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CONTROLLABILITY AND OBSERVABILIrY 

5.1 INTRODUCTION 

Some state-space concepts can be regarded as reinterpretations of older, 
frequency-domain concepts; others are distinctive to state-space methods. Con
trollability and observability are in this latter category. 

The ideas of controllability and observability were. introduced by R. E. 
Kalman In the mid 1950s as a way of explaining why a method of designing 
compensators for unstable systems by cancelling unstable poles (i.e., poles in 
the right half-plane) by zeros in the right half-plane is doomed to fail even if the 
cancellation is perfect. (It was already known that this method of compensation 
was not feasible because perfect cancellation .is not possible in practice. See 
Note 5.1.) Kalman showed that a perfect pole-zero cancellation would result in 
an unstable system with a stable transfer function. The transfer function, 
however, is of lower order than the system, and the unstable modes are either 
not capable of being affected by the input (uncontroliable) or not visible in the 
output (unobservable). 

IIi frequency-domain analysis it is tacitly assumed that the dynamic proper
ties of a system are completely determined by the transfer function of the 
system. That this is not always the case is illustrated by the following example. 
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Example SA Hypotbetical system Figure 5.1 shows the block-diagram of a hypothetical system 
contrived specifically to illustrate the concepts of controllability and observability. There is no 
reason, however, why it would not represent some physical process. 
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Figure 5.1 Hypothetical fourth-order system to illustrate controllability and observability. 

,. 
The differential equations of the system, obtained by inspection of the block-diagram are 

Xl = 2x) + 3X2 + 2X3 + X4 + U 

X2 = -2xI - 3X2 - 2u 

X3 = -2x\ -2X2-4x3 +2u 

X4 = -2xI - 2X2 -2x3 - SX4 - U 

and the observation equation is 

y = 7 Xl + 6x2 + 4X3 + 2X4 

Thus, the matrices of the state-space representation are: 

) 

(SA. I) 

(SA.2) 

[ 
~ 3 2 I] [ I] -2 -3 0 0 -2 

A= B= 
-2 ~2 -4 0 2 

C = [7 6 4 2] 

-2 -2 -2 -S- -I 

The resolvent corresponding to A is given by 

(sl - A)-l = 

[

S3+ 12i+47s+ 6 

I - 2S2 - 18s - 40 

~(s) - 2S2 - 12s - 10 

. - 2S2 - 6s - 4 

3s2 + 21s + 36 

s3+7s2 + 8s-16 

- 2S2 - 12s - 10 

- 2S2 - 6s - 4 

2S2 + 14s + 24 

4s -16 

S3 + 6s2 + 7 s + 2 

- 2S2 - 6s""': 4 

S2 + 7s + 12 ] 
-2s - 8 

-2s - 2 
S3 + SS2 + 8s + 4 .' 
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where 
~(s) = IsI- AI = S4 + 21s3 + 35s2 + 50s + 24 

Thus the transfer function from the input u to the output y is given by 

1 s3+982 +268+24 
H(s) = C(sl- A)- B = S4 + 2Is3 + 35s2 + 50s + 24 (5A.3) 

which is the ratio of a third-degree polynomial to a fourth-degree polynomial-quite as 
expected .. On factoring the numerator and denominator, however, we discover that 

(s + 2)(8 + 3)(8 + 4) 
H (8) = (8 + 1)(8 + 2)(8 + 3)(s + 4) 8 + 1 (5A.4) 

Thus, three of the poles (at s = -2, -3, and -4) are cancelled by zeros at exactly the same 
locations, and what seems to be a fourth-order transfer function is actually only first-order. 

To help explain this rather "remarkable behavior, the following change of state variables 
is performed: 

.f = Tx 
where 

and 

The matrix T happens to be a diagonalizing transformation 

o -2 0 0 
TAT-l=A= [

-1 0 0 0] 
o 0 -3 0 

o 0 0-4 

and the corresponding control and obs~rvation matrices are 

B=1'8=[l]. C=CT-'=[I 100] 

Hence the corresponding state equations are 

and the observaiion equation is 

Xl = -Xl + u 

X2 = -2x2 

X3 = -3X3 + U 

X4 = -4x4 

(5A.5) 

(5A.6) 

A block-diagram representation of (5A.S) and (5A.6) is shown in Fig. 5.2. Clearly, the input u 
aflects only the state variables Xl and X3: X2 and x4 are unaffected by the input. The output y 
depends only on Xl and "X2; X3 and x4 do not contribute to the output. Thus, in the transformed 
coordinates, the system has four different subsystems. (In this case each subsystem is only 
first-order. ) 

XI: affected by the input; visible in the output 

X2: unaflected by the input; visible in the output 

X3: aflected by the input; invisible in the output 

X4: unaflected by the input; invisible in the output 

Only the first subsystem Xl contributes to the transfer function H(s), which clearly is 
l/(s + 1). 
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u 
~ _______ i~l~ Y 

Figure S.2 , System equivalent of fig: 5.1 showing separation into controllable an.d observable 
subsystems: 

E~ample 5A is a microcosm of the general case. As Kalman has shown,[l] 
every system of the generic form 

x=Ax+Bu 

y= ex 

can be transformed into the four subsystems of Fig. 5.2. Th~ first subsystem is 
both controllable and observable: th~ second is uncontrollable but observable; 
the third is controllable but unobservable; and the fourth is neither observable 
nor controllable. The transfer function of the system is determined only by the 
controllable and observable subsystem. It thus follows that if the transfer function 
of a single-input, single-output system is of lower degree than the dimension of 
the state-space, then the system must contain an uncontrollable subsystem, or an 
unobservable subs),stem, or possibly both. By conve~tion, if a system cQntains 
an uncontrollable subsystem it is said to be uncontrollable; likewise, if it cpntains 
an unobservable subsystem it is said to be unobservable. (See Note 5.2.) 

The system in the foregoi~g example is asytnpt()tically stable: all its poles 
are in th~ left half-plane, so the consequences of the system being unpbservable 
and uncontrollable arei:onocuous. Any initial conditions on· the uncontrollable 

r 
I 
i 
r 
1. 

. ~ 
I 

I. 



194 CONT~OL SYSTEM' DESIGN 

and unobservabl~ states decay harmlessly to zero. But suppose that one o(tb.e 
uncontrollable or un6~se~able subsystems were , un$table~ The resulting beha'v~ 
could well , be disastrous: a' random disturb~nc~, rio , matter how , small" Wliktt, 
establishes a noi1z~ro in,itial state will send the sul?sy~~em off to infinity. MUrPl~ 
law par excellence! ' , 'i~ . 

There is a distinction between an uncot:ltfoll~l?le system in which the .. 
trollable part is , stable and one in which the uncontrollable part is unstab:l~., A 
system of the former type is said to be stabilizable, and the uncontrollable _ 4; 

often can be , saf~ly ignored by the control engineer. 
Similarly, there isa distinction between' an unobservable system in whicb ,-' 

'unobserVable subsys(~m is stable and one in which it is unstable. The',fo~~. 
type is said to be de~(!ctable, and the unobservable part usually can be safely 
ignored in the c()~trol system design. 

5.2 WHERE DO UNCONTROLLABLE OR 
UNOBSERVABLE SYSTEMS ARISE? 

The example of ,an uncontrollable and unobservable system that was given in 
the previous section is ' highly contrived. One ,might suspect that such systems_ 
are academic , 'curiosities ,and do not arise in the real world. But in fa~£ 
uncontrollable and, unobservable systems are not at all uncommon, as the 
illu,strations of ' the present section will reveal. ' 

. , 
,\ 

Redundant 'siate' :variables One common source of uncontrollable systems arises'" 
wh,en redundant state variables are defined. Consider, for 'example, the dy'naiittc~ .... . 
system 

i=Ax+Bu 

and ,suppose, for some reason, more state variables, proportional to those 
already present in th~ state vector x are defined: 

z = Fx (5.l) 

where F is an n' x k matrix. Then 

i = Fi = F(Ax + Bu) 

is a true differential equation, so we can define a ".metastate" vector 

x= [:] 

which satisfies th~ differential equation 

i = Ax+Bu (5.2) 

where 

A= [~ ~l B=[!] 
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The system characterized by (5.2) has the block diagram shown in Fig. 
5.3(a). There is a path from the input u to the state x and to the (redundant) 
state z; superficially the system seems to be controllable. But consider the 
change of variable 

i=Tx (5.3) 

where 

(5.4) 

where I, (I = k, n) is an I-by-I identity matrix. (Multiply T by T- 1 to verify 
(5.4).) 

The dynamics matrix of the transformed system is given by 

A = TAT- 1 = [Ik 0 J [A OJ [Ik 0 J = [A OJ 
- F In FB ° F In ° ° 

and the control matrix is given by 

- [ h B=TB= 
-F ~] = [!] = [:J 

u 

(a) 

u i 

(b) 

Figure S.3 Redundant state produces an uncontrollable system. (a) System with redundant state 
z = Fx; (b) System of (a) after being transformed by x = Tx. 

I -
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Thus, in the transformed system, 

x = Ax + Bu 
z=o (5.5) 

Differential equation (5.5) repfese~ts k integrators with no inputs connected to 
them (Fig. 5.3( b)) and hence the substate z is uncontrollable. 

All the algebra used above is really quite superfluous. The transformation T 
of (5.3) merely asserts that 

z=z-Fx 

and, by virtue of (5.1), z == 0, so surely (5.5) must hold. 
N ow of course no pne would intentionally use -more state variables than the 

minimum number neeqed to characteri;ze the behavior of the dynamic process. 
In a co~plicated proc~ss with unfamiliar physics, however, the control system 
engineer may be te~pted to write dow~ differential equ~tions for everything in 
sight and In so doi~g, may write down more equatio~s than are necessary. This 
will· invariably result in the model fpr an uncontrollable system. 

Physi~lly uncontrollable system Another instance of an uncontrollable system 
is one in which the only forces and torques are internal to the system. For 
example, as a con~equence of Newton's law of action and reaction, the location 
of the center of Illass of a closed system cannot be changed by use of forces 
within the syst~m. This is illustrated by the following example. 

Example 58 Moti9n of coupled masses with internal force Consider the system comprising two 
carts coupled by a (passive) spring, as shown in fig. 5.4. In addition to the spring force, an 

Figure 5.4 Center of mass of system cannot be move~ by internal force. 
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active control force f is to be provided by some means within the system, so that whatever the 
force on cart 1, an equal and opposite. reaction force from that source must push on cart 2. 
Thus the differential equations of the pair of carts are 

dXI • 
Tt=XI (SB.I) 

tSB.2) 

(SB.3) 

(SB.4) 

From (SB.3) and (5B.4) 

Thus 

where 

mixi + m2x2 
Xc = = center of mass 

m l +m2 

Thus the center of mass of the system cannot be moved by the internal force f 
This physical fact is formally illustrated by matrix analysis. For the original system 

(~B.I)-(5B.4) the state vector is 

and the corresponding matrices are 

[ 0 

0 1 

II 0 0 0 
A-

k/m! -k/m! 0 

k/m2 -k/m2 0 

We make the change of state variables 

Then 

ml m2 
Xc =-X) +-x2 m m 

8 = Xl - x2 

m2/m 
-1 

o 
o 

o 
o 

ml/m 

1 

B= [_L] 
l/m2 

(SB.S) 
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Thus 

Thus we find. that 

o 
o 

mt/m 
I 

o 
o 
o 

-k(1/m l + l/m2) 

and 

1 01 o I 

o 0 
o 0 

Hence, as expected, the differential equations of the transformed system are 

dxc • 
-=X 
dt C 

d8 . 
-=8 
dt 

dX _c=O 
dt 

d8 = -k(~+~)8(- (~+~)f 
dt ml m2 ml m2 

o 1 o 
mJm 

-mt/m 

The internal force f can change the distance 8 between Xl and x2 but not the coordinates XI 

and X2 independently. To do that, an external force is needed. 
This example illustrates that the mathematical model must be consistent with the physics 

of the system. The A and B matrices must be exactly as given by (5B.5). If an error in 
calculation were made, for example, such that the fourth element in the B matrix were not 
1/ m2 but some other number, the system would seem to be controllable and one might try to 
move the center of mass by using the force f. But of course no matter how large we make f, the 
center of mass won't move. 

Too much symmetry Another situation ·that results in an uncontrollable system 
arises when the system in question has too much symmetry. This typically arises 
in electrical networks that contain balanced bridges, and in mechanical systems 
which have similar symmetry. This is illustrated by the following example. 

Example 5C Balanced bridges are uncontrollable The differential equations of the electrical 
network, or its thermal analog, shown in Fig. 5.5, were found in Chap. 2 to be 

VI = -~(~+~)VI +_I- v2 +_1_ eo 
C) R) R3 C) R3 CI R I• 

(5C.1) 

V2 = _1_ VI -.~(~+~)V2 +_1_ eo 
C2R3 C2 R2 R3 C2R2 

(5C.2) 

Consider the difference voltage 
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RI R2 

+ 
eo R3 

VI V2 

CI C2 

Figure 5.5 Electrical bridge network. 

The time-derivative of VI using (5C~ 1) and (5C.2) is 

dV I [ 1 ( 1 1 ) I] [I I ( I I )] dt = - C
I 

R
J 
+ R3 + C2R3 VI + C

I 
R3 + C

2 
R2 + R3 V2 

R2 C2 - RICI + eo CI C2R I R2 

(5C.3) 

If the bridge is balanced, i.e., 

(5C.4) 

then the coefficient of the input voltage eo vanishes. And moreover, the bracketed coefficients 
of VI and V2 become equal. Thus (5C.3) reduces to 

dV I = 
dt 

This 'means that the voltage VI = VI - V2 between the terminals of R3 cannot be influenced by 
the input eo; the voltage VI decays from whatever initial voltage it starts with to zero with the 
time constant T' = CI R I R 3/(R I + R2 + R3) irrespective of the input. 

If the only observation is the voltage VI = VI - V2, then the system is also unobservable. To 
see this we define the transformed state 

To this definition of transformed voltages there corresponds the transformation matrix 

and 

The transformed differential equations are 

.. [ 1 ( 1 I ) 1] (1 I) ( R2 R I) eo 
VI = - CI RI + R2 + C2R

3 
VI + C

2
R 2 - CIRI V2+ C

1 
- C

2 
RIR2 

.. I _ I _ RI eo 
V2 =--VI ---V2+---

C2R3 C2R 2 C1 RI R2 

and the observation is given by 

Y = VI 

When the bridge is balanced there is no path from V2 to the output, hence V2 cannot be 
observed. (See Fig. 5.6.) 
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Figure 5.6 Block diagram showing that balanced bridge is neither controllable nor observable. 
(Elements with * open when bridge is balanced.) 

When numerical values are inserted for the physical parameters in the systems 
of Examples SB and SC there is no way of distinguishing between the qualitative 
nature of the un controllability of the two systems: they are both simply uncontrol
lable. But physically there is a very important distinction between the two systems. 
The two-mass mechanica. system is uncontrollable for every value of the param
eters (masses, spring rates); the only way to control the position of the center 
of mass is to add an external force. This necessitates a structural change to the 
system. The balanced bridge, however, is uncontrollable only for one specific 
relationship between the parameters, namely the balance condition (SC.4). In 
other words, the system is almost always controllable. (As a practical matter, it 
will be difficult to control VI and V2 independently when (5C.4) is nearly true. 
This raises the issue of degree of controllability, a topic discussed in Note 5~3.) 

It is important for the control system engineer to recognize this distinction, 
particularly when dealing with an unfamiliar process for which the state-space 
representation is given only .by numerical data. A numerical error in calculating 
the elements of the A and B matrices, or an experimental error in measuring 
them, may make an uncontrollable system seem controllable. A control system 
designed with this data may seem to behave satisfactorily in simulation studies 
based on the erroneous design data, but will fail in practice. On the other hand, 
a process that appears to be uncontrollable (or nearly uncontrollable), but which 
is not structurally uncontrollable, may be rendered more tractable by changing 
some parameter of the process-by "unbalancing the bridge." 

Example 5D How not to control an unstable system (inverted pendulum) There are many ways 
of designing perfectly fine control systems for unstable processes such as the inverted 
pendulum of Examples 2E and 3D. These will be discussed at various places later on in this 
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COMPENSATOR INVERTED PENDULUM 

u (J y 

Figure 5. 7 Unstabiliz~ble compensation of inverted pendulum. 

book. But one way guaranteed to be disastrous is to try to cancel the unstable pole with a zero 
in the compensator. The reason for the disaster is the subject of this example. 

Consider the inverted pendulum of Example 30 with the output being the measured 
position. The transfer function from the input (force) to the output (position) is 

y(s) 1 I 
H( s) = -f(-s) = -s2---.o-2 = -(s- +- .o-)(-s -- -.o- ) (50.1) 

This is obviously unstable. A much better transfer function would be 

H(s) = ( ) 
s s+.o 

(50.2) 

which is stable and, because of the pole at the. origin, would be a "type-one" system, with zero 
steady state error. Thus, one might be tempted to "compensate" the unstable transfer f~nction 
by means of a compensator having the transfer f~nction (Fig. 5.7) 

s-O 0 
G(s) =--= 1'-- (~0.3) 

s s 
with 

Of course it will not be possible to make 0 precisely equal to .0 so the compensation wili not 
be perfect. But that is not the trouble, as we shall see. 

The compensator transfer function (50.3) represents "proportional plus integral" com
pensation which is quite customary in practical process control systems. The transfer function 
of the compensated system is now 

s-o 
Hc(s) = G(s)H(s) = S(S2 _ .02) ~ H(s) as (50.4) 

A blocJc. diagram representation of this system is shown in Fig. 5.7. and the state-space 
equations corresponding to this representation are 

Xl = X2 

x2 = n2x1 - X3 + U 

X3 = flu 

(5D.5) 

where X3 is the state of the integrator in the compensator. The matrices of the process (50.5) 
are 
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o-a 
..----... 202, 

Filure'S.8 Partial fraction representation or'Fig. 5./. 

The A matrix can be transformed to diagonal form by the transforma~ion matrix 

[

0
2 

0 -IJ 
T = _1_ ,.02 -0 -1 

202 , 
o 0 2 

We find that 

A = TAT-
1 
= [~ -~ n 

- 1 '[ o-o..J B = TB =-2 -(0+'0), 
20,' , '20' 

The state-space representation of ,the transformed'system is as .shown' in Fig. 5.8.' This 
block-diagram corresponds directly tQ the partial-fraction expansion ~f (50.4): 

Hc(s) == {V0
2 + (0 _~)/202 + -(0 + 0)/20

2 
(50.6) 

S s-o' ,s+O 

Note carefully what happens ' when li ~ 0: In the block-diagram the connection' between 
the CQ'ntrol input u 'and the unstqbl~ s~~te XI is "roken, rendering the system uncop.trollabl4' 
and unstabilizable. In (50.6) theresid~e at ,the unstable' pole vanishe~. But now we unpers~4 
th~t the vanishing of a residue at a 'P9le Qf a'transfer fu~<;tion' does not imply'that-the subsystem 
giVillg rise to the pole disappears, but rather tiUlt it beComes .. invisible;" ' , 

If the original inverted pen4ul~m could ~ave arbitrary initial coilditions, the transformed 
system (50.5) could also have arbitrary ildtial conditions and hence the inverted pendulum 
WQuld most assuredly not remain upnght, regardless 'of how the loop 'were closed, betweeii the 
m~asu.re~ent y and the ~ntrol input' ~. ' , i 

~ore 'reasons for unobservablUtyThe foregoing examples were instances of 
unc~ntrol1able systems. Instances ,o( 'u,n,ob$erVable systems ' are even, mor:e abun~ 
d~rt. ~: unobservable syste~,results,any time a state variable is n,ot ~easured 
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X2 

y 

Figure 5.9 Systems iIi tandem that are. unobseryable,_ 

directly and is notfed back to those state variables that are measured. Thus, any 
system comprising two subsystems in tandem (as shown in Fig. 5.9, in ·which 
none oftqe states of the right-hand subsystem can be measured) is unobseivable. 
The transfer function from the inputs to the outputs obviously depends only on 
the left-hand subsystem. .' . 

Physical processes which have ; the structure- shown in Fig. 5.~ are riot 
unconimon~ A mass m acted upon by a control force f is unobservable if only 
its veloCity,. and not its position, can 'be measured. This means that no method 
of velo¢ity feedback can serve as-a means of controlling position. In this regard 
it is noted that the integral of the measured velocity is not the same as the actual 
po~ition. A control system shown in Fig .. 5.10 will not be effective in controlling 
the poisition x of the mass, no matter how well it controls the velocity x; any 
initial positionetror will remain'in thesyst~m ind~finitely. 

In addition to the obvious reasons ' for unobservability there are also SOine 
of the more subtle reasons such as symmetry,as was illustrated by Example 5C. 

5.3 DEFINITIONS AND CONDITIONS FOR 
CONTROLLABILITY AND · OBSERVABILITY 

In Sees. 5.1 and 5.2 we found that uncontrollable and/ or unobservabie systems 
were characterized by the property that the transfer function from the input to 

X' 
>------e----.c f x 

Figure 5.10 Position of mass cannot be observed and cannot be controlled using only velocity 
feedback. 
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the output is of lower degree than the order of the dynamic system. We were 
able to trace this to the fact that some combinations of state variables are not 
capable of being affected by the input or not being visible in the output. 

It is usefui to give these concepts more precision with the aid of more 
precise definitions. 

We start with the following basic: 

Definition of controllability A system is said to be' controllable if arid only 
if it is possible, by means of the input, to transfer the system from any 
initial state x ( t) = X t to any other state XT = x (T) in a finite time T - t ~ o. 

The emphasized words "any" and "finite" are essential to the definition. If 
it is only possible to make the system go from some states to som~ other states, 
then the system is not controllable. Moreover, if it takes an infinite amount of 
time to go from the arbitrary initial state to the arbitrary final state the system is 
likewise not controllable. 

(In some texts, a system is called completely controllable when it is possible 
to transfer it from any state to any other state in' finite time.[2] A system is not 
completely controllable when it is possible only to transfer it from some states.) 

In the definition of controllabiiity the initial time t is not specified and the 
final time is not fixed. This is done to accommodate time-varying systems, in 
which it may happen that the possibility of teaching Xr from X t depends on the 
initial tiIll:e t. (See Note 5.2.) In a time-invariant system, however, no generality 
is lost in taking the initial time t to be zeto. 

The terminal time IT must be finite in order for the system to be control
lable. In time-varying systems it may be necessary to restrict T to be greater 
than some fixed time, say f. But in time-invariant systems, as we shall see, the 
only restriction on T is that it be greater than zero. (In fact, if the use of 
impulsive 'inputs is permitted, it is possible in a controllable system to go from 
any state, to any other state in zero time, i.e., instantaneously. (See Note 5.2.) As 
a practical matter, it is possible in a controllable system to go from any state to 
any other state iIi an arbitrarily short time if we are willing to use a sufficiently 
large input.) 

Controllability theoreni A system is controllable if and only if the matrix 

P(T, t) = r <I>(T, A)S(A)B'(A)<I>'(T, A) (]A (5.6) 

is nonsingular for sollie T> t, where <1>( T, t) is the state-transition matrix of 
the system. 

It is not at all obvious what this strange matrix integral, often called the 
controllability grammian, has to do with controllability. The integral appears to 
have been fetched from , out of the, sky. Later in the book, we will encounter 
integrals of this type quite often. 
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Since there is no obvious connection between the controllability grammian 
and getting from the state X t to the state XT, we should not be surprised ' that 
the proof of the controllability theorem is not entirely obvious. And it isn't. The 
nonobvious part of the theorem is the necessary condition, namely that if the 
integral P( T, t) is singular for all finite T> t, then there are some states that 
can't be reached by any input. 

To prove that the existence of an inverse of the controllability grammian 
guarantees the ability of going from any state X t to any other state XT, we recall 
from Chap. 3 (Eq. (3.21) that 

XT =0 <1>( T, t)x, + r <1>( T, A )B(A )u(A) dA (5.7) 

Now suppose that P( T, t) is nonsingular (Le., has an inverse) on the interval 
[t, T] for some finite T. Then an input that forces the process from Xt to XT is 
given by 

U(,\) = B'(,\ )<1>'( T, ,\ )p-l( T, t)[XT - <1>( T, t)xt] for t ~ ,\ ~ T (5.8) 

To verify this just substitute (5.8) into (5.7): 

XT =0 <1>( T, t)x, + r <1>( T, A)B(A)B'(A)<I>'( T, A) dA p-I( T, t){XT - <I>(T, t)x,l 

(5.9) 

By (5.6) the integral in (5.9) is P( T, t), so (5.9) becomes 

XT = <1>( T, t)xt + XT - c1>( T, t)Xt 

which is an identity. This verifies that the input (5.8) does indeed transfer the 
system from Xt at time t to XT at time T. 

Note that the input given by (5.8) requires the inverse p-l( T, t) which exists 
only if P( T, t) is nonsingular for somet and T> t. If P( T, t) is singular for all 
T> t, then the input (5.8) cannot be used to transfer Xt to XT' But perhaps we 
can use some other input. The answer is no, and demonstrating this ·constitutes 
the second part of the proof. We want to show that there are some states that 
can't be reached if P( T, t) is singular for all finite T> t. Consider some time T 
for which P( T, t) is singular. Then there must be some nonzero vector v such 
that 

v'P(T, t)v = 0 

Thus, by the definition (5.6) r v'<I>(T, A)B(A)B'(A)<I>'(T, A)vdA .=o 0 (5.10) 

d the The integrand can be written 
ars to " 
lunter r z'(A)z(A) dA =0 0 (5.11) 
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where 
z(A) = B'(A)cI>'(T, A)v (5.12) 

Since the integrand is a sum of squares: z~(A) + ... + z!(A) it must be 
nonnegative. The only way that an integral, over a positive interval T > t, of a' 
nonnegative. quantity can be zero, is when the integrand itself is identically zero 
over the entire interval. Thus, for a singular grammian we have found a vector 
v for which 

z(A) = B'(A)cI>'(T, A)v == 0 for all A in the interval [t, T] (5.13) 

Then, as we shall see, it is impossible in the time interval [t, T] to get from the 
origin to any state in the ·direction of v. Suppose the contrary: that it is ' possible ,' 
to go to a state cv (where c is a scalar) in the direction of v. Then, with Xt = 0, 
by (5.7) we must have 

cv = r cIl(T, A)B(A)u(A) dA 

On premultiplying both sides of (5.14) by v' we find 

cv'v = r v'cIl(T, A)B(A)u(A) dA 

(5.14) 

(5.15) 

The left-hand side of (5.15) is clearly nonzero. But the integrand of the 
right-hand side is z'(A)u(A) and in (5.13) we have found that z(A) == 0 in the 
entire interval [t, T]. Thus, the right-hand side of (5.15) is zero, independent of 
the input. This is a contradiction. We are forced to conclude that no input can 
transfer the system from the origin to a state cv in the interval [t, T]. If the 
controllability grammian is singular for all t and T there will always be some 
states that we will not be able to reach in any finite time. Hence the controllabil
ity grammian must be nonsingular for some t and T > t, in order that the 
system be controllable. This completes the proof. 

The controllability theorem and its proof are the contributions of R. E. 
Kalman. See Note 5.1. 

For a time-invariant system, the controllability grammian is given by 

JT JT-t 
P(T - t) = t eA(T-A) BB' eA'(T-A) dA = 0 eAtBB' eA't dt 

or simply 

P(T) = loT eA'BB' eA" dl 

The matrix used for the controllability test is sometimes written 

P(T) = loT e-A'BB' e-A" dl 

(5.16) 

(5.17) 

_ .... _ .. _ . .'", ... _'"------=------------------_ .. 



CONTROLLABILITY AND OBSERVABILITY 207 

which is not the same matrix as' P( T) but which can easily be shown to have the 
same rank as P( T). 

Matrices having the form of the controllability grammian (5.6) in the 
general case, or in the form of (5.16) in the time-invariant case, sometimes need 
to be · evaluated for optimum control and estimation problems, as will be 
discussed from Chap. 9 onward. But to evaluate the integrals merely for the 
purpose of testing controllability of a system seems a great deal of effort to 
achieve a simple objective. A simpler test would be most welcome. For 
time-varying systems there does not seem to be a simpler alternative. But for 
time-invariant systems, several simpler alternatives are available. We have 
already used one of the alternatives in the examples: transform the matrix to 
diagonal form (or block-diagonal form) and find whether or not any subsystem 
cannot be reached by the input. It may not always be easy to do this, however. 
A still ·· simpler criterion, based on the rank of the matrix [B, AB, ... , A k-l B], 
will be given in the next section. We postpone a discussion of this condition, 
however, until addressing the topic of observability. We shall see that a close 
similarity exists betw~en the concept of controllability and the concept of 
observability, which make it desirable to treat the two concepts together. 

Just as the output y is not considered in the definition of controllability, the 
input u is generally not considered in defining observability. Thus, .we deal with 
the unforced system 

x = A(t)x 

with the observation given by 

yet) = C(t)x(t) 

We use the following: 

Definition of obse"ability An unforced system is said to be observable if 
and only if it is possible to determine any (arbitrary initial) state x( t) = X t 

by using only a finite record, yeT) fort ~ T ~ T, of the output. 

This definition seems to square with our intuitive concept of what ought to 
constitute an observable system. Note that the definition requires ability to 
determine the initial state no matter where that state might be in the state-space. 
If only some, but not all, initial states can be determined, then the system is not 
observable. 

The general condition for observability is given by the following: 

Obse"ability theorem A system is observable if and only if the matrix 

M(T, t) = r <1>'('\, t)C'('\)C('\)<I>('\, t) d'\ (5.18) 

is nonsingular for some T > t, where <1>( T, t) is the state-transition matrix of 
the system. 
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The matrix M( T,t) for testing observability is often called the observability 
grammian,' and bears a strong resemblance to the controllability grammian 
(5.6): in place of the transition matrix ct>(T, A) in (5.6), its transpose appears in 
(5.18); in place of the control matrix B in (5.6), the transpose of the observation 
matrix C appears in (5.18). Because 9f the close resemblance between con
trollability and observability, these are frequently referred to as dual concepts. 

To prove the observability theorem we use the fact that the output y is 
given by 

y(A) = C(A)ct>(A, t)Xt (A ~ t) (5.19) 

when the system starts in the state X,. Multiply both sides of (5.19) by 
ct>'(A, t) C'(A) and integrate over the interval [t, T] to obtain 

r cI>'(A, t)C'(A)y(A) dA = (f cI>'(A, t)C'(A)C(A)cI>(A, t) dA )x, (5.20) 

The integral on the right-hand side of (5.20) is recognized as the observability 
grammian M( T, t) of (5.18). Thus, if the observability grammian is nonsingular, 
we can solve (5.20) for X,: 

x, = M-1(1; t) r cI>'(A, t)C'(A)y(A) dA (5.21) 

This formula furnishes an actual procedure for finding the initial state X"~ given 
y(t) over th~ interval of the integral. Of course, it may not be the only way to 
determine x,. Perhaps another way can be found to determine X t that does not 
entail the inverse of the observability grammian. The answer, as we already 
suspect, is no. The reason why the answer is no · is a consequence of an 
argument like that used for establishing the dual result for controllability: if the 
observability grammian M( T, t) is singular then there exists a vector w for 
which the function 

q(A) = C(A)cI>(A, t)w == 0 for all A in the interval [t, T] 

This function q(A), which is identically zero over the interval [t, T] is precisely 
the output of the system when the initial state is w. It thus follows that, if the 
initial state is w or anywhere on the line cw it will yield an output of zero and 
there will be no way of determining that initial state. If the observability 
grammian is singular for every t and 1', there will always be some initial state 
which will produce zero outputs for intervals of any length, and hence the 
system is not observable. 

For time-invariant systems the observability grammian of (5.18) may be . 
written 
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or simply 

M(T) = IT eA'TC'CeAT dT (5.22) 

Other forms of the observability grammian are also used, such as 

M(T) = fo
T 

e-A"C'Ce-A' dt 

Again, as with controllability, these matrices are not equal to M (t) but have the 
same rank. 

Also, as is the case with controllability, it is not necessary to evaluate the 
observability grammian to test for observability. There is a simpler algebraic test 
which is the subject of the next section. 

5.4 ALGEBRAIC CONDITIONS FOR 
CONTROLLABILITY AND OBSERV ABILITY 

In the previous section we have seen that the necessary and sufficient condition 
for controllability of a time~invariant system is that the controllability grammian 
P( T), given by (5.16), be nonsinguhir for some finite time T. 

The algebraic criterion equivalent to this is expressed by the following: 

Algebraic controllability theorem The time-invariant system x = Ax + Bu is 
cdntrollable if and only if the rank r( Q) of the controllability test matrix 

Q = [B AB A k
-

l B] (5.23) 

is equal to k, the order of the system. 

Note' that Q is a matrix having k rows and kl columns, where I is the 
number of inputs. The rank of Q thus cannot be greater than k. But the rank of 
Q can be smaller than k. If so, the system is not controllable. 

To prove the algebraic contrOllability theorem we note that if P( T) is singuiar, 
then, by (5.13), there is a nonzero vector v such that the function 

z(t) == B' eA'iv == 0 for 0 ~ t ~ T (5.24) 

Since the function z( t) is identically zero (flat), all its derivatives must also be 
identically zero. Thus we must have 

i(t) = B'A' eA'tv == 0 
./ 

(5.25) 

Z(k-l)( t) = B'(A,)k-1 eA'tv :i: 0 

We can keep going with this process but there is no need to do So. 
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We can arrange (5.24) and (5.25) in the following form: 

k columns 

-r 
[ B' ] kl B'A' 

eAtv == 0 (5.26) 
rows 

B'(~')k-I . _1 
~ 

Q' 

The long matrix in (5.26), is Q'. Let its columns be denoted by q., Q2, ... , qk: 

Also let 

a k-dimensional vector 

Thus (5.26) becomes 

(5.27) 

In other words, the columns of Q' are linearly dependent, which implies that the 
rank of the 'matrix Q' must be less than the order k of the system. We have thus 
established that if the controllability grainmian is singular the rank of the matrix 
Q' is less than k. Since the rank of any matrix is equal to the rank of its 
transpose, we also can say that the singularity of the controllability grammian 
implies that the rank of Q is less than k. 

To prove the converse, we expand eAt in a power series in t: 

By the Cayley-Hamilton theorem, however, 

A k . A k - I A k- 2 I = - at - a2 - ... - ak (5.29) 

where at, a2, . .. ,ak are the coefficients of the characteristic polynomial of A. 
Thus, by repeated use of (5.29), any power of A greater than k - 1 can be 
expressed as a polynomial of degree k - 1 in A. Thus (5.28) can be writtyn as 

eAt = IJ;(t) + Aj;(t) + ... + Ale-Ilk(t) 

where II(t), 12(t), ... ,Ik(t) are the time functions obtained by substituting the 
expressions for powers of A higher than k - 1 into (5.28) and collecting terms. 
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(lbe proof doesn't depend on what these functions are.) Thus 

eAtB = [BIl(t) + ABlit) + ... + A k- 1 Blk(t)J 

= Q [f,~t) ] 
Ik(t) 

Thus the controllability grammian can be expressed as 

P(T) = Q r [ .. :?~~) ............ ~~?~~~?J dt Q' 

o Il(t)/k(t) ... li(t) 

=QGQ' 
(5.30) 

If we knew the functions II, ... ,Ik we would have an expression for P( T) in 
terms of the grammian matrix G appearing in (5.30) between Q and Q'. But no 
matter what this matrix is, the rank of P( T) cannot be greater than the rank of 
Q, since the rank of the product of matrices cannot exceed the rank of any of 
its factors. Thus, if the rank of Q is less than k, then the rank of P( T) must 
surely be less than k, which means, of course, that P( T) must be singular. 

This completes the proof of the algebraic controllability theorem. 

Since Q is a constant matrix it has constant rank. Thus, if Q is singular, 
then P( T) is singular for every T. Similarly, if P( T) is nonsingular for any 
T > 0, it must be nonsingular for every T > O. This means that if a system is 
conttollable, there is an input that will transfer! the system from any starting 
state to any other state in an arbitrarily short time. The shorter the time, the 
larger the needed input, of course. 

From the manner in which the algebraic controllability theorem was estab
lished using the controllability grammian, we can immediately assert the dual: 

Algebraic observability theorem The (unforced) time invariant system 

i=Ax 

with the observation vector 

y = Cx 

is observable if and only if the rank r( N) of the observability test matrix 
I 

N=[C' A'C' (A,)k-1C'] (5.31) 

is equal to k, the order of the system. 

Intuitively, orie might conjecture that the ranks of the controllability gram
mian P and the corresponding matrix Q are related to each other and to the 
dimension of the subspace of states that can be reached. It turns out that this 
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conjecture is quite correct. In fact, the ta~ks of P( T), and Q, and the dimension 
of the "controllable subspace "are all equal. Likewise, the ranks of the 
observabiliiy grammian M( T) and N and the dimension of the "observable 
subspace" are all equal. Complete proofs of all these facts is beyond the scope 
of this book. (See Note 5.2.) But we can gain insight, into why this happens by 
considering transformations of state variables. In particular, suppose 

x= Tx 

so that the matrices for the transformed system are 

A = TAT- i B = TB C = cr-1 

Then the controlIability test matrix for the transfomied system is 

Q = tB AB ... Ak-1B] 

But from (5.32) 

A'ii = TA'T- 1 TB == TA'B 

Thtis 
Q = [TB TAB··· TAk-iB] = TQ 

Since the rank of a product cannot exceed the rank of either factor 

r(Q) ~ r(Q) 

But 

So 
r(Q) ~ r(Q) 

Thus we conclude that 

r(Q) = r(Q) 

(5.32) 

In other words,' the rank of the controllability matrix is invariant to "a change of 
state variable. Suppose that the transformed system is block-diagonal, i.e., 

and, moreover, that the subsystem (of order k t ) corresponding to Ai is 
controllable, but that no input at all goes to the subsystem (of order ~) 
corresponding to A2• Thus, we have 

The controllability test matrix is 

Q=[~I A~l-t B A~lB ... A~l+~BJ t kl 

() 0 0 .1.k2 

TI 
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le~ 

ro' 
eq 
co 
dil 

th~ 

ity 

fo: 
me 
id/ 
co 
th/ 
co 
is 



.. ' 

. ~ 

CONTROLLABILITY AND OBSERVABILITY 213 

The upper left submatrix [Bl A tBI A~I-l Bt ] is the controllability test 
matrix of the controllable subsystem, so it is of rank k10 Thus the matrix Q is at 
least of rank k 1• But it cannot be of rank greater than kl because it contains k2 
rows of zero elements. Thus the rank! deficiency k2 = k - kl of Q is precisely 
equal to the dimension of the subspace which receives no input. Because the 
controllability matrix of the original system has the same rank as Q, the 
dimension of the subspace that is uncontrollable remains equal to k2• 

The very same transformation concept applies to the relationship between 
the dimension of the "unobservable" subspace and the rank of the observabil
ity test matrix. 

The block-diagonal matrix A can be the matrix of the Jordan canonical 
form. In that case, as discussed in Chap. 4, the state variables are the" normal 
modes" of the system. All the normal modes which can be controlled can be 
identified with subsystem 1 and all those normal modes which cannot be 
controlled can be identified with subsystem 2. It thus follows immediately that 
the rank of the controllability test matrix Q is equal to the number of 
controllable normal modes. Similarly, the number of observable normal modes 
is equal to the rank of the observability test matrix N. 

These concepts are illustrated by the following examples. 

Example SE Hypothetical system (continued from Example SA) The test matrix Q for controlla
bility of the hypothetical system of Example 5A is 

[ 
1 -1 1 -1] 

-2 4 -10 28 
Q = [B AB A2B A 3 B] = 

2 -6 18 -54 
-1 3 -9 27 

The sum of the elements in each column of Q is zero so Q is clearly singular. Moreover, 
the sum of the elements of the first two rows minus the fourth row are also zero. Thus, only 
two rows of Q are linearly independent and the rank of Q is thus 2. 

The test matrix N for observability of the syste(Il is 

N = [C' A'C' (A')2C' (A')'C1 = [l -10 16 28] 
-9 15 -27 

-6 10 -18 
-3 5 -9 

It is similarly verified that the rank of N is 2. 
Thus, there are two observable modes and two controllable modes. This is clear from Fig. 

5.2. But since one of the controllable modes is also an observable mode, one mode remains 
that is neither observable nor controllable. 

Example SF Coupled masses with an internal force The controllability test matrix for the 
system of Example 5B is 

A'B] = [ ~ 
-l/ml 0 km, m;m2

1 
A2B 11m2 0 -kmlmlm~ 

(m = ml + m2) Q=[B AB 
-l/ml 0 kmlmim2 0 

11m2 0 -kmlmlm~ 0 
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The third and fourth columns of Q are proportional to the first and second, respectively, so the 
rank of Q is only 2, as expected from Example SB. The two uncontrollable state variables are 
the position of "the center of mass Xc and its derivative Xc' 

Example SG Distillation colomn A schematic diagram corresponding" to the simplified model 
of the "distillation column as developed by Gilles and Retzbach[3] (Example 20) is shown in 
Fig. 4.2 on page 120. It is observed that there is a path from the input 4U} (steam ft.ow rate) to 
each of the state variables. Nevertheless, the process cannot be controlled by UI alone, because 
X2 and X3 are both integrators and thus give the appearance of redundant state variables. It is 
also evident that the process is not controllable from the input 4U2 (vapor side stream ft.ow 
rate): there is not even a path from u 2 to Xl and to X2' But, by using both inputs, the process 
is controllable. 

These facts can be verified by use of the algebraic controllability criterion. First, consider 
the single input U 1• The corresponding control matrix is 

Hence, the controllability matrix Q1 corresponding to U 1 is given by 

all a~l a~l l 
a21 a21(all + a22) a21[a~1 + a22(a11 + a22)] b 

o a21a32 a32a 21(all + a22) 11 

o a21a42 a42a21(all + a22) 

The upper left-hand 3-by-3 submatrix is triangular and thus has a nonzero determinant (unless 
a21 = 0). Thus the rank of QI is at least 3. But 

IQ 1- b4 1 a21 a 32 a32a 21(aU + ~22) 1- 0 
1 - lla21 -

a21 a 42 a42a 21(a ll + a 22) 

Thus, the rank of Ql < 4. Thus, we conclude that the rank of Ql = 3, which means that the 
process is not controllable using only 4u1• The control matrix for the input ~U2 is 

and the corresponding controllability matrix is 

which has a rank of 1. 

o 0 0] 000 
000 
000 

The" controllability matrix using both inputs is a 4 x 8 matrix whose columns are the 
columns of Q1 and Q2, interlaced. If the system is controllable, the resulting matrix must have 
four linearly independent columns, for example, the first three columns of Q1 and the first 
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column of Q2' The determinant of the matrix formed from these columns is 

bll blla ll b ll aTl 0 

0 b l1 a 21 b l1 (a l1 + a 22 ) 0 
8= 

0 0 bIla21a32 b32 

0 0 b ll a 21 a 42 b42 

b' 'I a" b"l = Ila 21 
b42 a 42 

Except for specific values of a 32, a42, b32, and b42 the determinant 8 ¢ 0 and hence, the 
controllability matrix has a full rank of 4 and the process is; in general, controllable using both 
inputs. From the numerical data given with Example 2G, it is seen that a32 and a 42 are of the 
same magnitude, while b32 and b42 are very much different in magnitude. Thus, 8 is not even 
approximately zero and the process is easily controllable using both inputs. 

It is very important to recognize that the algebraic controllability and 
observability tests are only valid for time-invariant systems. That they are not 
generally valid for time-varying systems is vividly illustrated by a simple, but 
practical example, in which the state vector x is a constant:· 

x=o (5.33) 

hence the dynamics matrix A is zero. If the observation matrix C is constant 
then the observability test matrix 

N=[C' 0 0 0] (5.34) 

N has rank k if and only if C has rank k, Le., that there are as many 
independent components of the observation vector as there are components in 
x. If C is time-varying, the observability test matrix is still given by (5.34) which 
would imply that x is unobservable, unless C is of rank k. But in fact x may be 
observable even if the observation vector y is a scalar, if C is time varying. 
Consider the scalar observation 

y(t) = C(t)x = c'(t)x = Ct(t)Xl + ... + Ck(t)Xk 

At k different time instants th t2, ••• , tk we have 

or 

y(tt) .= c'(tdx 

y(t2 ) = c'(t2 )x 

[
y(t') ] = [cy')] x 

y( tk ) c'( tk ) 

(5.35) 

If the time instants ti are chosen such that the matrix multiplying x is 
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nonsingular, then 

Determination of an unknown constant vector by looking at it at different times, 
or " from different angles" is a standard procedure in the calibration of 
instruments, and the selection of suitable time instants, depending on the nature 
of c(t), or the design of a suitable c(t), is an important issue in practical 
calibration procedures. See Note 5.4. 

5.5 DISTURBANCES AND, TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In order to use state-space methods on design problems in which there are 
reference inputs and/ or disturbances, it is frequently desirable to represent 
these inputs and disturbances by additional state variables. 

The particular dynamic process we might wish'to control would be of the 
form 

x=Ax+Bu+Fxd (5.36) 

where Xd is a disturbance vector (which mayor may not be subject to direct 
measurement) . 

In addition, we might wish to require that the state x track a reference 
state Xr• 

To formulate the problem purely in terms of state variables, it is often 
expedient to assume that Xd and Xr satisfy known differential equations: 

(5.37) 

(5.38) 

These supplementary states are surely not subject to control by the designer, 
so that these are unforced differential equations. The system comprising x, Xd, 

and x. is nece~sarily uncontrollable. (Fig. 5.11.) 
In general, we are concerned with the error defined by 

e = x - Xr 

The differential equation for the error using (5.36) and (5.38) becomes 

e = i - xr = A( e + xr) + FXd + Bu - Arxr 

(5.39) 

= Ae + (A - Ar)xr + FXd + Bu = Ae + Exo + Bu (5.40) 

where 

E = [A - Ar : F] (5.41) 
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Disturbance 
model 

Reference model 

Disturhances 

Reference 

Figure 5.11 State-space representation of system with disturbances and reference input. (Models for 
disturbances and reference state are uncontrollable.) 

and 

Xo = [-;;-] (5.42) 

The vector Xo represents the "exogenous" inputs to the system. To the 
differential equation of the error is adjoined the equations for the reference and 
disturbance states to produce a system of order 2k + 1 having the "metastate" 
vector 

x=t!j; :+1 (5.43) 

and satisfying the "metastate equation" 

i = Ax+Bu (5.44) 
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where 

B = [-}] (5.45) 

where 

is the dynamics matrix for the exogenous inputs, now a substate of the 
metastate vector x. 

In some cases, only the error can be measured. In that case, the observation 
equation is 

y = Ce = Cx 

where 

C = [C : 0 0] 

More generally, however, it might be possible to measure the error, the 
reference state, and the disturbance state. Hence the general form of the 
observation equation is 

y = Cee + C,x, + CdXd 

and hence, the general observation matrix is given by 

C = [Ce : C, Cd] 

A schematic representation of the metasystem is shown in Fig. 5 .. 11. The 
subsystems for the disturbance Xd and the reference x, are clearly not control
lable. With Cd and C, present, the system is likely to be observable~ But even if 
only Ce is present, the system may be observable because there is a path from 
x, to the output through the subsystem that generates the error. 

The very natural way in which an uncontrollable system arises when 
. exogenous disturbances and reference inputs are modeled does not alter the. fact 
that such systems are uncontrollable and hence that design techniques based on 
the premise of a controllable system cannot be applied willy-nilly to' the 
metasystem. This doesn't imply that these methods are useless for this type of 
metasystem (or other types of uncontrollable systems) but rather that it is 
necessary to be cautious in their use. 

PROBLEMS 

Problem S.l Exogenous variables: controllability and observabUity 

Consider the metasystem (5.44) with A and B ,as given by (5.45) 
(a) Using the algebraic controllability test (5.23), show that the metasystem is not control

lable. (This result is intuitively obvious.) 
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(b) Assume that only the state x (and not xo) is measured, i.e., y = Cx, and that the original 
system x = Ax + Bu is observable (i.e., [C', A'C', ... , (A,)k-IC'] is of rank k). Discuss the 
conditions under which the metasystem is observable. 

Problem 5.1 Two-car train, 

Consider the two-car train of Probs. 2.5 and 3.9. 
(a) Is it controllable using only one motor?, 
(b) Is it controllable using both motors? 
(c) Is it observable if only the position Zl of the first car is measur.able? 
(d) Is it observable if the velocity VI of the first car is measurable? 
(e) Is it observable if the velocities of both cars are measurable? 

Problem 5.3 Aircraft lateral dynamics: controllability 

Consider the lateral aircraft dynamics of Prob. 4.4. 
(a) Is the dynamic process controllable using only the ailerons? 
(b) Is the dynamic process controllable using only the rudder? 

Problem 5.4 Inverted pendulum on cart: observability 

Consider the inverted pendulum on a motor-driven cart described in Probs. 2.1 and 3.6. 
Determine whether or not it is observable with the following sets of observations: 

(a) Cart displacement: Y = Xl; I 0 0 
(b) Pendulum angle: y = x 3 ; «) 0 t 

(c) Cart velocity: y = X2 ; 0 1 0 

(d) Cart velocity and pendulum angle: YI = X 2, Y2 = X 3• 

Problem 5.S Double-etrect evaporator: controllability 

Oetermine whether or not the evaporator of Example 2M' is controllable from each of the 
foUo~ing combinations of inputs: 

(a) UI only; 
(b) UI and U2; 

(c) UI and U3; 

(d) U2 and U3. 

If the system is not controllable for any of the above cases, explain why not and, if possible, 
ide,ptify the states that are ilot controllable. Hint: Refer to Fig. 2.21. 

Problem 5.6 Double-etrect evaporator: observability 

Determine whether or not the evaporator of Example 2H is observable from each of the 
following combina~ions of outputs: 
, (a) Xl and X4; 

(b) X3 and xs; 
(c) X3, X4, andxs. 
If, in any case, the system is not observable, explain why not and. ,f possible, identify the 

unobservable states. 

NOTES 

Note S.l Background of controllability and observability 

In 1954 Bergen and Ragazzini[ 4] present.ed a method of compensating a sampled-data system 
by solving for the transfer function of the 'compensator given the desired closed-loop transfer 
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function. They recognized that this method of compensation entailed cancellation of undesirable 
poles and zeros of the plant and sub'stitlltion of more desirable ones. A mathematically exact 
cancellation would not be possible with real hardware. Thus they developed rules governing the 
incorporation of "nonminimum phase" (Note 4.7) poles a~d zeros into the specification of the 
desired closed-loop transfer function. 

Kalman observed that the problem of nonminimum phase pole-zero cancellation would be 
present even if the cancellation were mathematically perfect, because the resulting system would 
tum out to be uncontrollable. With J. E. Bertram he presented a st~te-space design procedure[5] 
making use of state variable feedback in which the concept of controllability is hinted at. By 1960, 
Kalman had fully elucidated the concept of controllability and the dual concept of observabi1ity~[6] 

Note 5.2 Varieties of controllability and oJ»servability 

In thi~ book we say a system is controllable if it is possible to find an input which brings it to 
the origin (or any other state) from any $tate in a finite tfme. (Kalman called such a system 
compleiely cQntrollable.[I]) If a syst~m is not controllable, it can be divided 'into two subsystems, 
one of which (if it exists) is controllable and the other is uncontrollable. If the uncontrollal>le 
subsystem is stable, the e~tire system is said to be stabilizable. The set of stabilizable systems thus 
includes the controllable systems as a subset: ,every controllable system is sta\>ilizable, but not every 
stabilizable system'is controllable. Similar distinctions apply with regard to observability. A system 
that is not observai>le (completely obs~rvable, in Kalman's terminology) can be divided into two 
subsyst~ms; one of which' (if it exists) is observable and the other is not. If the unobservable 
subsystem is stable, th(~rtire system is said to be detectable. Thus the observable sY$tems are a 
subset of th~ detectablt"'systems. 

These definitions and concepts are adequate ,.for time-invariant systems, a category that 
includes most systems considered in this book. When time-varying systems are considered, however, 
the situation becomes more complicated. In a time-invariant system controllability is independent 
of the initial time. If this is true in a time-varying system, the sy~tem is said to be ~niformly 

controllable. The dual of uniform controllability is up,iform observability. With reg~rd to the latter, 
it is noted that ouJr definition of observ~bility requires the ability to de~ermine the present state 

, based on future outputs~ In a time-invariaqt system this is equivalent to the ability to determine the 
present state on the basis of past outputs. These are not necessarily' equivalent, however, in 
time-varying systems. Thus we have another concept, namely recon$tructability, which'is the ability 
to determine the present state from past inputs. 

A r~asonably comprehensive treatment of observability, controllability, and various derivative 
conc~l'ts can be found in [2]. 

Note 5.3 I;>egree of controllability 

By the definition of this chapter, a ~ystem is either controllable or it is not. In the real world, 
however, it may not be possible to make such sharp d,istinctions. An electrical bridg~ network, for 
ex~mple, is uncontrollable (or unobservable) for one discrete combinat~on of its parameters. Since 
exact mathematical balancing is ' not possible, every practical bridge network is controllable and 
observable. If the balance (londition is close' to being satisfied, however, it will be very difficult to 
control or to observe all the state variables of the bridge. The problem with the standard definitions 
of controllabiljty and observability is that they can lead to discontinuous functions of the system 
parameters: an arbitrarily small change in a system parameter can cause an abrupt change in the 
rank of the matrix by which controllability or observability is d~termined. It would be desirable to 
have definitions which can vary continuously with the parameters of the system and thus can refiec:! 
th~ degree of controllability of the system. Kalman et al.[ 6] recognize4 the need and suggested using 
the determinant of the corresponding test matrix or gramm~an as a measure of the degree of 
controllability or observability. Friedland,[7] noting that basing the degree of controllability or, 
ob~ervability on the 4eterminant of the test matrix suffers from sensitivity to the scaling of the state 
variables, suggested using the ratio of the smallest of the singular values to the largest as a 
preferable measure. Moore[~] subsequently elaborated upon this suggestion. 

; 
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Note 5.4 Application to calibration 

The development of an analytical technique for the determination of a constant vector b based 
on time-varying measurement signal y(t) = C(t)b and generalizations of this technique is con· 
sidered by Friedland.[9] 
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