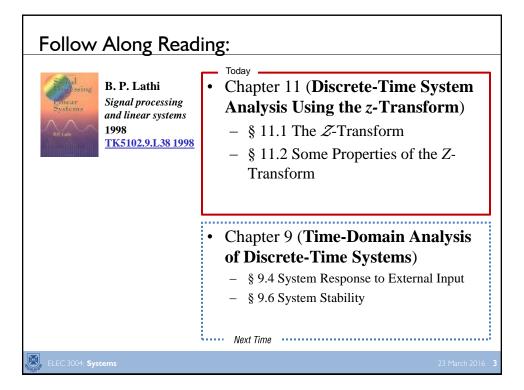
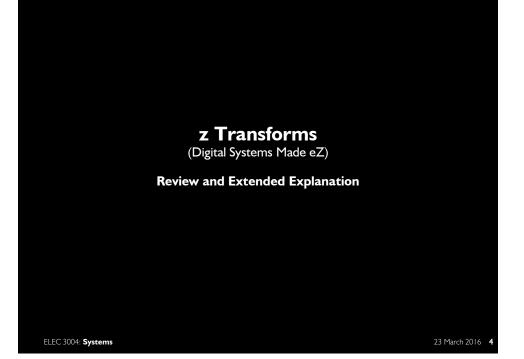
	http://elec3004.com
Z-Transform Second Order LTID (& Convolution Review)	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh Lecture 8	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u>	March 23, 2017

Week	Date	Lecture Title	
1		Introduction	
1		Systems Overview	
2	7-Mar	Systems as Maps & Signals as Vectors	
2	9-Mar	Systems: Linear Differential Systems	
	14-Mar	Sampling Theory & Data Acquisition	
3	16-Mar	Aliasing & Antialiasing	
	21-Mar	Discrete Time Analysis & Z-Transform	
4	23-Mar	Second Order LTID (& Convolution Review)	
5	28-Mar	Frequency Response	
3	30-Mar	Filter Analysis	
6	4-Apr	Digital Filters (IIR)	
0	6-Apr	Digital Windows	
7	11-Apr	11-AprDigital Filter (FIR)	
7	13-Apr	FFT	
	18-Apr		
	20-Apr	Holiday	
	25-Apr		
8	27-Apr	Active Filters & Estimation	
9	2-May	Introduction to Feedback Control	
9	4-May	Servoregulation/PID	
10	9-May	Introduction to (Digital) Control	
10	11-May	Digitial Control	
	16-May	Digital Control Design	
11	18-May	Stability	
10	23-May	Digital Control Systems: Shaping the Dynamic Response	
12	25-May	Applications in Industry	
	30-May	System Identification & Information Theory	
13	1-Jun	Summary and Course Review	





The z-transform

• The discrete equivalent is the *z*-Transform[†]: $_{\infty}$

$$Z\{f(k)\} = \sum_{k=0}^{\infty} f(k)z^{-k} = F(z)$$

and

$$Z{f(k-1)} = z^{-1}F(z)$$

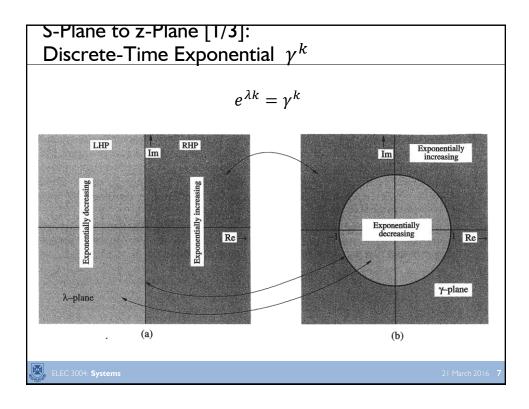
$$x(k) \longrightarrow F(z) \longrightarrow y(k)$$

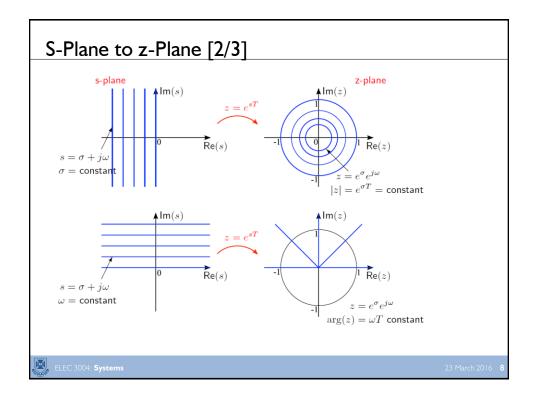
Convenient!

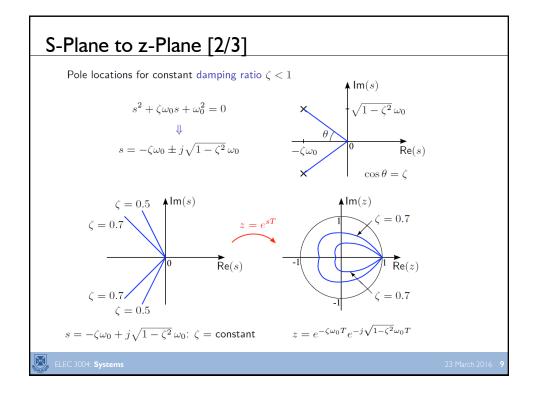
†This is not an approximation, but approximations are easier to derive

ELEC 3004: Systems

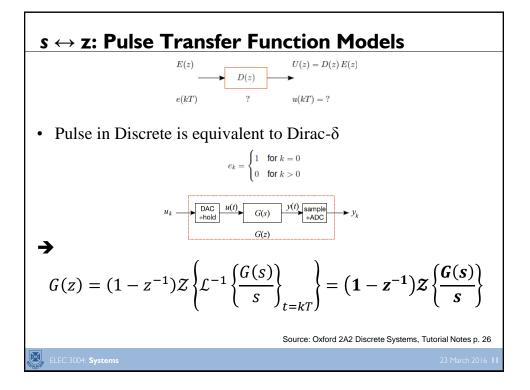
In practic	ansform e, you'll use loo e z-transform of	-	omputer tools (ie.	Matlab)
	F (s)	F(kt)	F (z)	
	$\frac{1}{s}$	1	$\frac{z}{z-1}$	
	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$	
	$\frac{1}{s+a}$	e ^{-akT}	$\frac{z}{z - e^{-aT}}$	
	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$	
	$\frac{1}{s^2 + a^2}$	sin(akT)	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$	
			·	•



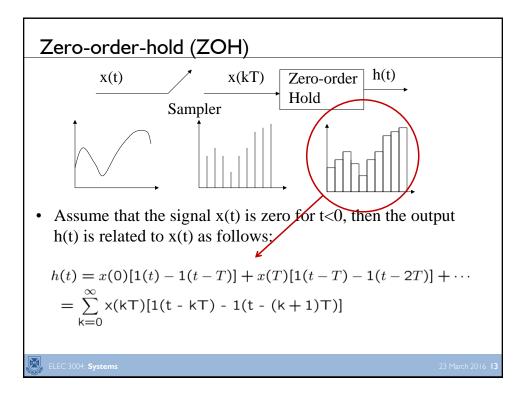


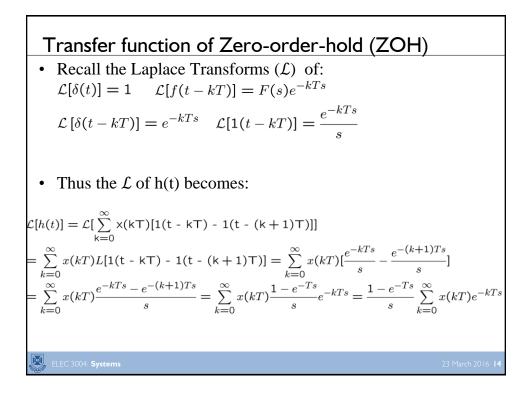


Relationship with s-p transforms	plane po	les and 2	z-plane
If $F(s)$ has a pole at $s = a$	$\mathcal{F}(s)$	f(kT)	F(z)
then $F(z)$ has a pole at $z = e^{aT}$	$\frac{1}{s}$	1(kT)	$\frac{z}{z-1}$
$\label{eq:consistent} \uparrow$ consistent with $z=e^{sT}$	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$
consistent with $z = e$	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z - e^{-aT}}$
What about transfer functions? $G(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
	$\frac{a}{s(s+a)}$	$1 - e^{-akT}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
(°) ↓	$\frac{b-1}{(s+a)(s+b)}$	$e^{-akT} - e^{-bkT}$	$-\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
If $G(s)$ has poles $s = a_i$ then $G(z)$ has poles $z = e^{a_i T}$	$\frac{a}{s^2 + a^2}$	$\sin akT$	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$
but the zeros are unrelated	$\frac{b}{(s+a)^2+b^2}$	$e^{-akT}\sin bkT$	$\frac{ze^{-aT}\sin bT}{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$
ELEC 3004: Systems			



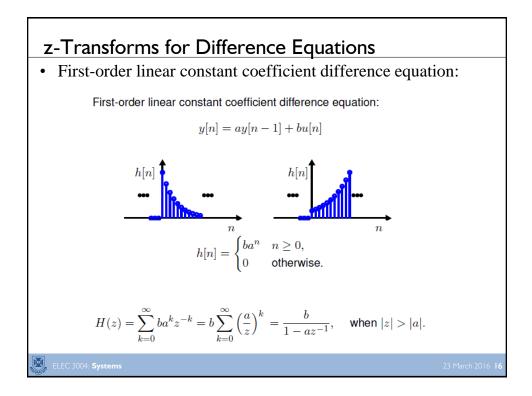
$\mathcal{L}(ZOH) = ???$: What is it?			
$\frac{1 - e^{-Ts}}{Ts}$	$\frac{1 - e^{-Ts}}{s}$		
<complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof! 		
ELEC 3004: Systems	23 March 2016 12		

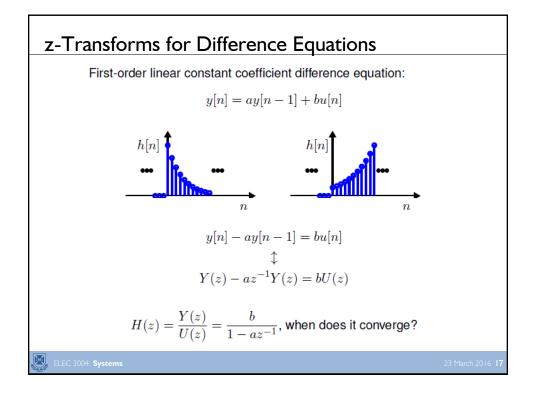


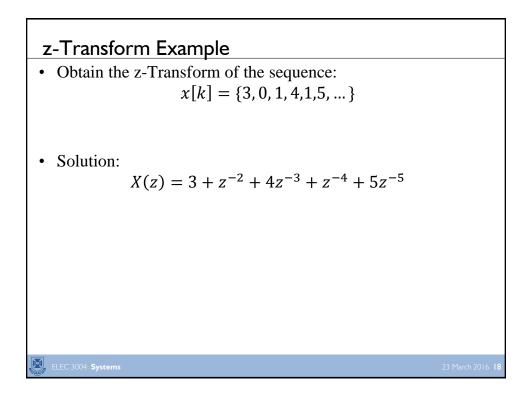


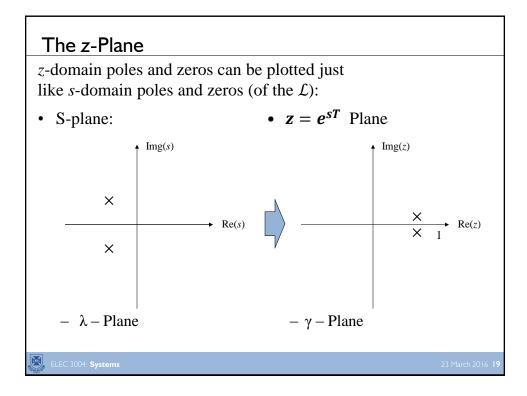
Transfer function of Zero-order-hold (ZOH)
... Continuing the
$$\mathcal{L}$$
 of h(t) ...
 $\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t-kT) - 1(t-(k+1)T)]]$
 $= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT) - 1(t-(k+1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$
 $= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\rightarrow X(s) = \mathcal{L}\left[\sum_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\therefore H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s)$
 \Rightarrow Thus, giving the transfer function as:
 $\left[G_{ZOH}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s}\right] \xrightarrow{Z} \left[G_{ZOH}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}}\right]$

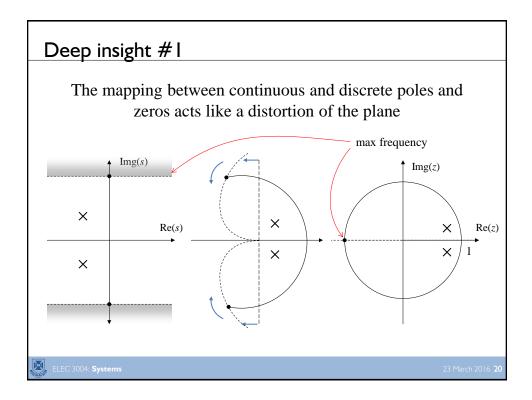
Г

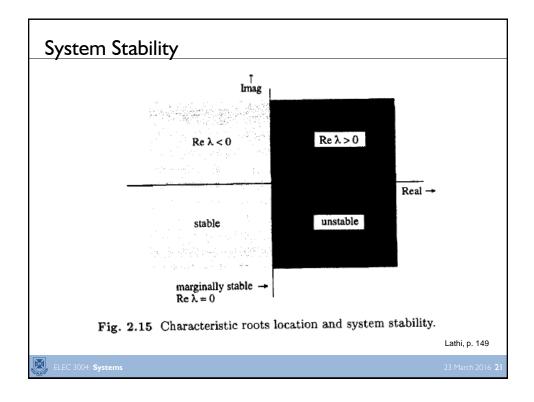


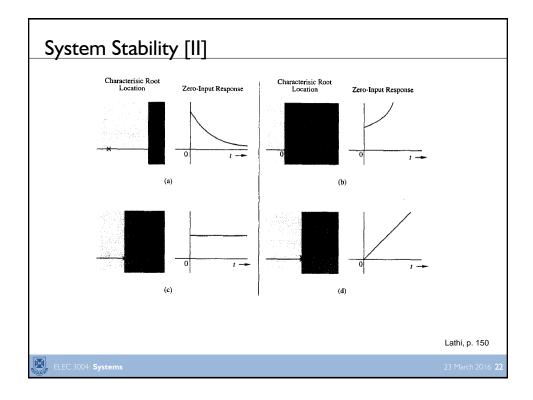


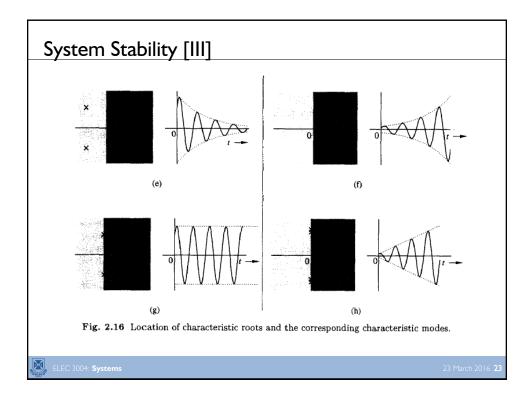


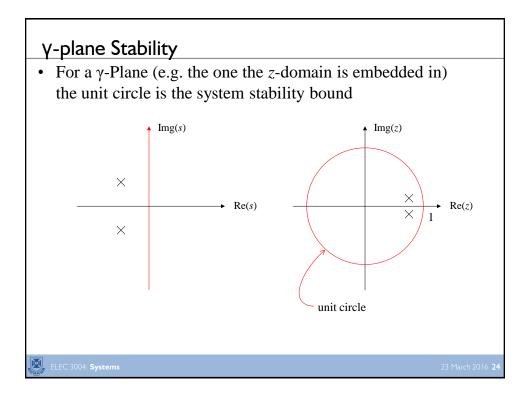


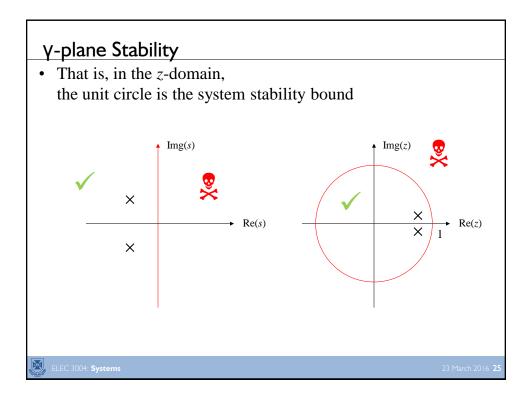


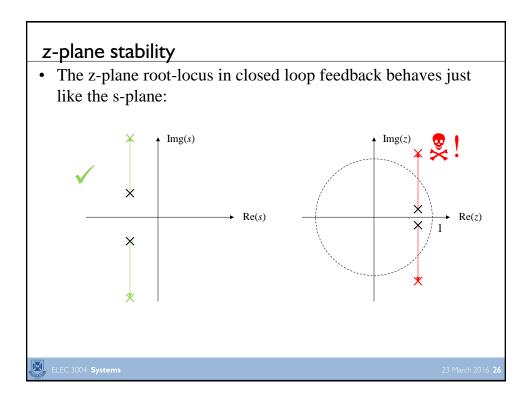










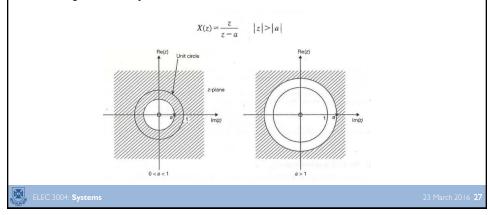


Region of Convergence

• For the convergence of X(z) we require that

 $\sum_{n=1}^{\infty} \left| a z^{-1} \right|^n < \infty$

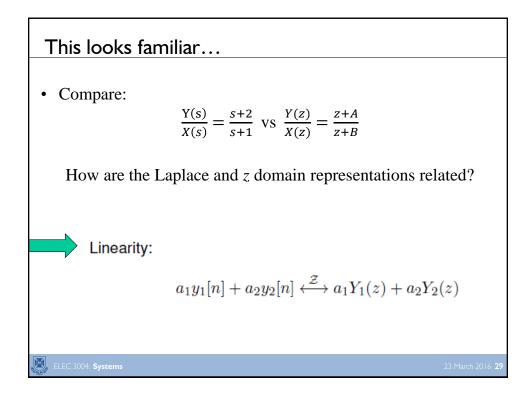
• Thus, the ROC is the range of values of z for which $|az^{-1}| < 1$ or, equivalently, |z| > |a|. Then

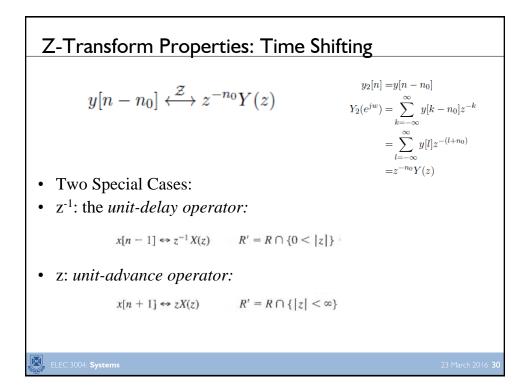


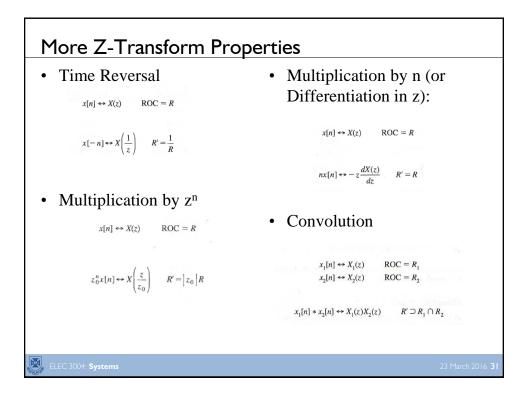
An example! • Back to our difference equation: y(k) = x(k) + Ax(k-1) - By(k-1)becomes $Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)$ (z + B)Y(z) = (z + A)X(z)which yields the transfer function: $\frac{Y(z)}{X(z)} = \frac{z + A}{z + B}$ Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

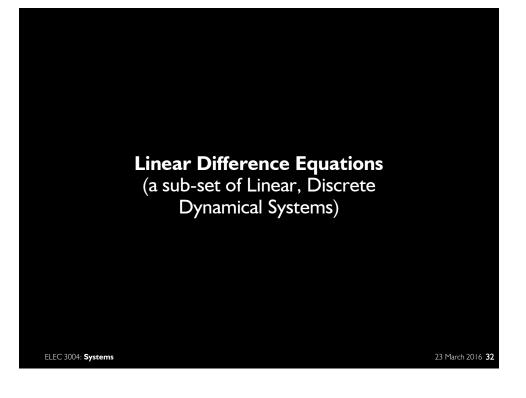
ELEC 3004: Systems

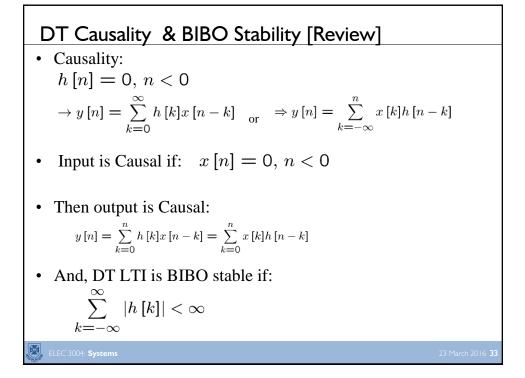
23 March 2016 **28**

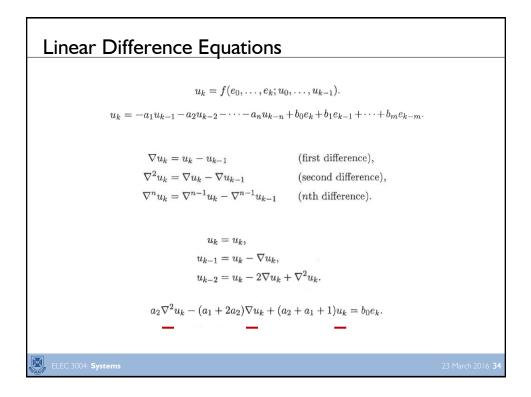


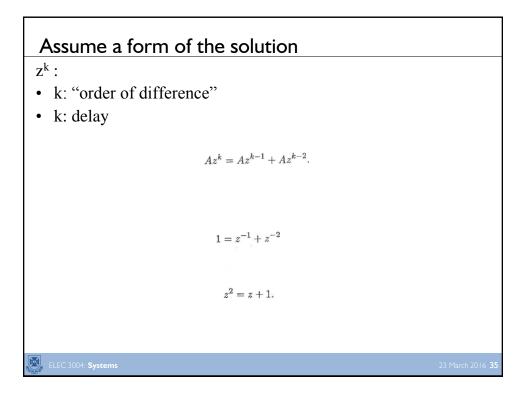


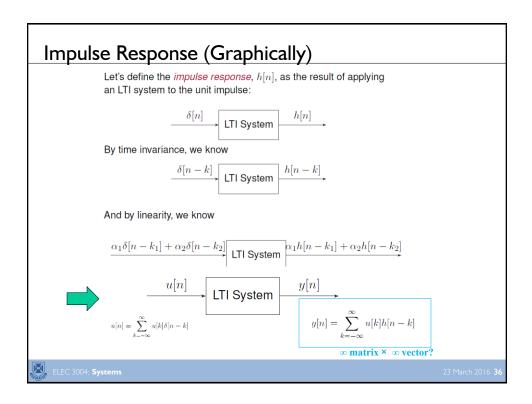


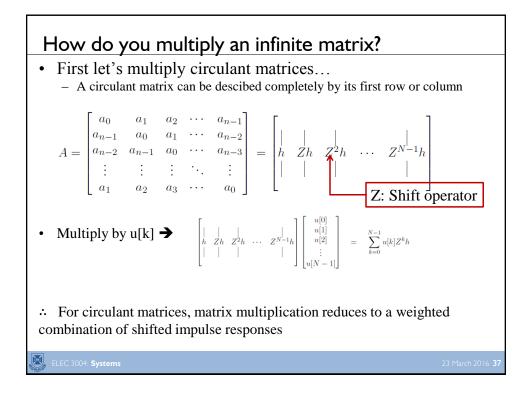


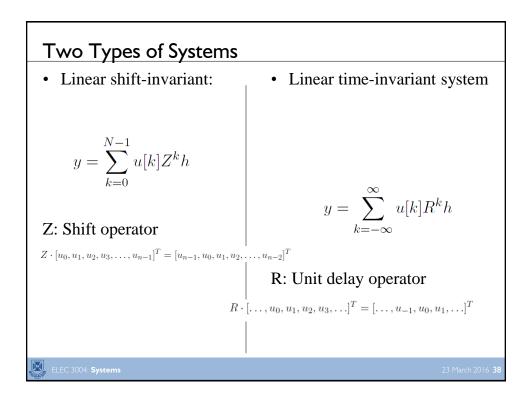


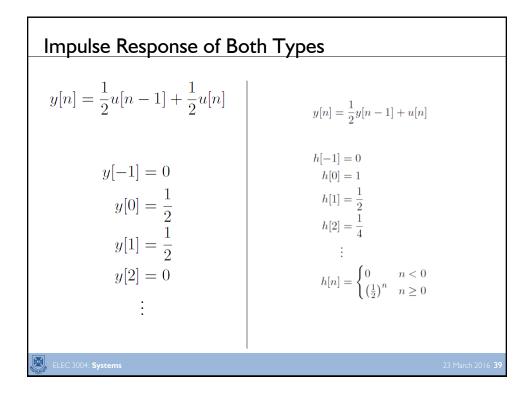


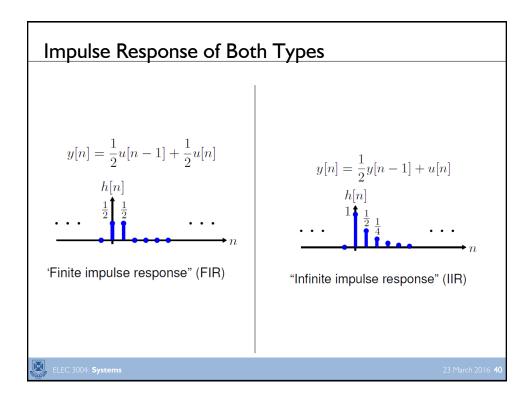










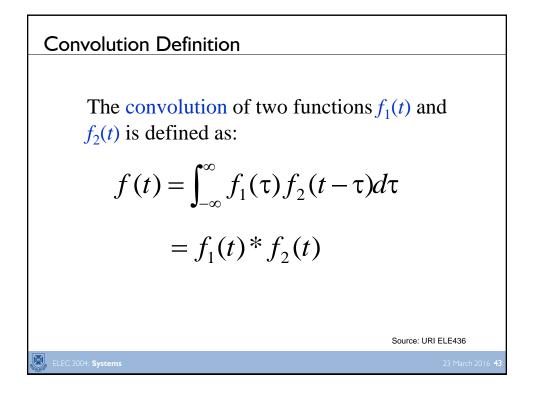


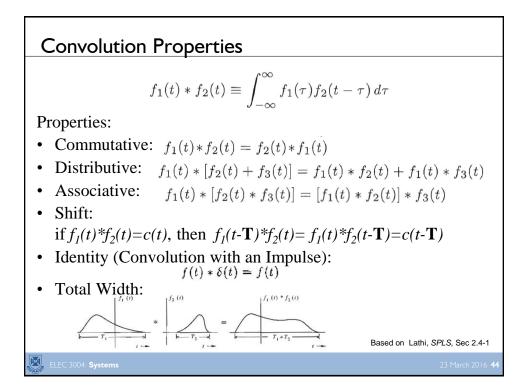
	BREAK	
ELEC 3004: Systems		23 March 2016 41

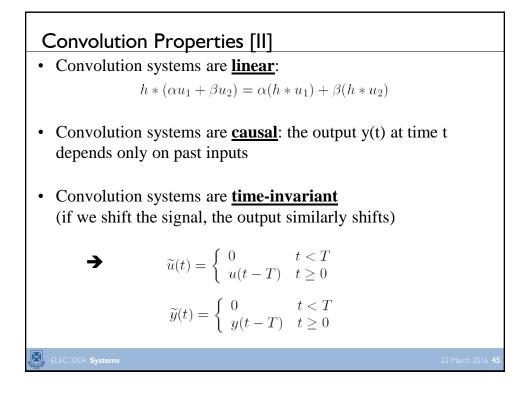
Convolution

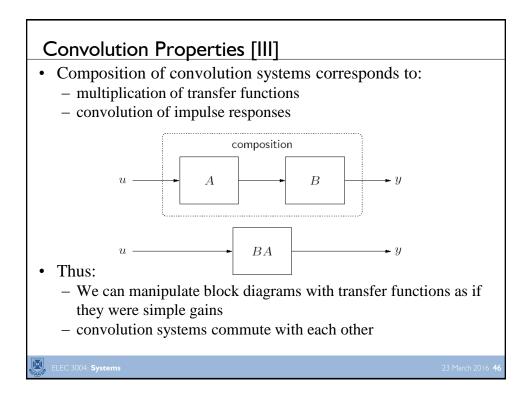
ELEC 3004: Systems

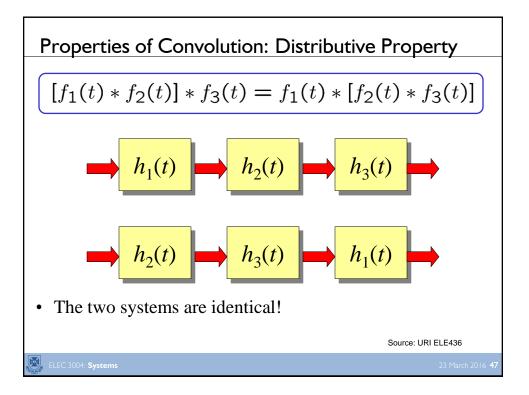
23 March 2016 **42**

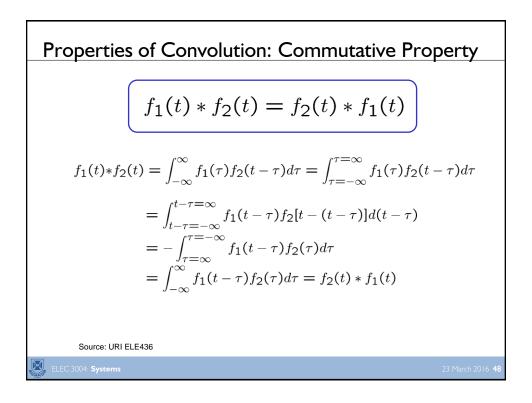


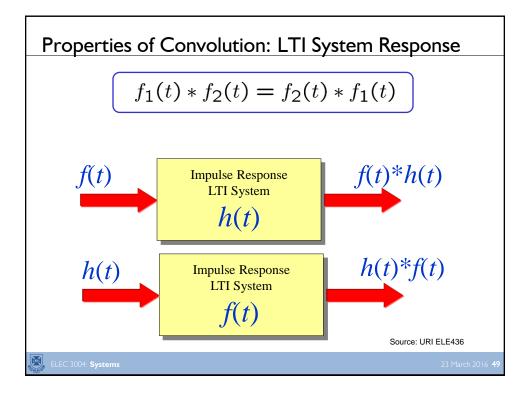


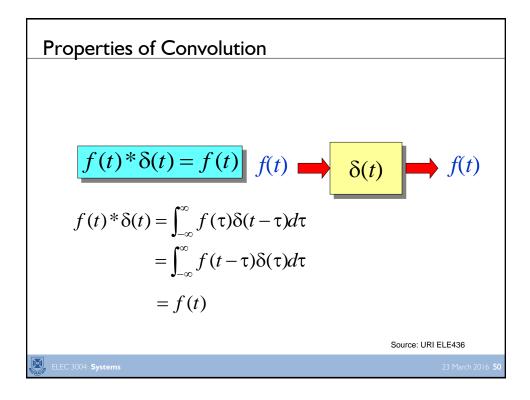


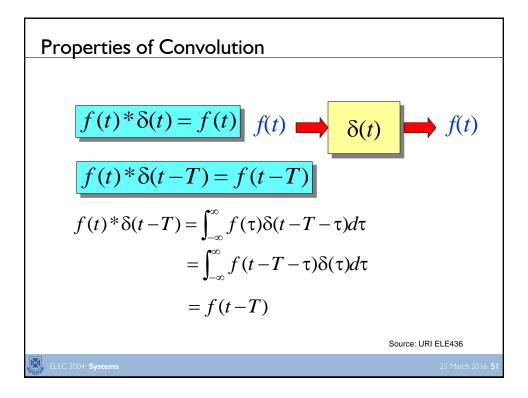


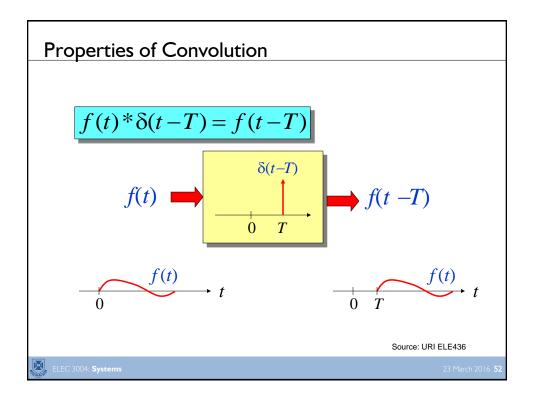


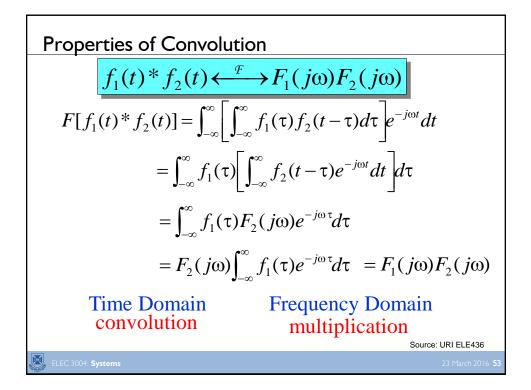


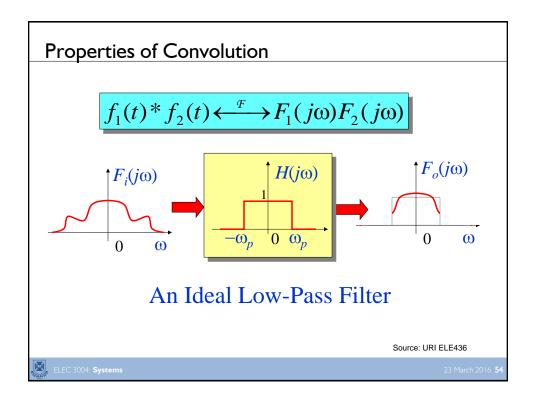


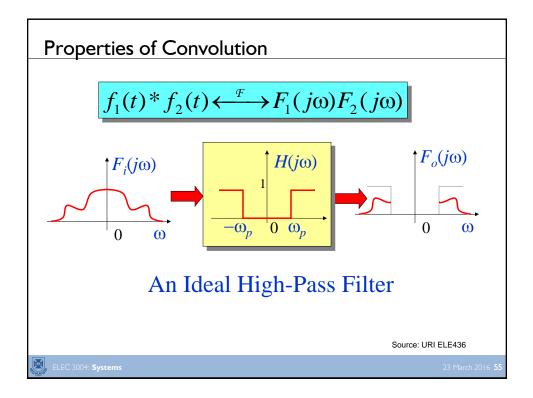


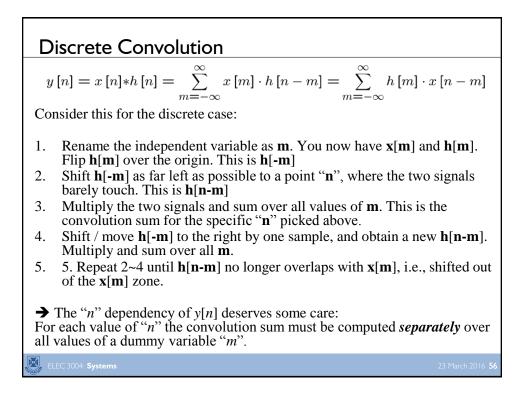


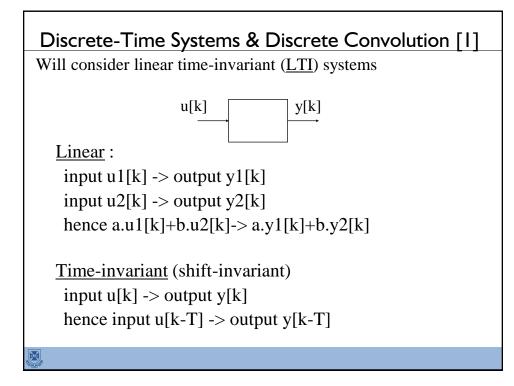


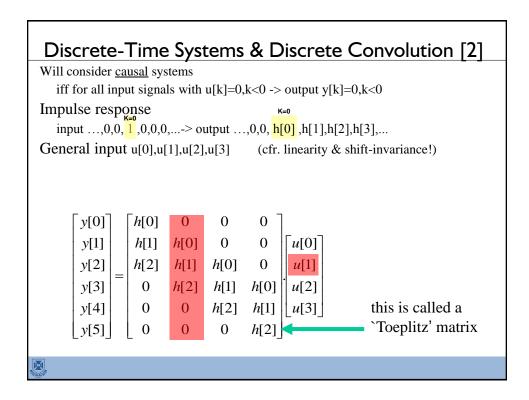


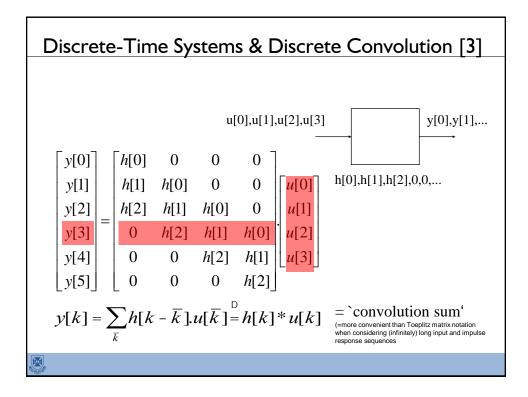


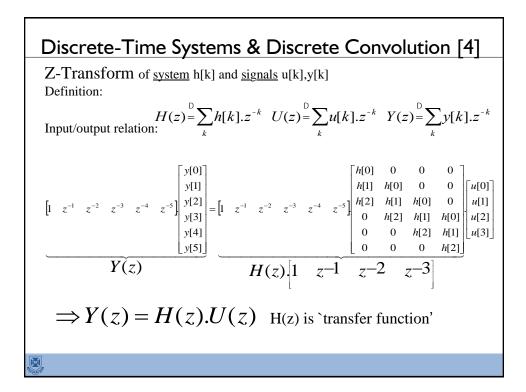


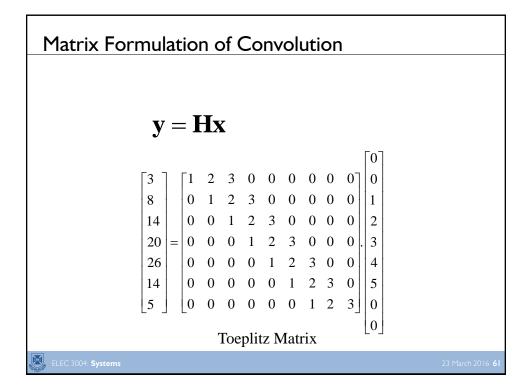


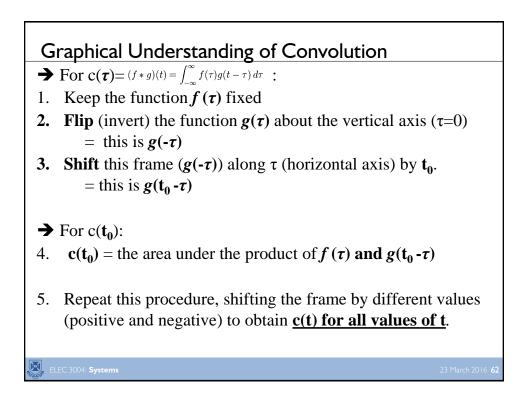


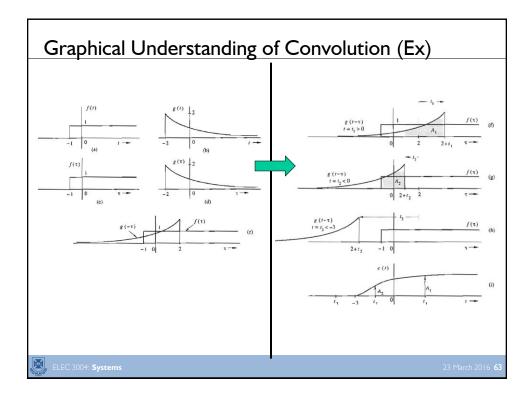


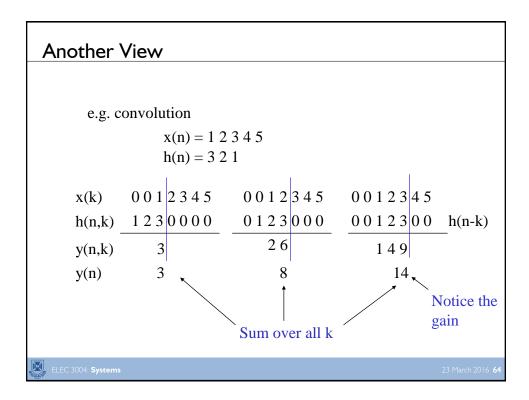












Convolution & Systems

- Convolution system with input u (u(t) = 0, t < 0) and output y: $y(t) = \int_0^t h(\tau)u(t-\tau) d\tau = \int_0^t h(t-\tau)u(\tau) d\tau$
- abbreviated:

y = h * u

• in the frequency domain:

$$Y(s) = H(s)U(s)$$

ELEC 3004: Systems

