

An Introduction to Digital Linear **Systems: Signals & Controls**

Welcome!

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 1 [V2]

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

February 27, 2019

(CC)) BY-NC-SA

2019 School of Information Technology and Electrical Engineering at The University of Queensland

Ex_5 : Magnification of Faces by a Factor of 64×

• PS. While we cover the theory why this is hard ©, We don't cover how to actually do this in this class (as it requires an **extensive** face database) ®

However, for a great review please see:
 Baker, S., & Kanade, T. (2002). "Limits on super-resolution and how to break them."

 IEEE Transactions on Pattern Analysis & Machine Intelligence, (9), 1167-1183.
 DOI: [http://dx.doi.org/10.1109/tpami.2002.1033210]

URL: http://www.wave.one/face-compression

(September 2018)

What is a System?

- **■** A **process** (function) by which information (signals) are modified so as to extract additional information from them
- Systems modify the signal(s) to yield a new result (also a signal)
- Can be of various forms: electrical, mechanical, etc.

27 February 2019 - 14

Systems Can Be Simpler Than You Think

- B747
 - level flight,
 - 40000 ft, 774 ft/sec ...

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -.003 & .039 & 0 & -.322 \\ -.065 & -.319 & 7.74 & 0 \\ .020 & -.101 & -.429 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u - u_w \\ v - v_w \\ q \\ \theta \end{bmatrix} + \begin{bmatrix} .01 & 1 \\ -.18 & -.04 \\ -1.16 & .598 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix}$$

- u, w: horizontal/vertical velocity
- q, θ : orientation & pitch rate
- $-\delta e$, δt : elevator and thrust commands

ELEC 2004: Systems

Signals and Systems Together

• A **signal** can be seen as that which goes in and out of a **system**

27 February 2019 - 16

Signals and Systems Together

- A signal can be seen as that which goes in and out of a system
- Signal Processing / "Filters": can be seen as a open-loop system

• Feedback Control: can be viewed as the case where the output signal shapes the input signal

Schedules and Locations:

- Lectures:
 - Wednesdays from 10:05 am 12:00 noon
 - Social Science Building (24) Room **S304**
 - [Here! ◎]

&

- Fridays from 4:05 -- 5:30 pm
- Parnell (Physics) Building (07) Room 234
- It starts at 10:05a (or 4:05p on Fridays) → 🛪 Relax!

27 February 2019 - **2**0

Schedules and Locations: Tutorials

- Tutorials: EVEN Weeks (Starting on Week 2)
 SIX parallel sessions -- Please come to your assigned one.
 - Alternate attendance is at tutor discretion and must be arranged in advance
- Sessions are:
 - Wednesday 4:00p--6:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 9:00a--11:00 in Hawken Room S202
 - Thursday 12:00n--2:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 2:00p--4:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 4:00p--6:00 in Hawken Room S202
 - Friday 2:00p--4:00 in <u>Hawken</u> <u>Room S202</u>
- ~ 1.5 hours

Schedules and Locations: Labs

- Prac / Lab Sessions: ODD Weeks (Starting Week 3)
 - Six parallel sessions -- Please come to your assigned one.
 - Alternate attendance is at tutor discretion and must be arranged in advance
- Sessions are:
 - Wednesday 4:00p--6:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 9:00a--11:00 in Hawken Room S202
 - Thursday 12:00n--2:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 2:00p--4:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 4:00p--6:00 in Hawken Room S202
 - Friday 2:00p--4:00 in <u>Hawken</u> <u>Room S202</u>
- ~ 2 hours

ELEC 3004: Systems

27 February 2019 - **2**1

Lecture Schedule:

Week	Date	Lecture Title
1	27-Feb	Introduction
	1-Mar	Systems Overview
2	6-Mar	Systems as Maps & Signals as Vectors
	8-Mar	Systems: Linear Differential Systems
3	13-Mar	Sampling Theory & Data Acquisition
	15-Mar	Aliasing & Antialiasing
4		Discrete Time Analysis & Z-Transform
	22-Mar	Second Order LTID (& Convolution Review)
5		Frequency Response
	29-Mar	Filter Analysis
6		Digital Filters (IIR) & Filter Analysis
0	5-Apr	Digital Filter (FIR)
7	10-Apr	Digital Windows
	12-Apr	FFT
8	17-Apr	Active Filters & Estimation & Holiday
	19-Apr	
	24-Apr	* *** *
	26-Apr	
9	1-May	Introduction to Feedback Control
		Servoregulation/PID
10		PID & State-Space
		State-Space Control
11		Digital Control Design
		Stability
12		State Space Control System Design
		Shaping the Dynamic Response
13		System Identification & Information Theory
	31-May	Summary and Course Review

Reference Texts:

B. P. Lathi

Signal processing and linear systems You may use the Internet!! 1998

TK5102.9.L38 1998

• Yes!

- Khan Academy
- Wikipedia
- YouTube
- & Google Scholar Too!

João Hespanha Linear Systems Theory, [UQ Ebooks]

• This field is vast & there are countless references present

The Point of the Course

- Introduction to terminology/semantics
- An appreciation of how to frame problems in a linear systems engineering context
- Modeling and learning assumptions/when to trust the model
- Ability to identify critical details from the problem

→ It's a shortcut ...

Once you see that a system is "linear" you can then apply the raft of

"linear systems" tools

(time & frequency analysis) to them without having to do all the analysis from scratch

Not the Point of the Course

- · Get good grades
- Just do homework
- Memorize pointless facts
- Rote "learning" of material with no comprehension
- Ask yourself, is the wonder still there?

Controllability and state transfer

And that, of course, Linear Systems are Cool! ②

Observability and state estimation

Lots of Stuff To Cover...

- Signal Abstractions
- Signals as Vectors / Systems as Maps
- Linear Systems and Their Properties
- LTI Systems
- Autonomous Linear Dynamical Systems •
- Convolution
- FIR & IIR Systems
- Frequency domain
- Fourier Transform (CT) Fourier Transform (DT)
- Even and Odd Signals
- Likelihood Causality
- Impulse Response
- Root Locus
- Bode Functions
- Left-hand Plane
- Frequency Response

- Discrete Time
- Continuous Time
- Laplace Transformation
- Feedback and Control
- Additional Applications
- Linear Functions
- · Linear Algebra Review
- Least Squares
- Least Squares Problems
- · Least Squares Applications
- Matrix Decomposition and Linear
- Regularized Least Squares

- Orthonormal sets of vectors
- Eigenvectors and diagonalization
- Linear dynamical systems with inputs and outputs
- Symmetric matrices, quadratic forms, matrix norm, and SVD
- Least-squares applications

Assessment

Problem Set 1:

An Introduction to Signals and Systems (20%) Due: March 29, 2019 at 23:59 AEST [end of week 4]

• Problem Set 2:

Sampling and Filters (Digital & Analog) (20 %)

<u>Due</u>: May 3, 2019 at 23:59 AEST [end of week 9]

• Problem Set 3:

Digital Feedback Control (20 %)

Due: May 24, 2019 at 23:59 AEST [end of week 12]

27 February 2019 - **28**

Platypus: Peer-review for Deliberate Practice/Learning

- Peer-Review
 - A key part of Engineering
 is being able to critically
 evaluate peer work
 (and give good feedback on it)
 - We <u>will</u> help teach you good habits of peer feedback
- **Question** (not Assignment) based random shuffling

In Summary: Some Philosophy

- Let's start with Why ...
- To learn something is to teach it
 - The function of a teaching is not so much to cover the topics, but more to discover them
- It is actually **more** work for us!
 - We have to teach you how to reflect
 & then assess this as well as how to do the assignment
- It helps you understand it by giving you a different perspective
- We're a community
 - You (alone) can't do everything ... that's why we work together
 - The notion of "free speech" \rightarrow Trust emerges \rightarrow efficiency (η)

ELEC 3004: Systems

I need a "7" for a Job! Che New York Cimes | http://nyti.ms/1jTJavh

SUNDAYREVIEW | OP-ED COLUMNIST

How to Get a Job at Google

FEB. 22, 2014

MOUNTAIN VIEW, Calif. — LAST June, in an interview with Adam Bryant of The Times, Laszlo Bock, the senior vice president of people operations for $\operatorname{Google}-\operatorname{i.e.},$ the guy in charge of hiring for one of the world's most successful companies — noted that Google had determined that "G.P.A.'s are worthless as a criteria for hiring, and test scores are worthless. ... We found that they don't predict anything," He also noted that the "proportion of people without any college education

Information: Size and Rate

A short novel	1 megabyte	1,000,000
All undergraduate textbooks	100 MB	100,000,000
An iPod	100 GB	80,000,000,000
A library floor of academic journals	100 GB	100,000,000,000
Print collections of Library of Congress	10 TB	10,000,000,000,00

Copying notes by hand	32 bits/second	32 bps
Speaking	230 bits/sec.	230 bps
Reading text	360 bits/sec	360 bps
Home internet connection	1-10 Mb/sec.	5,000,000 bps
Single optical fiber	40 Gb/sec.	40,000,000,000 bps

A short novel $\cong 1$ Mbyte

70 hours to copy 6 hours to read

Less than 10 seconds to download

Taken from: http://burikmodeldesign.com/search/How_Many_Bytes.htm

Changes from 2017

- 1. Three Assignments (Peer-reviewed, Marks from Tutor)
- 2. Labs remain optional
 - 1. Concepts still overlap with class
 - 2. May be assessed on Assignments/Final Exam
- 3. No State-Space Control "crammed" in the end
- 4. I am still inspired by, but little less of, Boyd's EE263: *Introduction to Linear Dynamical Systems*

ELEC 3004: Systems

27 February 2019 - **36**

E-mail

- elec3004@itee.uq.edu.au
- Casper!
 - https://casper.ceit.uq.edu.au/courses/elec3004/
- [That's it!]
- {Not the instructors/tutors personally}

ELEC 3004: Systems

7 5-1----- 2010 44

Communications: Some Expectations

- · Think carefully before using email
- Please keep communication concise and polite
- Let me know if there are problems
 - During tutorials, before and after lectures
 - Student reps (Teaching and Learning Committee)
 - Consultation period: 4-6pm Thursday

7 February 2019 - **4**

Communications: Examples

• Email 1:

To [ELEC3004],

I am currently signed up for the Tuesday afternoon tutorial, T1, but this clashes with another subject in which I have no movement. Is it possible for me to be changed into the Wednesday morning tutorial, T2? Thank You for your time.

Name signed, student number

• Email 2:

S'up!! ☺ all T classes be the full, can't sign on ☺

Prere-quiz-ite Solutions ©

Q1: Complex Solutions to Real Problems

Can an ODE with only real constant coefficients have a complex solution?

- Yes, because the coefficients do not give the solution, but rather setup an equation that instead gives a solution
- For example:

$$y'' + y = 0$$

• Has solutions:

$$e^{ix}$$
 and e^{-ix}

ELEC 3004: Systems

Manala 2010 - **E**4

Q2: Transfer Functions and the s-Domain [1]

Final Value Theorem

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

Latex Version: $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

- For systems that are valid (i.e., stable):
 - Roots of the denominator of H(s) must have negative real parts.
 - H(s) must not have more than one pole at the origin.

I March 2019 - 55

Q2: Transfer Functions and the s-Domain [2]

•
$$G_b(s) = \frac{3004}{s-4}$$

March 2019 - **56**

Q2: Transfer Functions and the s-Domain [2] • $G_a(s) = \frac{3004}{s+4}$ Impulse Response of G_a $G_b(s) = \frac{3004}{s-4}$ Impulse Response of G_b $G_b(s) = \frac{3004}{s-4}$

Q2: Transfer Functions and the s-Domain [5] Matlab Source for Graphs %% ELEC 3004 Quiz 0 -- Q2 % Ga a=[3004]; b=[1 4]; Ga=tf(a, b); figure(10); impulse(Ga); title('Impulse Response of G_a'); % Gb a=[3004]; b=[1 -4]; Gb=tf(a, b); figure(20); impulse(Gb); title('Impulse Response of G_b'); a=[3004]; b=[1 0 4]; Gc=tf(a, b); figure(30); impulse(Gc); title('Impulse Response of G_c'); a=[3004]; b=[1 0 0 4]; Gd=tf(a, b); figure(40); impulse(Gd); title('Impulse Response of G_d'); % Ge a=[3004]; b=[1 4 0]; Ge=tf(a, b); figure(50); impulse(Ge); title('Impulse Response of G_e'); a=[3004]; b=[4]; Gf=tf(a, b); figure(60); impulse(Gf); title('Impulse Response of G_f'); ELEC 3004: Systems

Q3: Free Determination

• False:

$$\det(A+B) \neq \det(A) + \det(B)$$

• True:

$$\det(AB) = \det(A) \cdot \det(B)$$

1 Manah 2010 **4**

Q4: Free Determination: All TRUE

• True:

A = LU: is a factorization that is basically an elimination

• True:

If **A** is invertible, then the only solution to Ax = 0 is x = 0.

• True:

Linear Equations (Ax = b) come from steady-state problems. eigenvalues $(Ax = \lambda x)$ have importance in dynamic problems.

ELEC 3004: Systems

March 2019 - **62**

Q6: A Signal Re-volution!

Frame 1

Frame 2

Frame 3

Frame 4

- A. It could be rotating either way (CW or CCW). The angular velocity is $\dot{\theta} = \frac{\Delta \theta}{\Delta t} = \left| \frac{(2n+1)\pi}{\frac{1}{25}} \right| \Rightarrow 12.5 \ rev/second$
- B. Speeds (m/s): $v = \omega \times r = 25\pi \frac{rad}{s} \cdot (0.32 \text{ m}) = 25.1 \frac{m}{s} = 90.5 \text{ kmh}$
- C. Speed_{car} ? Speed_{wheel}:
 Straight line (no turning)

 - Full traction
 - No suspension effects ...
 - What is the **frame of reference**? Should be picked with care!

Next Time...

• We'll talk about System Models

• Review:

ELEC 3004: Systems

- Phasers, complex numbers, polar to rectangular, and general functional forms.
- Chapter 1 of Lathi (particularly the first sections on signals & classification thereof)
- Register on Platypus
- Try the practise assignment (will be posted soon)

