — k) = Z h(k)x(n—Fk)

k=0 k=0

Tml_,m_l [] = uit delay
@ X--&

¥

FIR Impulse Response

Obtain the impulse response immediately with x(n)= 6(n):

M—-1

h(n)=y(n)= Z b0 (n —k) =b,
k=0

The impulse response is of finite length M (good!)

FIR filters have only zeros (no poles) (as they must, N=0 1)
— Hence known also as all-zero filters

FIR filters also known as feedforward or non-recursive, or
transversal filters




FIR & Linear

Phase

» The phase response of the

filter is a linear
function of frequency

 Linear phase has

constant group delay, all
frequency components have

equal delay times. ..
distortion due to different time
delays of different frequencies

No

* FIR Filters with:

o0
nN——00

hin] -sin(w - (n — a) + B)

&) FIR Filter (Type Iy having Linear Phase

b) FIR Filter (Type

IV) having Linear Phase

J1IR Filter having Non-L win ¢ Ph
0 T T T T 0 T T T T
005 |- 0.1
01 b 02 | &
015 [~ =E 1
uzéz 05 |- -
06 |- B
03 |- . 07 4
035 |- - 08 |- ]
04 - - 09 |- i
045 I I I I 1 I I I

0 02 04 06 08 1

Ref: Wikipedia (Linear Phase)

=

FIR & Linear Phase = Four Types

a) FIR Filter (Type I1) having Linear Phase

1

b) FIR Filter (Type IV) having Linear Phase

15
05 E N
0 4 05 |-
o[
05 |- E 05 |-
a h a1
* 15
15 2k
25 -
2| ] =N
25 1 1 1 1 35
0 0z 04 06 08 1 0 0z 04 06 08 1

Ref: Wikipedia (Linear Phase)

Impulse response # coefs | H (w) Type
hin)=h(M—-1-n) Odd e dw(M=1)/2 (h (%) +2 Z‘k“:’j‘“ﬁ h (% — k) cos (w.".')) 1
hin)=h(M—-1-n) Even e dw(M- “”'22(”71)"% (” — k) cos (w (k= l,)) 2
hin)=—-h(M—-1-n) | Odd el (M-1)/2-7/2] (2 Z(” Dy (”,_,’l — k) sin [;ui.')) 3
hin)=—h(M—1-n) | Even e lw(M-1)/2-7/25 Z}{“:’l iy (\," — k) sin (w (k= %)) 4

 Type 1: most versatile

» Type 2: frequency response is always 0 at o=n
(not suitable as a high-pass)

* Type 3 and 4: introduce a n/2 phase shift, 0 at ®=0

(not suitable as a high-pass)
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Discrete Time Ca'oowli@f( Transform
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2D DFT

» Each DFT coefficient is a complex value
— There is a single DFT coefficient for each spatial sample
— A complex value is expressed by two real values in either

Cartesian or polar coordinate space.
+ Cartesian: R(u,v) is the real and I(u, v) the imaginary component
+ Polar: [F(u,v)| is the magnitude and phi(u,v) the phase

F(u,v) = R(u,v) + jI(u,v)

o6 (u.v)

Flu,v) = |F(u,v)

2D DFT

» Representing the DFT coefficients as magnitude and phase is a

more useful for processing and reasoning.
— The magnitude is a measure of strength or length
— The phase is a direction and lies in [-pi, +pi]
» The magnitude and phase are easily obtained from the real and
Imaginary values

Fu,v)| = VR2(u,v)+ I2(u,v)
I(u,v
o(u,v) = tan™! [%]

11



Harmonics

 Synthesis of a square pulse: periodic signal by successive
addition of its harmonics (Lathi, p. 202-3)

—
| {a)
" e /I i)
/| ® 1 I/
- KMMI\
~ N N A
\V4 Vi
— NN N\ N\
\VARV4 . \V4 -
Poprmmme

Y Windowing for the DFT

fult) = f(Bhw(t)

/\/\f<:>f

and  Fulw) = %p(w}a W (w

Fiw) [K

> bﬂv \/,\/ V-

)
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Sampling ! ! ®
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Source: Lathi, p.303
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Digitial Filters
the DT Fourier Transform
And the Z-Transform!

ELEC 3004: Systems 29 March 2019 25

DTFT =» z-Transform

The above results motivate the definitions of the z transform, the
discrete-time Fourier transform (DTFT), and the discrete Fourier series
(DFS) to be presented in this chapter and the next. In particular, if the basis
functions for the input can be enumerated as
Peln] = 2%,

that is, if x(¢#) can be expressed in the form of Eq. (6.1.1) as

x[n] = > a.z}, (6.1.10)
then the corresponding output is simply, from Eqs. (6.1.2) and (6.1.8),

yln] = > a H(z)z) (6.1.11)
k

The discrete Fourier series for periodic signals is of this form, with
z, = ™M 1f, on the other hand, the required basis functions cannot be
ecnumerated, we must utilize the continuum of functions ¢ln] = z" to
represent x[n| and y[n] in the form of integrals. When z is restricted to have
unit magnitude (that is, z = /), the resulting representation is called the
discrete-time Fourier transform, while if z is an arbitrary complex variable,
the full z-transform representation results.

13



The Discrete-Time Fourier Transform

 Synthesis:
The function X (¢’*) defined by

X(e™) D, x|n)e (7.1.1)

(if it converges) is called the discrete-time Fourier transform (DTET) of the
signal x[n]. In particular, if the region of convergence for the z transform

X(z) = Z v[n|z ™"

includes the unit circle, then the DTEFT equals X (z) evaluated on the unit
circle, that is,
X(e™) = X(z2)

il (7.1.2)

The Discrete-Time Fourier Transform

+ Analysis/Inverse:

] (%] JC)y
tla] = " X(e e dQ.

LIT Jag

» X[n] is the (limiting) sum of sinusoidal components
of the form [%X(efﬂ)dﬂ] eln

» Together: Forms the DTFT Pair

14



The Discrete-Time Fourier Transform

© Ex x|n] = a"u|n]
has the z transform

- 1
X(z)

) a|,
1= guz™! L
and thus X (e’?) exists for |a| << | because the ROC then contains the
unit circle. Specifically
ikl 1
X(e*) = —— la| < 1. (7.1.8)
I — ae™

The corresponding magnitude spectrum | X (e’?)| and phase spectrum
£ X(e’?) are shown in Fig. 6.8. Clearly, from the defining sum in Eq.
(7.1.1), the DTFT of x[n] does not converge for || > 1, and we defer
until later the case of |a| = 1

On the other band, the anticausal exponential

wln| = —a"ul-n - 1]
has the z transform
1
W(z) ozl < lal,
| — az
and thus W (e’**) exists for |a| 1, but not for |a| < 1. That is,
o i 1
W(e®) = — ) laj > 1. (7.1.9)
li— a8
Again the casc of |a| = 1 is deferred until later

The Discrete-Time Fourier Transform

» Observe:
“Kinship Of Difference Equations To Differential Equations”

[!
2 + cy(t) = x(¥) (3.15a)
dt

Consider uniform samples of x(f) at intervals of T seconds. As usual, we use the notation x[n] to denote x(nT), the nth sample of x(f). Similarly,
y[n] denotes y[nT], the nth sample of y(f). From the basic definition of a derivative, we can express Eq. (3.15a) at{ = nT as

y[n] —y[n —1]

pm“ T + ¢y[n] = x[n]

Clearing the fractions and rearranging the terms yields (assuming nonzero, but very small T)
y[n] +ayln — 1] = px[n] (3.15b)

where | 7

o= i5eT and ﬁ=—|+rT

We can also express Eq. (3.15b) in advance operator form as
yln + 11+ ey[n] = fx[n + 1] (3.15¢)

15



The Discrete-Time Fourier Transform

* EX(2): The DTFT of the real sinusoid

x[n] = sin&yn = —(¢ p
2

is simply
icy F [ 1
X (e = 2 J[(Q — Q) — 6(Q + Q)]

= —jm[6(R2 — Q) — (2 + Q)]

for |€2|, |€2,] = m, while that of the cosine signal
[ T ..J\)_‘,!]

LA B

y[n] = cos Qun = (e’
15 likewisc
Y(e'™) = 2a(3)[0(Q — Q) + 6(Q + Q)]
- a[S(R2 — Q) + 8(Q2 + Q)]
In addition, the DTFT pair for the de signal x[r] = 1 is simply
| < 2w a(€2), |€2] = m,
as opposed to the dual relationship

oln] <> 1, all Q.

ELEC 3004: Systems

29 March 2019 34
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Now: (digital) Filters!

ELEC 3004: Systems

29 March 2019 35

Filter Design

 Previously we have analysed

— difference equations (y[n])

— transfer functions (H(z))

To obtain time/frequency domain response

— Impulse (h[n]) or frequency (H(w)) response
Now we have a specification

— frequency response (filters)

— time response (control)

Goal to design a filter that meets specification
— I.e., determine transfer function

— and therefore difference equation (implementation)

17



Transfer Function — Difference Equation

» Example, consider

z>-0.2z-0.08 Make H(2) causal x by Z _
H(z) = 2 77
z2°+0.5

» Normalise to negative powers of z (causal)
— re-arrange and take inverse z transform

1-0.2z7'-0.0827% Y(2)
1+0.5272 ~ X(2)
Y(2)1+0.52%)= X (z)(1-0.2z* —0.082 2)
y[n]+ 0.5y[n —2] = x[n] —0.2x[n —1] — 0.08%x[n — 2]
y[n] = X[n] —0.2X[n —1] — 0.08x[n — 2] — 0.5y[n — 2]

H(z) =

Direct Form I: Direct realisation of digital filter

N +
vim)=3Y a;x(n—i)— ¥, b; v(n—1i)
i=0 i=1

X[n]

z'] z'] ”””””” > Z_‘Z

a, % a3, ay 1. feedforward (a;)
e forms x'[n]
5 2. feedback (b))
e forms y[n]

Two LTI filters in cascade:

x[n]

y[n]

18



Reordered form of realisation

X[n] Filters are linear

SO can swap order.
Redundant time
delays (z1) as A=A’

by
B=B’ and C=C’
-1

BLZ T A
yTn]| | , ,

e gy -ty B
aO "@ al CZ) aN

y[n]

Note: y'[n] = x'[n] of previous slide BUT y[n] = y[n] © so, same filter

Direct form I
Canonical form of realisation (minimum memory)

5 x[n]
b, —X) by —
vInd z1 Z | »z1
a, &  a, ay
5 y[n

redundant time delays removed

19



Derivation of Canonical Form

¥(2) EO = General form of

H(z)= o) i transfer function
(1 -3 b;z7)
i=1

Y(z)=H(z) X(2) Re-arranging in terms of output
. o . X(2)
Y(z)= Z a;z " Y'(z) where Y(z)= —u

=0 (1-3% bz

Which as a difference equation is =l

N M
Direct II vy =% a; viin—i) where Vin)=x(n) +3 b, viin-i),
i=0 i=1
Remember

N M
Direct1 ¥ =Y a;x(n—i) +3 b; v(n—1)
i=0 i=1

Canonical terms
AI BI CI

Canonical Realisation

+ Direct Form |
— Conceptually simplest realisation
— Often less susceptible to noise
+ Canonical/Direct Form 11
— Minimimum memory (storage)
« Filter design
— Determine value of filter coefficients (all ai & bi)

— Poles controlled by bi coefficients
« ifany bi = 0 then filter IIR (recursive)
« if all bi = 0 then filter FIR (non-recursive)

— Zeros controlled by ai coefficients

20



Cascade Form

 Transfer function factorised to
— Product of second order terms Hn(z)
— Cis a constant (gain)

N

H(z)=C][H.(2
n=1

xn] | yin]
c H(2) ] Ho@) |- [ 2
Most common realisation
Often assumed by many filter design packages
many 2" order sections have integer coefficients

Parallel Form

« Transfer function expressed as
— partial fraction expansion of second order terms

%C H(z):C+iHn(z)

H.(2) ()
Least sensitive
to coefficient
N
H(2) Y errors, i.e., when
. limited No. bits
x[n] yIn] to represent real
Hy(2) D (R) coefficient




Bi-quadratic Digital Filter

 Canonic form of Second order system
* 2nd order, system ‘building block’

x[n]

b~ b, &
N " -1

3 X a0 8,

s y[n]

Difference equation:

y[n]=ax[n]+a,x[n-1]+a,x[n—-2]+b y[n-1]+b,y[n—-2]

lIR Filter Design Methods

» Normally based on analogue prototypes
— Butterworth, Chebyshev, Elliptic etc

 Then transform H(s) — H(z2)
» Three popular methods:

* Impulse invariant
— produces H(z) whose impulse response is a sampled version of
h(t) (also step invariant)
» Matched z — transform
— poles/zeros H(s) directly mapped to poles/zeros H(z)
+ Bilinear z — transform
— left hand s — plane mapped to unit circle in z - plane

22



Impulse Invariant

« Simplest approach, proceeds as follows,
 Select prototype analogue filter
» Determine H(s) for desired wc and ws

* Inverse Laplace,
— i.e., calculate impulse response, h(t)
» Sample impulse response h(t)|t=nAtd
— h[n] = Atd h(nAtd)
» Take z - transform of h[n] = H(z)
— poles, p1 map to exp(plAtd) (maintains stability)
— zeros have no simple mapping

Impulse Invariant

» Useful approach when

— Impulse (or step) invariance is required, or
* e.g., control applications

— Designing Lowpass or Bandpass filters
» Has problems when
— H(w) does not > 0 as w — o
— i.e., if H(w) is not bandlimited, aliasing occurs
— e.g., highpass or bandstop filters

23



Matched z - transform

» Maps poles/zeros in s — plane directly
— to poles/zeros in z — plane

* No great virtues/problems

« Fairly old method
— not commonly used
— so we won’t consider it further

Bilinear z - transform

» Maps complete imaginary s —plane (+«)
— to unit circle in z -plane

* i.e., maps analogue frequency wa to
— discrete frequency wd

 uses continuous transform,

2 W, At
w, =—tan
At 2

This compresses (warps) w, to have finite extent +w,/2
i.e., this removes possibility of any aliasing ©

24



tan transform maps w,to w,

Analogue W, i

FiIter\ // Mk

H(w, ‘ ‘ | f
[H(w;)l 0 - 0 ‘T 2n :3n 4 WAL?2

Spectral compression | [H(w,)|
due to the bilinear
z -transform

Digital/%v

Filter

-wf2 0 w2 W, 3w/2 2w, W,
Note, H(w,) periodic, due to sampling

&

Bilinear Transform

w, = 2 tan( wqAt ) The bilinear transform
At 2
5 Jsin( @y A ) Transforming .to s-domain
§=—_ = Remember: s = jo,
At oAt and tan@ = sin6/coso
cos( ) Where 0 = 0 At/2
i ja)dAI —jm(;Af
14 4 —
2 va(exp( 2 )~ exp( 2 ) Using Euler’s relation
T At p JwaAt —jwgAt This becomes...
Yalexp( )+ exp( ) ) (note: j terms cancel)
2 (1-exp(=josAr)
f= — . r r
A (1+ exp(—j,00) Multiply by exp(-j0)/exp(-j0)
21—z As z = exp(s4At) = exp(jogAt)

T A+ )




Bilinear Transform

» Convert H(s) = H(z) by substituting,

- m from

201-z)

Note: this comes directly
est. (z) or the tan transform

» However, this transformation compresses the analogue
frequency response, which means
— digital cut off frequency will be lower than the analogue

prototype

* Therefore, analogue filter must be “pre-warped” prior to
transforming H(s) = H(z)

Bilinear Pre-warping

w, = 2tan(WdAtj

20 | At 2
1.6
12 A
(,l)a=(,0d
0.8
0.4
0 02 04 06 08 10

(OF]
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Bilinear Transform: Example

 Design digital Butterworth  « Butterworth prototype (unity
lowpass filter cut off) is,

— order, n =2, cut off
frequency wd = 628 rad/s

— sampling frequency ws =
5024 rad/s (800Hz)

 pre-warp to find wa that

gives desired wd
W, = 2 tan( 028 }=663rad/s Note: wg < W,
}600 2% 800 due to compression

H(s) =

1
s? +4/25+1

Bilinear Transform: Example

» De-normalised analogue prototype (s’ =s/ w,)
- w. = 663 rad/s (required w, to give desired)
1

s ) Vs
— | +—+1
663 663

H(Sd):

— Convert H(s) = H(z) by substituting
20—z
> Atz
1 +1
1y)\? =]
2X800(1__21 ) 2 2><800(1—_Z1 ) 1

663(1+z7) 663(1+2z7)

Note: H(z) has both

0.098z° +0.195z +0.098
poles and zeros
z2-0.942z2+0.333 H(s) was all-pole

H(z)=
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Bilinear Transform: Example

H(z) =

Y(z) 0.098z°+0.195z +0.098

X(z)  2%-0.9427+0.333

Multiply out and make causal:

Y (z)(z* —0.942z +0.333) = X (2)(0.098z° + 0.195z + 0.098)
Y (z)(1-0.942z7" +0.33327?) = X (2)(0.098+0.195z " + 0.098z %)

Finally, apply inverse z-transform to yield the

difference equation:

y[n]=0.098x[n]+0.195x[n —1]+0.098x[n — 2]

+0.942y[n—-1]-0.333y[n—-2]

Bilinear Transform: Example

Magnitude response
\ ‘_1\\“

—

gain (dB)

500 1000 1500 2000
frequency (rad/s)

2500

1. same cut off
frequency,

2. increased
roll off and
attenuation
in stopband

3. oo attenuation
at wy/2
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Bilinear Transform:

Example

Pole/Zero Plot

Nl 4 4 4 - T 4 T
0.8~ -
0.6~ .l
0.4~ i
X
g 02[- -
< [0}
g 8
E 02 .
X
oal- ]
-0.6 - -
-0.8 - -
al- L ]
I r r r [ r
-2 -1.5 -1 -05 0 0.5 15 2
Real Part
Bilinear Transform: Example
Phase response
0 Increased phase
2 delay
-40
)
E-WUD
120
- Bilinear transform has
-140 — : :
~Tamoge effectively increased
160 I digital filter order
o e we amw e (by adding zeros)

frequency (rad/s)
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Bilinear Transform: Example

x[n
5 [n]
Canonical Implementation
0.942 -0.333 y[n]=0.098y'[n]+0.195y'[n—1]+0.098y'[n - 2]
_’® y'[n]=x[n]+0.942y'[n—-1] - 0.333y'[n—2]
L 5-1 -1]
yl[ £ d of the difference equation
0.098 .50 0.195,5¢) 0.098 y[n] =0.098x[n]+0.195x[n —1]+0.098x[n — 2]

+0.942y[n—1]-0.333y[n-2]

5 y[n]

Bilinear Transform: Example

Impulse Response
0.35F~ f 3 3 3 f 3 3 f =

0.3~ —

Amplitude
=)
e
a
]
1

°
=)
°

SH—@
N
[l

5@
5@
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Bilinear Design Summary

Calculate pre-warping analogue cutoff frequency

» De-normalise filter transfer function using pre-warping cut-off
Apply bilinear transform and simplify

 Use inverse z-transform to obtain difference equation

Direct Synthesis

» Not based on analogue prototype
— But direct placement of poles/zeros

» Useful for
— First order lowpass or highpass
« simple smoothers
— Resonators and equalisers
« single frequency amplification/removal
— Comb and notch filters
 Multiple frequency amplification/removal




First Order Filter: Example

» General first order transfer function
— Gain, G, zero at b, pole ata (a, b both < 1)

Remember: H(W) = H(2)|, - expijmns

G(1+bz‘1)

A

with @ +ve & b-ve
this is a lowpass filter

H(0) = %4;5) exp(jn) = -1

i.e.,

G(1-b)

{0 ="5a)

g2

First Order Filter: Example

 Possible design criteria

— cut-off frequency, wc
» 3dB =20 log(|H (wc)|)
« e.g., atwc = /2, (1+h)/(1+a) = V2
— stopband attenuation
« assume wstop = 7 (Nyquist frequency)
+ e.g.,82=H(n)/H (0)=1/21i.e.,

two unknowns (a,b)

H(7) _ (1-b)(1-a) :i two (simultaneous)
H (0) (l+b)(1+ a) 21 design equations.
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Digital Resonator

* Second order ‘resonator’
— single narrow peak frequency response
— i.e., peak at resonant frequency, w0

|HW)|?

1/2 Aw = 3dB width

0 WU 75/2

v

Quality factor (Q-factor)

» Dimensionless parameter that compares
— Time constant for oscillator decay/bandwidth (Aw) to

— Oscillation (resonant) period/frequency (»0)
« High Q = less energy dissipated per cycle

o= _To
Aw Af
« Alternative to damping factor () as

2 2
2 @y

§° +2wySs+ @}

Q== H(s)=

Q,
P+ 2s+a)
Q

* Note: Q <2 overdamped (not an oscillator)
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Digital Resonator Design

» To make a peak at w0 place pole

— Inside unit circle (for stability)
— At angle w0 distance R from origin

* i.e., at location p = R exp(jw0)

— R controls Aw
» Closer to unit circle — sharper peak
« plus complex conj pole at p* = R exp(-jw0)
1

H(2)

(L-R-ep(iw)z  J1-R-op(—jw,)z )
1

= 2

1-R(exp (jw, ) +exp (- jw, )zt +R?z"
N < B
l+az "t +a,z7?

Where (via Euler’s relation)

a, = —2Rcos(w,) and a, = R?

Discrete Filter Transformations

« By convention, design Lowpass filters
— transform to HP, BP, BS, etc

+ Simplest transformation
— Lowpass H(z’ ) — highpass H(z)
— HHP(z) = HLP(z)|z> — -z
« reflection about imaginary axis (ws/4)
+ changing signs of poles and zeros

 LP cutoff frequency, wCLP becomes
 HP cut-in frequency, wCHP =% - wCLP




Lowpass — highpass (' = -z)

z- plane
Lowpass

prototype

Were

pPL= 1/41 Z = -1

Highpass
transform

Wenp

Py = '1/41 Zy = 1

Poles/zeros reflected in imaginary axis: Wepp = V2 - Wep
Same gain @ w,/4 (i.e., n/4)
[HWp)| = [H(7/2 - wip)|

Discrete Filter Transformations

H(2)
— Cut-off (3dB) frequency =
wc (remains same)

S cos(w,At) -z

- 1—cos(w,At)z

. -1
—az+1

yA

» Lowpass H(z’ ) — highpass e+ Lowpass H(z’ ) — Bandpass

H(2)
— Centre frequency =w0 &
3dB bandwidth = wc

_cos(w,At)
cos(w_At)

Note: these are not the only possible BP and BS transformations!
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Discrete Filter Transformations

» Lowpass H(z’ ) — Bandstop H(z)

— Centre frequency = w0 3dB bandwidth = wc

2’ —(2a/(k +1))z + (1-K) [(1+K)

T 1+ Qal(k + D)z +(A—K) (11 k))z2

cos(w, At
_ Cos(WeAl) k =tan®(w_At)
cos(W_At)
Note: order doubles for bandpass/bandstop transformations
z- plane Lowpass Highpass
Bandpass Bandstop
transform transform
ﬁﬁ / o
D X X
&‘/ ch
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Summary

Digital Filter Structures

— Direct form (simplest)

— Canonical form (minimum memory)

IR filters

— Feedback and/or feedforward sections

FIR filters

— Feedforward only

Filter design

— Bilinear transform (LP, HP, BP, BS filters)
— Direct form (resonators and notch filters)
— Filter transformations (LP — HP, BP, or BS)
Stability & Precision improved

— Using cascade of 1st/2nd order sections

How to Beat the Noise?

Idea 2: Modulation

ELEC 3004: Systems 29 March 2019 77
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Modulation

Analog Methods:

* AM - Amplitude modulation
— Amplitude of a (carrier) is

modulated to the (data) /\/\&g ]
« FM - Frequency modulation e
— Frequency of a (carrier) signal I
is varied in accordance to the AN PRI e
amplitude of the (data) signal S
* PM — Phase Modulation
Source: http://en.wikipedia.org/wiki/Modulation
Modulation [Digital Methods] e *L
Start with a “symbol” & place it on a channel
« ASK (amplitude-shift keying) j

oo 11 1] oo S o ]
(’ﬂ 00111 oﬂo 0 time j{ié} L1 e
» FSK (frequency-shift keying)

\ Nh N ARAR Ann
J L il i i / "”‘| il
NanrAvannrRyaill
. RYAlyRY
| | ! ! IJ\ I /AT I\
Data

« PSK (phase-shift keying)
 QAM (quadrature amplitude modulation)
s(t) = A - cos(w. + ¢;(1))

= x;(t) cos(w,t) + x4(t) sin(w,t)

l[;ﬂ
Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL 334 | http://en.wikipedia.org/wiki/Constellation_diagram
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Modulation [Example — V.32bis Modem]

Figure 10.13 Illustration of the QAM constellation for a V.32bis dialup
modem.

Source: Computer Networks and Internets, 5e, Douglas E. Comer

Multiple Access (Channel Access Method)

+ Send multiple signals on 1 to N channel(s)
— Frequency-division multiple access (FDMA)
— Time-division multiple access (TDMA)
— Code division multiple access (CDMA)
— Space division multiple access (SDMA)

« CDMA:
— Start with a pseudorandom code (the noise doesn’t know your code)

T

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access

39


https://en.wikipedia.org/wiki/Code_division_multiple_access

ELEC 3004: Systems

29 March 2019 82

Next Time...

 Digital Filters

* Review:
— Chapter 10 of Lathi

« A signal has many signals ©
[Unless it’s bandlimited. Then there is the one o]
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