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Follow Along Reading:

. B.P.Lathi * Review mostly ©

Signal processing

and linear systems | *  Chapter 9 (Time-Domain Analysis
1998 of Discrete-Time Systems)
TK5102.9.1.38 1998

— §9.4 System Response to External Input
— §9.6 System Stability

— Today

i« Chapter 10 (Discrete-Time System Analysis
:  Using the z-Transform)
— §10.3 Properties of DTFT

—  §10.5 Discrete-Time Linear System analysis by
DTFT :

— §10.7 Generalization of DTFT

Wext Time ... 10.N€ ZTransform :

Announcements

* I’m Sorry! I got hit by an ARC LIEF!!



http://library.uq.edu.au/record=b2013253~S7

Announcements

Announcements 4+ Add

Equation Editors & Tips! # Edit il Delete
3/23/16 12:55 PM

To post a response to a question asked by email...

A friendly reminder that, as noted in class, there are many equation

editing interfaces that may make LaTeX entry easier to learn and/or may
help with entering equations (such as 4x4 matrices)

Some links/tips that may (or may not) help
List of Formula Editors: Available for many platforms and in many styles
(e.g., LaTeX4technics, MathMagic, EqualX,

Q Editor, etc)

Matlab will export symbolic equations as LaTeX via the latex command
There are many introductions and online generator tools e.g., LaTeX-

Tutorial and Table Generator

]

s - For inserting some quick symbols - try Unicode
DVALE Ifind Unicode L 1p and
- i Unicode charac s and corresponding LaTeX math mode page helpful.
== SCHOOL FOR “ esp © Elpageiicy
4 THE GIFTED Thanks!

View on Piazza

Back to Noise
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Remember: Effect of Noise...

» Without pre-filtering:
(a) 25

B 25
- JJ\'M'M ﬂfﬁ%’u .
ANANNE |
E S S A N o
2 s " N "l‘ I o3 ‘L A I
Z § flh |N‘ il‘ Jf E ] .
-15 ! IJ' :Ll lﬂ 15 °
2 lbﬂ,'ﬂ'f‘.' mﬁm\”‘ _2] 2ge
- With Filtering =« FrERET IR
(© 25 ),
E

How to beat the noise

° Fllterlng (Narrow-banding):

Only look at particular portion of frequency space
* Multiple measurements ...
* Other (modulation, etc.) ...

phase

signal
noise

frequency

By adding shared information (structure) between the
sender and receiver (the noise doesn’t know your structure)




Frequency

» How often the signal repeats
 Can be analyzed through Fourier Transform

f
signal (t) ‘ signal(f)

« Examples:

time Gl frequency

oos bt
: I
L,
lm
=]

1 o @

Treating Uncertainty with Multiple Measurements

-\J“(U

l‘_r_':(”

x (N} (t )

——- {1 o average

A b, iy

Y

ensemble average

1. Over time: multiple readings of a quantity
over time
“stationary” or “ergodic” system
Sometimes called “integrating”

2. Over space: single measurement (summed)
from multiple sensors each distributed in
space

3. Same Measurand: multiple measurements
take of the same observable quantity by
multiple, related instruments

e.g., measure position & velocity
simultaneously

- Basic “sensor fusion”

_ _ 1
Ofinal = 01"+ o5+ oyl




Now: (analog) Filters!
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Filters

Lowpass 8 Bandpass
\

A I

Highpass Bandstop (Notch)

» Frequency-shaping filters: LTI systems that change the shape
of the spectrum

» Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others




Filters

: Lowpass

JII (111)”

Highpass «

Specified Values:
* Gp = minimum passband gain
Typically:
1
Gp = —== —3dB

V2

+ Gs = maximum stopband gain
— Low, not zero (sorry!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

 Transition Band:
transition from the passband to the

stopband =» wp# ©s

Filter Design & z-Transform

Filter Type

Mapping

Design Parameters

Low-pass

High-pass

Bandpass

F ALY

s 2 —[2e/(B + 1™ + (8 — /(B + 1))

- sin(e, — @;)/2]
sinf(e, + @)/2]

. = desired cutoff frequency

1 —az!

' ta

~ _cosf(e, + w)/2]
I +oz! " cosl(a, — w)/2]

T cosf(ew, — a)/2]
w,. = desired cutoff frequency

_ cosl{we + w.)/2]

Bandstop z7!

A - /(B + DIz — 2af/(B + D)z + 1

2% = [2a/(B 4+ D)lz"' +1(1 = B)/(1 + )]

cos[(we — we)/2]
B = cotl(w. — w)/2] tan(w, /2)

;1 = desired lower cutoff frequency
wy = desired upper cutoff frequency

=B Bl — /(B + Dl £ 1

* oSl — w2)/2)
B = tan[(wa — w.)/2]tan(w, /2)

wy = desired lower cutoff frequency

w2 = desired upper cutoff frequency




Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt order Butterworth
low pass filter is given by:

B (ju)] =~

» The normalized case (o.=1)

1

= — B () (o) = [HGw) =

1
14w

H(jw)

Recall that: |H (jw)|? = H (jw) H (—jw)

Butterworth Filters

t
| H ()|

ideal (n = oo)

0.707 |




butterworth Filters ot Increasing Order:

Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2 n=3

x
X
s Y /3 /
- Li— L] - TS S —
-1 -1 -1
X
®

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:

Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3
x X
X
x M4
/4 w/3 / /
- —_— K — -
-1 -1 -1 -1 '
X
X
x x

n=4

« Since H(s) is stable and causal, its poles must lie in the LHP

 Poles of -H(s) are those in the RHP
* Poles lie on the unit circle (for a normalized filter)

n is the order of

1 the filter
H(s) =
> H (s) (s —s1)(5—82)...(s— sn)
Where: \
= cos 2%{2%1.—1; — 1) +jsin %(2*’ tn—1) & =y dudymym




Butterworth Filters: 4" Order Filter Example

n=1 n=3 =4

* Plugging in for n=4, k=1,...4:

1
H(s) = ————
/= (s + 0.3827 — 50.9239) (s + 0.3827 + j0.9239)(s + 0.9239 — 70.3827)(s + 0.9230 + 50.3827)
1
(82 4 0.76545 + 1)(s2 + 1.8478s 1)
1

T s4 £ 2613153 1 3.41425% + 2.61315 + 1

» We can generalize =» Butterworth Table

n a1 az az aq a5

This is for 3dB
2 1.41421356

bandwidth at
3 2.00000000 2.00000000 _
4 2.61312593 3.41421356  2.61312593 (t)c—l
5 5798 5.23606798  5.23606798  3.23606798

3370331 7.46410162  9.14162017  7.46410162  3.86370331

Butterworth Filters: Scaling Back (from Normalized)

« Start with Normalized equation & Table
« Replace o with - in the filter equation

» For example:
for f.=100Hz = ®»,=200mx rad/sec

From the Butterworth table: for n=2, a,=\2
Thus:

H (s) =

1
(z)"+v/2(g57) 1
= $24-2007+/2440,00072

10



Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= o,
» Then:

We

2n
Gz = 20log g |H (jws)| = —101log [1 + (fl) ]

2n']

G, = —10log [1 s (ﬁ) J
And thus: e

T 2n
G, =—10log [I—F(VWV’*) }

Or alternatively: . {]ur‘a-«:.lj"“ & we [—m .(;;‘,’1oj‘

Solving for n gives:

log Km*és/w ~1)/ (10—@»/10 - Jﬂ

n = . P—
2log(ws/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB

Chebysheyv Filters

!
1H (o) | b (o) |

| 1

= 1

A 2 Vi+e?

n=6 n=7

- ol 1

+ equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour

11



Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=> For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

e 1
’H(]’.UN = I; e -
V"l + €2C, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

3 =l 3 n Cr(w)
Clulw) = cos (necos™ w)
Cn(w) = cosh (n cosh 1r,;) 01
1 w
- - (+ 9,,2
and where C, is given by: i f“’.‘ 1;
. 4w* — ow
4 8wt-8uw?+1
5 16w’ — 2003 + 5w
6 32wS —48w% +18w2 -1

Normalized Chebyshev Properties

* It’s normalized: The passband is 0<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

» Number of ripples: there is a total of n maxima and minima
over the passbhand 0<w<1

1, n:odd

2 . 0, n:odd |H (0) = ) )
* Cp(0)= { 1, n: even |:> )l SirE n:even

. e ripple height > 7 = /1 + €2

» The Amplitude at v=1: ,1,= \/1:—3

« For Chebyshev filters, the ripple r dB takes the place of G,

12



Determination of Filter Order

« Thegainisgivenby: ¢ - —10log[1+ 2, %(w)]
Thus, the gain at o is: 20,2 (ws) = 10-C+/10 _ 1

« Solving:
. 1/2
L [107G10 _q]”
= iy e (e
cosh™ " (ws) 10 —1

» General Case:

e = T 10710 J

N 1/2
——— —~ _cosh™} 10—/ ﬂ'
cosh ™ (w, [wp

Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

1 1 1 1
a = sinh (—sinh_l (—)) & b= cosh (—sinh_1 (—))
T € T €

And the poles are at the locations:

1
H(s) =
) = T =) G =)
sp = —sin {M]sinhwﬂcos (k—=1)m coshe, k=1,...,n
2n 2n

13



Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:
1. Draw two semicircles of radii a and b
1 (from the previous slide).

8 2. Draw radial lines along the corresponding
Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

3. The location of the k! Chebyshev pole is
Ya the intersection of the horizontal
projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.
Chebyshev Values / Table
. K
H(s) = =2 = . =
C .,,_(s) 8" +an-15" 1+ - 4+ ais+ag
ag n odd
Kn = ag ag
'\‘/Tﬁ = W/QU n even
n ap ai az a3z
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114




Other Filter lypes:
Chebyshev Type Il = Inverse Chebyshev Filters

» Chebyshev filters passband has ripples and the stopband is smooth.

* Instead: this has passband have smooth response and ripples in
the stopband.

=>» Exhibits maximally flat passband response and equi-ripple stopband
= Cheby2 in MATLAB

62 2 w
(@) = 1= Moo = gz
Where: H, is the Chebyshev filter system from before =
 Passband behavior, especially for small o, is better than Chebyshev
» Smallest transition band of the 3 filters (Butter, Cheby, Cheby?)
 Less time-delay (or phase loss) than that of the Chebyshev
 Both needs the same order n to meet a set of specifications.

 $3%3 (or number of elements):
Cheby < Inverse ChEbyShev < Butterworth (of the same performance [not order])

Other Filter Types:
Elliptic Filters (or Cauer) Filters

« Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H(w)| = — -
V1t 2R, (w)

Where: R, is the nth-order Chebyshev rational function determined from a given ripple spec.
€ control% the ripple

P
- Most efficient m)
— the largest ratio of the passband gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip

15



In Summary

Filter Type Pas_sband Stopband Transition MATLAB Design
Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheby
Chebyshev Type Il .
(Inverse Chebyshev) No es Tight cheby2
Eliptic Yes Yes Tightest ellip

Another Way to Handle This...

Modulation

ELEC 3004: Systems 28 March 2017 32




Modulation

Analog Methods:

* AM - Amplitude modulation
— Amplitude of a (carrier) is

modulated to the (data) /\/\&g ]
« FM - Frequency modulation e
— Frequency of a (carrier) signal I
is varied in accordance to the AN PRI e
amplitude of the (data) signal S
* PM — Phase Modulation
Source: http://en.wikipedia.org/wiki/Modulation
Modulation [Digital Methods] e *L
Start with a “symbol” & place it on a channel
« ASK (amplitude-shift keying) j

oo 11 1] oo S o ]
(’ﬂ 00111 oﬂo 0 time j{ié} L1 e
» FSK (frequency-shift keying)

\ Nh N ARAR Ann
J L il i i / "”‘| il
NanrAvannrRyaill
. RYAlyRY
| | ! ! IJ\ I /AT I\
Data

» PSK (phase-shift keying)
 QAM (quadrature amplitude modulation)
s(t) = A - cos(we + (1))

= x;(t) cos(w,t) + x4(t) sin(w,t)

l[;ﬂ
Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL 334 | http://en.wikipedia.org/wiki/Constellation_diagram

17


https://en.wikipedia.org/wiki/Modulation#Analog_modulation_methods
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https://en.wikipedia.org/wiki/Amplitude-shift_keying
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https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
http://en.wikipedia.org/wiki/Modulation
http://users.ecs.soton.ac.uk/sqc/EL334
http://users.ecs.soton.ac.uk/sqc/EL334
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram

Modulation [Example — V.32bis Modem]

Figure 10.13 Illustration of the QAM constellation for a V.32bis dialup
modem.

Source: Computer Networks and Internets, 5e, Douglas E. Comer

Multiple Access (Channel Access Method)

+ Send multiple signals on 1 to N channel(s)
— Frequency-division multiple access (FDMA)
— Time-division multiple access (TDMA)
— Code division multiple access (CDMA)
— Space division multiple access (SDMA)

« CDMA:
— Start with a pseudorandom code (the noise doesn’t know your code)

T

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access

18
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Z Transform
(ENCORE!)

(Another Way to L® @k at it)

ELEC 3004: Systems 28 March 2017 38

19



Flashback_é: Euler’s approximation (L7, p.26)

de _ o, 2t+6) —2@) . de  okn o
dt ~ a0 5t = s T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

eg.
_U(s) K(s+a) du _ g-(de
D) =55 = Tzn — q Hou=K (G ae)

2. Differential equation — difference equation

e.g.
€k4+1 — €

Ukl — Uk ) B k X
— 7 +bhur =K (7T + ﬂ-C}g)
= ukt+1 = (1 = 0T )ur + Kegy1 + K(aT — 1)ex

= —aijuk + boers+1 + biek

Discrete transfer function

Compare the discrete system time domain model:

cer = GpUk—n + boek +---+ bmek—m

U = —A1UE—-1 —
n m

= — E aitp_; + E bjer—; recurrence equation
i=1 =0

with the continuous system model:

u(t) = *(ll% - -an% + boe + b1% +--F bm% differential equation
J Laplace transform |
U(s) = —a1sU(s) = -~ — ans"U(s) + bo E(s) + bisE(s) + - - - + bms" E(s)
g Uts) _ D(s) = b,o Fhs bQS% oot ™ transfer function
E(s) L+ ars 4 azs? + -« + ans”

Can we define a transfer function for the discrete system?

20



Discrete transfer function [2]

Suppose u; = w(kT') has transform U'(s) ...
...then how can we represent wuy_1, uy_o, etc.?

* Ifz(t) =55 X(s), then 2t — T) =55 e X (s), so

ur  — U'(s)

wp 1 — e TU(s)

up_a — e 2TU'(s)
etc

+ Define the discrete frequency domain operator

sT

Z =€

then
ur  — U(z2)
wr—1 — 2z U(2)
Uk_o — 2 2U(z)

etc

Discrete transfer function [3]

Comparison

* system representations:

Continuous Discrete
U d*u
u(t) = _ﬂ-la_fmm_'” Up = —Q1UE_1 — A2UE_2 — *+
de boer + brex— e
L hoe+ b ... + boex + breg—1 +
dt
* operators:
Continuous Discrete
du R
— — s U(s) up_y — 2z U(2)
dt
differential delay

21



Discrete transfer function [4]

Apply the transformation to the linear recurrence equation:

Uk = —Q1UE—1 — Q2UR—2 — -+ — AnUk—n
+boer +bieg_1 + - bpep_n

| transform |

U(z) = —a1z27 U (2) — a2z 2U(2) — -+ anz "U(z2)

+01E(2) 4 boz 'E(2) 4+ 4 buz "E(2)
This gives the z domain transfer function:

["T(Z) _ D(Z) _ bD +bl—z_1 + 522_2 + - 'bmz_m
- T 1t ezt taz 4 fagzn

Rationalize by multiplying top and bottom by z"

_ boz™ + Bz b bez 2 b2

D
(2) zhtaiz" 1 +az" 2+ tan

Discrete transfer function [5]

Analysis tools based on s domain transfer functions:

Pole & zero locations —  damping, natural frequency,
eg. settling time & overshoot

Frequency response —  gain & phase margins

...also apply to z domain transfer functions

Poles and zeros of D(z):

D(Z,) — bO H:’il(z — zj)zn—m Zeros: zj
I, (z — ps) poles: p;

— z; & p; are real or in complex conjugate pairs
— n poles, n zeros, with n — m zeros at z =0

— at least as many poles as zeros

22



Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)

— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)

— Convolution: Z{f (k) * g(k)} = F(z)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!

The z-Transform

So far we have considered z™! as a delay operator acting on sequences

But to find E(z) from e(kT") we need to define the z-transform:

Note:

* Single-sided z-transform — all variables are assumed to be zero for k < 0
[Franklin uses a different definition]

* Strictly speaking, we should give bounds on |z| for convergence, e.g.
O < |z| < Rp

where ry, Ry depend on e(kT')
(these bounds are only needed in order to invert E(z) by integration)

23



The z-Transform

Example — z-transform of a decaying exponential
Sample z(t) = Ce™ ™ U(t): (U(t) = unit step at t = 0)

TE = Ce_&k]—. k=0

and take the z-transform:

A{z) — i-‘rkl’_k _ Gie—ak]'z—k _ Ci(e—ﬂ'z—l)k

k=0 k=0 k=0
this is a geometric series which converges if |z| > e 7"
X C Cz
z = =
(") 1 —e—alz—1 z —e—aT

4

z-transform of exponental = rational polynomial (like Laplace)

The z-Transform

Effect of delay:
Z{e(kT -T)} = 2 'E(z) where E(z)= Z{e(kT)}

Example — z-transform of a delayed sequence

Take a finite length sequence

€0,€1,€2,€3,€4,... = L(r). 1.6.1.7.0.0,...

introduce a delay of one sampling interval:
fosf1. fa, fay fa,...=0,1.5,1.6,1.7,0,...

take z-transforms _
E(z)= ch/fk =15+ 1.6 ' +1.722
k=0

F(z) pr,#‘ =152 +1.62 7+ 1.7277

24



The z-Transform

Example — z-transform of a delayed exponential
Delay z(t) = Ce”*"U(t) by a time T

y(t) =x(t=T) = y(t)=Ce “ U@ -T)

sample y(t) with sample interval 7"

o k=0
YT e T oy g

z-transform:

Y(z) = Zyk Lk Z(-/.C—a(kfl)Tsz
k=0 k=1
) > ; C
v —1 —aT _—1 _
=0 v

Comparing X (2) and Y(2):
X(z) = % —  Y(2) =2'X(2)

Z —

The z-Transform

to find the z-transform of your functions

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)

Table of Z-Transform Pairs
o= ZTHX R} = g Xl <o X() =2 {ell} = S efle ROC
aln] == X{z) R,
aln]  <Es X(Y) +
'] === X' Rs
el Fe Xh) %=
Refaln]) === LX(z) + X R,
Smial])  <Z= LX) - X)) R:
time shifting @fn —no] === R,
o ln] 2 . a|Rx
downsampling by N z[Nn] N < No z LNk (M;ﬁ:m‘V) Wy — e 5 R.
awiln] +baaln] 2= aXi(2) +bXa(2) Ren Ry
@1 [nJealn] = ( R:N Ry
@] % wan] R.NRy
sin] vz
5[ o] vz
ufn] |2/ > 1
—u[-n—1] [#l <1
] 2| > 1

25



The z-Transform

To summarise:

Sequence

{.I‘o..’l‘l. . }

Recurrence equation
Tp =01Tp—1 + ** + AnTh_p

X(z) provides an easy way to convert between sequences, recurrence equations
and their closed-form solutions

Pulse Response

E(z) U(z) = D(z) E(z)
er ? ug =7
For continuous systems: D(s) = E{d(f)} d(t) = plant impulse response

What is the equivalent property for the discrete transfer function [J(z)?

x Let e(kT") = discrete unit pulse:

1 k=0 = e
o =0p = = E(z)= epz =1
Ok {)k:LZH. () =2 e

* then

|U@:D@ﬂﬂzﬂﬂ‘

ie. D(z) = Z{d(kT)} = z-transform of the plant pulse response
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Pulse Response [2]

Example — The recurrence equation up = up_—1 + E(t,t, + €k—1)
J(z T (z+ -
has transfer function D(z) = U(z) = z( i l)
E(z) 2((z-1)

Check this by finding the pulse response and taking its z-transform

k U1 (&% [y ] Uy

0 0 1 0 T/2
o 1 T/2 0 1 T A
- == — ' ») r r
e = O gives 9 T 0 0 T e up =T/2,T,T,...
3 T 0 0 T
- T T T (:+1)
U(z) = T % _7m/9—> = 2 _ =T
s0 (2) ; =133

. Eigenfunctions of Discrete-Time LTI Systems

In Section 3.6 we showed that if the input to an LTI system is written as a
linear combination of basis functions ¢ [n], that is,

x[n] = > awpiln], (6.1.1)
k
then the output of the system can be similarly expressed as

yln] = X acyplnl, (6.1.2)
k

where the y,[n] are output basis functions given by
iln] = uln] » ln]. (6.13)
This is, in fact, simply a general statement of the property of linearity. In
the special case where the input and output basis functions ¢,[r] and ,[~]
have the same form, that is,
waln] = bugln] (6.1.4)
for constants b,, the functions ¢,[n] are called eigenfunctions of the
discrete-time LTI system with corresponding eigenvalues b,. The eigenfunc-
tions are then basis functions for both the input x[n] and the output y[n]|

because .
ylnl = > cepulnl, (6.1.5)
k

for constants ¢, = a.b,.

Source: Jackson, Chap. 6
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. Eigenfunctions of Discrete-Time LTI Systems

In analogy with the continuous-time case, the eigenfunctions of
discrete-time LTI systems are the complex exponentials

$uln] = 23 (6.1.6)
for arbitrary complex constants z,. Alternatively, to avoid the implication
that the eigenfunctions form a finite or countably infinite set, we will write
them as simply

pln] = 2", (6.1.7)

where z is a complex variable. To see that complex exponentials are indeed
cigenfunctions of any LTI system, we utilize the convolution sum in Eq.
(3.6.10), with x[n] = ¢[n] = 2", to write the corresponding output y[n] =

Pln| as
Yln] = > h[m]pln - m]

S Az
2 iz (6.1.8)

= gz >__: hm]z~"

m=—

= H(z)z"

Source: Jackson, Chap. 6

LGl

-~ Eigenfunctions of Discrete-Time LTI Systems

Hence the complex exponential z” is an eigenfunction of the system for any
value of z, and H(z) is the corresponding eigenvalue given by

H(z)= Y h[m]z". (6.1.9)

The above results motivate the definitions of the z (ransform, the
discrete-time Fourier transform (DTFT), and the discrete Fourier series
(DFS) to be presented in this chapter and the next. In particular, if the basis
functions for the input can be enumerated as

¢ln] = 2%,
that is, if x() can be expressed in the form of Eq. (6.1.1) as
x[n] = > a.zi, (6.1.10)
k
then the corresponding output is simply, from Eqs. (6.1.2) and (6.1.8),

yla] = > acH(z)z) (6.1.11)
k

The discrete Fourier series for periodic signals is of this form, with
2z, = 2™V If, on the other hand, the required basis functions cannot be
cnumerated, we must utilize the continuum of functions ¢[n] = z" to
represent x[n] and y[n] in the form of integrals. When z is restricted to have
unit magnitude (that is, z = ¢/*?), the resulting representation is called the
discrete-time Fourier transform, while if z is an arbitrary complex variable,

the full z-transform representation results
Source: Jackson, Chap. 6

o
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. Eigenfunctions of Discrete-Time LTI Systems

EXAMPLE 6.1 Consider the output of an LTI system having h[n] =
a"uln] with || < 1 to the sinusoidal input

A[rr] = 2c0s Qyn = e/ 4 I

This input signal is of the form of Eq. (6.1.10), with z, = ¢/* and
z, = ¢ ' Therefore the output is given by Eq. (6.1.11) as simply

yln] = H(e' e’ + H{e "P)e 1 (6.1.12)
Computing H(e'™), we utilize Eq. (6.1.9) with A[n] = a”u[n] and
z = ¢/ to produce

H(e'™ ¥ ke = Y g
| o 1 .
= l_ {ae™ ™) = — = = Ae'?.
5 1 —ae

That is, we define A and ¢ 10 be the magnitude and angle, respectively,
of the complex number H(e'™). Similarly, H(e ™) is readily deter-
mined to be

H(e %) = —— = Ae™®

ae’™

Hence, from Eq. (6.1.12), the output y[n] is obtained as

yln] = Aelfe!™n - Ap=ite it
(6.1.13)
= 2A cos (S4n + ).
Thus, as expected, a sinusoidal input to this {or any other) stable LTI

system produces a sinusoidal output with the same frequency €2, but, in
general, a different amplitude A and phase ¢ that depend upon the
frequency response H(e*™)

Source: Jackson, Chap. 6

The z-Plane

z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):

+ S-plane: o z=2e%T Plane

Img(s) 4 Img(2)

» Re(s)

— A—Plane — v —Plane

Re(2)
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The z-Plane & Stabili

Systems

The z-Plane & Stability
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DT Causality & BIBO Stability

+ Causality:
h[n]=0,n<0

—+y[n] = Z h [k]x [n — K] or =y[n] = Z x [k]h[n — k]
k=0 k=—o0

« Inputis Causal if: z[n] =0,n <0

» Then output is Causal:

y[n] = i hiklz[n—kl= Y z[klh[n— k]
k=0 k=0
 And, DT LTI is BIBO stable if:
o0
> |h[k]] < oo

—=—0C

Impulse Response (Graphically)

Let's define the impulse response, h[n|, as the result of applying
an LTI system to the unit impulse:

d[n] hln]

LTI System ——

By time invariance, we know

on — k] hin — k]|
LTI System ——

And by linearity, we know

adn — ky| + agdn — L‘::} LTI System aph[n — k] + ash(n — ks

» _ 2 LTI System —»’UM

ail= 3 wlklaln — ] ] =Y u[khin — ]

[— h=—oc

oo matrix X oo vector?
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Linear Difference Equations

ug = fleny - 1€k UQ, - - -, Uk—1).
Up = —A1Uk—1 —O2Up—2—" - —Qplg—n +boeg +bree_1 4+ -+ bmep—m.
Vup = up — ug—1 (first difference),

V2u = Vug — Vg

vnuk = V"—IUk . V"_I”Ltk_l

(second difference),

(nth difference).

Up = Uk,
gy = up — Vug,

tug_g = up — 2Vug + Vzuk.

a;Vguk — (a1 + 2a2)Vuy, + (az + a1 + Vuy, = boey.

Assume a form of the solution

zZK:
* k: “order of difference”
+ k: delay

Azk - Azk"'l+Azk_2.

-1

l=z""+2

22=z+1.
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Next Time...

+ Digital Filters

* Review:
— Chapter 10 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited. Then there is the one ®]
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