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Lecture Schedule: 
Week Date Lecture Title 

1 
28-Feb Introduction 

2-Mar Systems Overview 

2 
7-Mar Systems as Maps & Signals as Vectors 

9-Mar Systems: Linear Differential Systems 

3 
14-Mar Sampling Theory & Data Acquisition 

16-Mar Aliasing & Antialiasing 

4 
21-Mar Discrete Time Analysis & Z-Transform 

23-Mar Second Order LTID (& Convolution Review) 

5 
28-Mar Frequency Response 

30-Mar Filter Analysis 

6 
4-Apr Digital Filters (IIR) 

6-Apr Digital Windows 

7 
11-Apr Digital Filter (FIR) 

13-Apr FFT 

  

18-Apr 

Holiday 20-Apr 

25-Apr 

8 27-Apr Active Filters & Estimation 

9 
2-May Introduction to Feedback Control 

4-May Servoregulation/PID 

10 
9-May Introduction to (Digital) Control 

11-May Digitial Control 

11 
16-May Digital Control Design 

18-May Stability 

12 
23-May Digital Control Systems: Shaping the Dynamic Response 

25-May Applications in Industry 

13 
30-May System Identification & Information Theory 

1-Jun Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 11 (Discrete-Time System 

Analysis Using the z-Transform) 

– § 11.1 The 𝒵-Transform  

– § 11.2 Some Properties of the Z-

Transform 

 

• Chapter 9 (Time-Domain Analysis 

of Discrete-Time Systems) 

– § 9.4 System Response to External Input 

– § 9.6 System Stability 

 

 

 

 

Today 

23 March 2016 ELEC 3004: Systems 3 

 

z Transforms 
(Digital Systems Made eZ) 

 
Review and Extended Explanation 
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http://library.uq.edu.au/record=b2013253~S7
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The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 
 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
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𝑒𝜆𝑘 = 𝛾𝑘 

 

S-Plane to z-Plane [1/3]: 
Discrete-Time Exponential  𝛾𝑘 

ELEC 3004: Systems 21 March 2016 7 

 

S-Plane to z-Plane [2/3] 

23 March 2016 ELEC 3004: Systems 8 



5 

 

S-Plane to z-Plane [2/3] 
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Relationship with s-plane poles and z-plane 
transforms 
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• Pulse in Discrete is equivalent to Dirac-δ 

 

 

 

 

  

𝐺 𝑧 = 1 − 𝑧−1 𝒵 ℒ−1
𝐺 𝑠

𝑠
𝑡=𝑘𝑇

= 𝟏 − 𝒛−𝟏 𝓩
𝑮 𝒔

𝒔
 

 

 

s ↔ z: Pulse Transfer Function Models 

Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26 
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ℒ(ZOH)=???    :     What is it? 
 

 

• Lathi 

• Franklin, Powell, Workman 

• Franklin, Powell, Emani-Naeini 

• Dorf & Bishop 

• Oxford Discrete Systems: 

(Mark Cannon) 

• MIT 6.002 (Russ Tedrake) 

• Matlab 

Proof! 

 

 

 

 

 

 

•  Wikipedia 
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• Assume that the signal x(t) is zero for t<0, then the output 

h(t) is related to x(t) as follows: 

 

Zero-order-hold (ZOH) 

x(t) x(kT) h(t) Zero-order 

Hold 
Sampler 
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• Recall the Laplace Transforms (ℒ)  of: 

 

 

 

 

• Thus the ℒ of h(t) becomes: 

 

 

 

 

 

 

 

 

 

Transfer function of Zero-order-hold (ZOH) 
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… Continuing the ℒ of h(t) … 

 

 

 

 

 

 

 

 

 

 Thus, giving the transfer function as:  

 

 

 

 

 

 

 

 

 

Transfer function of Zero-order-hold (ZOH) 

𝓩 
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• First-order linear constant coefficient difference equation: 

 

 

z-Transforms for Difference Equations 
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z-Transforms for Difference Equations 
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• Obtain the z-Transform of the sequence: 

𝑥 𝑘 = {3, 0, 1, 4,1,5, … } 

 

 

• Solution: 

𝑋 𝑧 = 3 + 𝑧−2 + 4𝑧−3 + 𝑧−4 + 5𝑧−5 

 

z-Transform Example 

23 March 2016 ELEC 3004: Systems 18 
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The z-Plane 
z-domain poles and zeros can be plotted just  

like s-domain poles and zeros (of the ℒ): 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

• S-plane:  

 

 

 

 

 

 

 

 
–  λ – Plane  

• 𝒛 = 𝒆𝒔𝑻  Plane 

 

 

 

 

 

 

 

 
– γ – Plane  
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Deep insight #1 

The mapping between continuous and discrete poles and 

zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 
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System Stability 

Lathi, p. 149 

23 March 2016 ELEC 3004: Systems 21 

System Stability [II] 

Lathi, p. 150 
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System Stability [III] 
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γ-plane Stability 
• For a γ-Plane (e.g. the one the z-domain is embedded in) 

the unit circle is the system stability bound 

 

 
Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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γ-plane Stability 
• That is, in the z-domain,  

the unit circle is the system stability bound 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 
• The z-plane root-locus in closed loop feedback behaves just 

like the s-plane: 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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• For the convergence of X(z) we require that 

 

 

• Thus, the ROC is the range of values of z for which |az-1|< l 

or, equivalently, |z| > |a|. Then  

Region of Convergence 
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An example! 
• Back to our difference equation: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 
Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 

23 March 2016 ELEC 3004: Systems 28 
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This looks familiar… 
 

• Compare: 
Y s

𝑋 𝑠
=
𝑠+2

𝑠+1
  vs  
𝑌(𝑧)

𝑋(𝑧)
=
𝑧+𝐴

𝑧+𝐵
 

 

How are the Laplace and z domain representations related? 
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• Two Special Cases: 

• z-1: the unit-delay operator: 

 

 

• z: unit-advance operator:  

 

Z-Transform Properties: Time Shifting 

23 March 2016 ELEC 3004: Systems 30 
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More Z-Transform Properties 

• Time Reversal 

 

 

 

 

• Multiplication by zn 

• Multiplication by n (or 

Differentiation in z):  

 

 

 

 

• Convolution 

23 March 2016 ELEC 3004: Systems 31 

 

Linear Difference Equations 
(a sub-set of Linear, Discrete 

Dynamical Systems) 

23 March 2016 ELEC 3004: Systems 32 
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• Causality: 

 
 

»    or    

 

•  Input is Causal if: 

 

• Then output is Causal: 

 

 

• And, DT LTI is BIBO stable if: 

 

 

 

DT Causality  & BIBO Stability [Review] 
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Linear Difference Equations 
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zk :  

• k: “order of difference”  

• k: delay 

Assume a form of the solution  

23 March 2016 ELEC 3004: Systems 35 

 

Impulse Response (Graphically) 

∞ matrix ×  ∞ vector? 

23 March 2016 ELEC 3004: Systems 36 
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• First let’s multiply circulant matrices… 
– A circulant matrix can be descibed completely by its first row or column 

 

 

 

 

 

 

 

 

• Multiply by u[k]   

 

 

 

∴   For circulant matrices, matrix multiplication reduces to a weighted 

combination of shifted impulse responses 
 

How do you multiply an infinite matrix? 

Z: Shift operator 
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Two Types of Systems 

• Linear shift-invariant: 

 

 

 

 

 

Z: Shift operator 

 

• Linear time-invariant system 

 

 

 

 

 

 

 

R: Unit delay operator 

 

 

 
23 March 2016 ELEC 3004: Systems 38 



20 

Impulse Response of Both Types 
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Impulse Response of Both Types 
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BREAK 
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Convolution 
 
  

23 March 2016 ELEC 3004: Systems 42 
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Convolution Definition 

 



dtfftf )()()( 21

The convolution of two functions f1(t) and 

f2(t) is defined as: 

)(*)( 21 tftf

Source: URI ELE436 

23 March 2016 ELEC 3004: Systems 43 

Properties: 

• Commutative:  

• Distributive: 

• Associative: 

• Shift: 

if f1(t)*f2(t)=c(t), then  f1(t-T)*f2(t)= f1(t)*f2(t-T)=c(t-T) 

• Identity (Convolution with an Impulse): 
 

• Total Width: 

 

Convolution Properties  

Based on  Lathi, SPLS, Sec 2.4-1 
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• Convolution systems are linear: 

 

 

• Convolution systems are causal: the output y(t) at time t 

depends only on past inputs 

 

• Convolution systems are time-invariant 

(if we shift the signal, the output similarly shifts) 

 

  

 

 

 

 

 

 

 

Convolution Properties [II] 
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• Composition of convolution systems corresponds to: 
– multiplication of transfer functions 

– convolution of impulse responses 

 

 

 

 

 

 

• Thus: 
– We can manipulate block diagrams with transfer functions as if 

they were simple gains 

– convolution systems commute with each other 

 

 

Convolution Properties [III] 
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• The two systems are identical! 

 

Properties of Convolution: Distributive Property 

h1(t) h2(t) h3(t) 

h2(t) h3(t) h1(t) 

Source: URI ELE436 
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Properties of Convolution: Commutative Property 

Source: URI ELE436 
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Impulse Response 

LTI System 

h(t) 

f(t) f(t)*h(t) 

Properties of Convolution: LTI System Response 

)(*)()(*)( 1221 tftftftf 

Impulse Response 

LTI System 

f(t) 

h(t) h(t)*f(t) 

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

 



dtfttf )()()(*)(

 



dtf )()(

)(tf

Source: URI ELE436 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 

)()(*)( TtfTttf 

 



dTtfTttf )()()(*)(

 



dTtf )()(

)( Ttf 

Source: URI ELE436 
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Properties of Convolution 

f(t) f(t T) 

)()(*)( TtfTttf 

 

 
0 T 

(tT) 

t 
f (t) 

0 

t 
f (t) 

0 T 

Source: URI ELE436 

23 March 2016 ELEC 3004: Systems 52 



27 

Source: URI ELE436 

Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

dtedtfftftfF tj






  



  )()()](*)([ 2121






   









 ddtetff tj)()( 21

 




 dejFf j)()( 21

 




 defjF j)()( 12
)()( 21  jFjF

Time Domain Frequency Domain 
convolution multiplication 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal Low-Pass Filter 

0 

Fi(j) 

 
0 

Fo(j) 

 

 

 
0 

H(j) 

p p 

1 

Source: URI ELE436 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal High-Pass Filter 

0 

Fi(j) 

 

 

 
0 

H(j) 

p p 

1 

0 

Fo(j) 

 

Source: URI ELE436 
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Consider this for the discrete case: 
 
1. Rename the independent variable as m. You now have x[m] and h[m]. 

Flip h[m] over the origin. This is h[-m] 
2. Shift h[-m] as far left as possible to a point “n”, where the two signals 

barely touch. This is h[n-m] 
3. Multiply the two signals and sum over all values of m. This is the 

convolution sum for the specific “n” picked above. 
4. Shift / move h[-m] to the right by one sample, and obtain a new h[n-m]. 

Multiply and sum over all m. 
5. 5. Repeat 2~4 until h[n-m] no longer overlaps with x[m], i.e., shifted out 

of the x[m] zone.  
 

 The “n” dependency of y[n] deserves some care:  
For each value of “n” the convolution sum must be computed separately over 
all values of a dummy variable “m”.  

Discrete Convolution 

ELEC 3004: Systems 23 March 2016 56 
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Will consider linear time-invariant (LTI) systems 

 

 

 

     Linear :  

       input u1[k] -> output y1[k] 

      input u2[k] -> output y2[k] 

      hence a.u1[k]+b.u2[k]-> a.y1[k]+b.y2[k] 

 

     Time-invariant (shift-invariant) 

       input u[k] -> output y[k] 

      hence input u[k-T] -> output y[k-T] 

 

Discrete-Time Systems & Discrete Convolution [1] 

u[k] y[k] 









































































]3[

]2[

]1[

]0[

.

]2[000

]1[]2[00

]0[]1[]2[0

0]0[]1[]2[

00]0[]1[

000]0[

]5[

]4[

]3[

]2[

]1[

]0[

u

u

u

u

h

hh

hhh

hhh

hh

h

y

y

y

y

y

y

this is called a  

`Toeplitz’ matrix 

Discrete-Time Systems & Discrete Convolution [2] 

K=0 

Will consider causal systems  

     iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0 

Impulse response  

     input …,0,0, 1 ,0,0,0,...-> output …,0,0, h[0] ,h[1],h[2],h[3],... 

General input u[0],u[1],u[2],u[3]       (cfr. linearity & shift-invariance!) 

K=0 
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Discrete-Time Systems & Discrete Convolution [3] 
     

 

 

 

 

   

        

      

         







































































]3[

]2[

]1[

]0[

.

]2[000

]1[]2[00

]0[]1[]2[0

0]0[]1[]2[

00]0[]1[

000]0[

]5[

]4[

]3[

]2[

]1[

]0[

u

u

u

u

h

hh

hhh

hhh

hh

h

y

y

y

y

y

y

u[0],u[1],u[2],u[3] y[0],y[1],... 

h[0],h[1],h[2],0,0,... 

y[k]= h[k - k ]
k

å .u[k ]=
D

h[k]*u[k] = `convolution sum‘ 
(=more convenient than Toeplitz matrix notation 

when considering (infinitely) long input and impulse 
response sequences 

Discrete-Time Systems & Discrete Convolution [4] 
Z-Transform of system h[k] and signals u[k],y[k]  
Definition:  

     
Input/output relation:  

 

 

 

 

   
        

      

         

   



































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

























































]3[

]2[

]1[

]0[

.

]2[000

]1[]2[00

]0[]1[]2[0

0]0[]1[]2[

00]0[]1[

000]0[

.1

]5[

]4[

]3[

]2[

]1[

]0[

.1

3211).()(

5432154321

u

u

u

u

h

hh

hhh

hhh

hh

h

zzzzz

y

y

y

y

y

y

zzzzz

zzzzHzY
    

H (z)=
D

h[k].z-k

k

å Y (z)=
D

y[k].z-k

k

åU(z)=
D

u[k].z-k

k

å

)().()( zUzHzY  H(z) is `transfer function’ 
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Matrix Formulation of Convolution 

3

8

14

20

26

14

5

1 2 3 0 0 0 0

0 1 2 3 0 0 0

0 0 1 2 3 0 0

0 0 0 1 2 3 0

0 0 0 0 1 2 3

0 0 0 0 0 1 2

0 0 0 0 0 0 1

0 0

0 0

0 0

0 0

0 0

3 0

2 3

0

0

1

2

3

4

5

0

0


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

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



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 For c(τ)=              : 

1. Keep the function f (τ) fixed  

2. Flip (invert) the function g(τ) about the vertical axis (τ=0) 

 =  this is g(-τ) 

3. Shift this frame (g(-τ)) along τ (horizontal axis) by t0.  

  = this is g(t0 -τ)  

 

 For c(t0): 

4.  c(t0) = the area under the product of f (τ) and g(t0 -τ)  

 

5. Repeat this procedure, shifting the frame by different values 

(positive and negative) to obtain c(t) for all values of t. 

Graphical Understanding of Convolution 
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Graphical Understanding of Convolution (Ex) 
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Another View 

x(n) = 1 2 3 4 5  

h(n) = 3 2 1 

0 0 1 2 3 4 5 

1 2 3 0 0 0 0 

0 0 1 2 3 4 5 

0 1 2 3 0 0 0 

0 0 1 2 3 4 5 

0 0 1 2 3 0 0 

x(k) 

h(n,k) 

3 2 6 1 4 9 y(n,k) 

e.g. convolution 

y(n) 3 8 14 

Sum over all k 

Notice the  

gain 

h(n-k) 
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• Convolution system with input u (u(t) = 0, t < 0) and output y: 

 

 

• abbreviated: 

 

 

• in the frequency domain: 

 

Convolution & Systems 
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• In the time domain: 

 

 

 

• In the frequency domain: 
– Y=G(U-Y) 

Y(s) = H(s)U(s) 

 

 

Convolution & Feedback 
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2nd Order LTID 
 
  

23 March 2016 ELEC 3004: Systems 67 

• Response of a 2nd order system to increasing levels of damping: 

2nd Order System Response  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%): 

 

• Overshoot:  

 

• Settling time (to 1%):  

 

• Steady state error to unit step:  

ess 

• Phase margin:  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%)  & Overshoot:  

   tr, Mp  ζ, ω0 : Locations of dominant poles 

• Settling time (to 1%):  

   ts  radius of poles: 

• Steady state error to unit step:  

ess  final value theorem  
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The z-plane [ for all pole systems ] 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

!! 
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• Poles inside the unit circle 

are stable 

 

• Poles outside the unit circle 

unstable 

 

• Poles on the unit circle 

are oscillatory 

 

• Real poles at 0 < z < 1 

give exponential response 

 

• Higher frequency of 

oscillation for larger  

 

• Lower apparent damping 

for larer  and r 

Pole positions in the z-plane 
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 
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Second Order Digital Systems 
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Response of 2nd order system [1/3] 
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Response of 2nd order system [2/3] 
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Response of 2nd order system [3/3] 
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Discrete-time transfer function 

Source: Boyd, Lecture Notes for EE263, 13-39 
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Design a controller for a system with: 

• A continuous transfer function: 

• A discrete ZOH sampler  

• Sampling time (Ts):  Ts= 1s 

• Controller:  

 

 

The closed loop system is required to have: 

• Mp < 16% 

• ts < 10 s 

• ess < 1 

 

Ex: System Specifications  Control Design [1/4] 
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Ex: System Specifications  Control Design [2/4] 
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Ex: System Specifications  Control Design [3/4] 
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Ex: System Specifications  Control Design [4/4] 
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Recall dynamic responses 
• Ditto the z-plane: 

Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Deep insight #2 
• Gains that stabilise continuous systems can actually  

destabilise digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Ex: Modulation 
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Modulation 

Analog Methods: 

• AM - Amplitude modulation 

– Amplitude of a (carrier) is 

modulated to the (data) 

 

• FM - Frequency modulation 

– Frequency of a (carrier) signal 

is varied in accordance to the 

amplitude of the (data) signal 

 

• PM – Phase Modulation 

Source: http://en.wikipedia.org/wiki/Modulation 
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Start with a “symbol” & place it on a channel  

• ASK (amplitude-shift keying) 

 

 

• FSK (frequency-shift keying) 

 

 

 

• PSK (phase-shift keying) 

• QAM (quadrature amplitude modulation) 

𝑠 𝑡 = 𝐴 ⋅ 𝑐𝑜𝑠 𝜔𝑐 + 𝜙𝑖 𝑡  
= 𝑥𝑖 𝑡 cos 𝜔𝑐𝑡 + 𝑥𝑞 𝑡 sin 𝜔𝑐𝑡  

Modulation [Digital Methods] 

Source: http://en.wikipedia.org/wiki/Modulation |  http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation_diagram 
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Modulation [Example – V.32bis Modem] 

Source: Computer Networks and Internets, 5e,  Douglas E. Comer 
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• Send multiple signals on 1 to N channel(s) 
– Frequency-division multiple access (FDMA) 

– Time-division multiple access (TDMA) 

– Code division multiple access (CDMA) 

– Space division multiple access (SDMA) 

•  CDMA: 
– Start with a pseudorandom code (the noise doesn’t know your code)  

 

 

 

Multiple Access (Channel Access Method) 

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access 
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• Digital Systems 

 

 

 

• Review:  
– Chapter 8 of Lathi  

 

 

• A signal has many signals  

[Unless it’s bandlimited.  Then there is the one ω] 

 

 

Next Time… 
 
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