

Sampling Theory: Aliasing & Anti-Aliasing

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 6

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

March 16, 2017

2017 School of Information Technology and Electrical Engineering at The University of Queensland

(CC)) BY-NC-SA

Lecture Schedule:

Week	Date	Lecture Title
1	28-Feb	Introduction
	2-Mar	Systems Overview
2	7-Mar	Systems as Maps & Signals as Vectors
	9-Mar	Systems: Linear Differential Systems
3	14-Mar	Sampling Theory & Data Acquisition
	16-Mar	Aliasing & Antialiasing
4	21-Mar	Discrete System Analysis
	23-Mar	Convolution Review
5	28-Mar	Frequency Response
		Filter Analysis
5	4-Apr	Digital Filters (IIR)
		Digital Windows
6	11-Apr	Digital Filter (FIR)
	13-Apr	
	18-Apr	
	20-Apr	
	25-Apr	
7		Active Filters & Estimation
8		Introduction to Feedback Control
		Servoregulation/PID
10		Introduction to (Digital) Control
		Digitial Control
11		Digital Control Design
		Stability
12		Digital Control Systems: Shaping the Dynamic Response
		Applications in Industry
13		System Identification & Information Theory
	1-Jun	Summary and Course Review

ELEC 3004: Systems

Overview (i.e. today we are going to learn ...)

- Aliasing
- Spectral Folding
- · Anti-Aliasing
 - Low-pass filtering of signals so as to keep things band limited

ELEC 3004: Systems

14 Manala 2017

Follow Along Reading:

B. P. Lathi Signal processing and linear systems 1998 TK5102.9.L38 1998

• Chapter 5:

Sampling

- § 5.1 The Sampling Theorem
- § 5.2 Numerical Computation of Fourier Transform: The Discrete Fourier Transform (DFT)

Also:

- § 4.6 Signal Energy

Sampling & RECONSTRUCTION

Digital Systems

- Implies something "something discrete" or ... that a mapping exists to an "integer set"
- $s \in \mathbb{Z}$
- Often the "state-space" and "time" are discretised. (But they both need no be)

- Why?
 - Beat the **noise** (e.g., more signal "sharing")
 - Leverage time-keeping (oscillator) precision

ELEC 3004: Systems

Sampling Theorem

• The Nyquist criterion states:

To prevent aliasing, a **bandlimited** signal of bandwidth w_B rad/s must be sampled at a rate greater than $2w_B$ rad/s

$$w_s > 2w_B$$

Note: this is a > sign not a \geq

Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter

ELEC 3004: Systems

Spectrum Replication

• Sampling with a pulse train $(\delta(t))$...

$$x(t) = x(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT_s)$$

• Gives replication in X(f)

$$X(f) = \frac{1}{T_s} \cdot \sum_{k=-\infty}^{+\infty} X\left(f - \frac{k}{T_s}\right)$$

ELEC 3004: Systems

March 2017 - 10

Spectrum Replication & Nyquist

- This suggests a limit:
 - Analog signal spectrum X(f) runs up to f_{max} Hz
 - Spectrum replicas are separated by $f_s = \frac{1}{T_s}$ Hz

ELEC 3004: Systems

Violating Nyquist? Compressed Sensing

- Not so fast...
 - "Exploits" the observation that most signals are sparse
- · Why?
 - Note that the Maximum Achievable Rate comes from the Karhunen-Loeve Decomposition or DFT Decomposition
- $C = \frac{1}{2} \int \log \left(\nu \frac{|H(f)|^2}{S_{\eta}(f)} \right) df$
- → This assumes a "dense" signal...
- Note:
 - Analog Compressed Sensing Xampling [MishaliEldar'10]
 - Multi-band receivers at sub-Nyquist sampling rates
 - Can be used in low-complexity cognitive radios

ELEC 3004: Systems

Reconstruction

• Whittaker-Shannon interpolation formula

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$

ELEC 3004: Systems

Why sinc?

Time Domain Analysis of Reconstruction

- Frequency domain: multiply by ideal LPF
 - ideal LPF: 'rect' function (gain Δt , cut off w_c)
 - removes replica spectrums, leaves original
- Time domain: this is equivalent to

 - convolution with 'sinc' function as $F^{-1}\{\Delta t \operatorname{rect}(w/w_c)\} = \Delta t w_c \operatorname{sinc}(w_c t/\pi)$ i.e., weighted sinc on every sample
- Normally, $w_c = w_s/2$

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n\Delta t) \Delta t w_c \operatorname{sinc}\left(\frac{w_c(t - n\Delta t)}{\pi}\right)$$

Practical Sampling

- Sample and Hold (S/H)
 - takes a sample every Δt seconds
 holds that value constant until next sample
- Produces 'staircase' waveform, $x(n\Delta t)$

ELEC 3004: Systems

17 March 2016 L

Practical Reconstruction

Two stage process:

- Digital to analogue converter (D/A)
 - zero order hold filter
 - produces 'staircase' analogue output
- Reconstruction filter
 - non-ideal filter: $\omega_c = \frac{\omega_s}{2}$
 - further reduces replica spectrums
 - usually 4th 6th order e.g., Butterworth
 - for acceptable phase response

ELEC 3004: Systems

Sampling & Aliasing

ELEC 3004: Systems

16 March 2017 - 18

Alliasing

• Aliasing - through sampling, two entirely different analog sinusoids take on the same "discrete time" identity

For
$$f[k] = \cos(\Omega k)$$
, $\Omega = \omega T$:

The period has to be less than $\boldsymbol{F}_{\!h}$ (highest frequency):

Thus:
$$0 \le \mathcal{F} \le \frac{\mathcal{F}_s}{2}$$

Thus: $0 \le \mathcal{F} \le \frac{\mathcal{F}_s}{2}$ ω_f : aliased frequency: $\omega T = \omega_f T + 2\pi m$

Matlab Example %% Sample PSD %% Set Values f=1; phi=0; fs=1e2; t0=0; tf=1; %% Generate Signal t=linspace(t0,tf,(fs*(tf-t0))); x1=cos(2*pi*f*t + phi); figure(10); plot(t, x1); %% PSD $[p_x1, f_x1] = pwelch(x1,[],[],[],fs);$ figure(20); plot(f_x1, pow2db(p_x1)); xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)'); %% PSD (Centered) [p_x1, f_x1] = pwelch(x1,[],[],[],fs, 'centered','power'); figure(30); plot(f_x1, pow2db(p_x1)); xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)');

Sampling & Antialiasing ELEC 3004: Systems

Practical Anti-aliasing Filter

· Non-ideal filter

$$\triangleright w_c = \frac{w_s}{2}$$

- Filter usually 4th 6th order (e.g., Butterworth)
 - so frequencies > w_c may still be present
 - not higher order as phase response gets worse
- Luckily, most real signals
 - are lowpass in nature
 - · signal power reduces with increasing frequency
 - e.g., speech naturally bandlimited (say < 8KHz)
 - Natural signals have a $\sim \frac{1}{f}$ spectrum
 - so, in practice aliasing is not (usually) a problem

ELEC 3004: Systems

Frequency Domain Analysis of Sampling

- Consider the case where the DSP performs no filtering operations
 - i.e., only passes $x_c(t)$ to the reconstruction filter
- To understand we need to look at the frequency domain
- Sampling: we know
 - multiplication in time \equiv convolution in frequency
 - $F\{x(t)\} = X(w)$
 - $F\{\delta T(t)\} = \sum \delta(w 2\pi n/\Delta t),$
 - i.e., an impulse train in the frequency domain

Frequency Domain Analysis of Sampling

• In the frequency domain we have

$$X_{c}(w) = \frac{1}{2\pi} \left(X(w) * \frac{2\pi}{\Delta t} \sum_{n} \delta \left(w - \frac{2\pi n}{\Delta t} \right) \right)$$
$$= \frac{1}{\Delta t} \sum_{n} X \left(w - \frac{2\pi n}{\Delta t} \right)$$

Remember convolution with an impulse?
Same idea for an impulse train

- Let's look at an example
 - where X(w) is triangular function
 - with maximum frequency w_m rad/s
 - being sampled by an impulse train, of frequency w_s rad/s

17 March 2016 3

Sampling Frequency

- In this example it was possible to recover the original signal from the discrete-time samples
- But is this always the case?
- Consider an example where the sampling frequency w_s is reduced
 - i.e., Δt is increased

ELEC 3004: Systems

17 Marrala 2017 **20**

Taking Advantage of the Folding

5.1 The Sampling Theorem

We now show that a real signal whose spectrum is bandlimited to B Hz $[F(\omega)=0$ for $|\omega|>2\pi B]$ can be reconstructed exactly (without any error) from its samples taken uniformly at a rate $\mathcal{F}_s>2B$ samples per second. In other words, the minimum sampling frequency is $\mathcal{F}_s=2B$ Hz.†

To prove the sampling theorem, consider a signal f(t) (Fig. 5.1a) whose spectrum is bandlimited to B Hz (Fig. 5.1b).‡ For convenience, spectra are shown as functions of ω as well as of \mathcal{F} (Hz). Sampling f(t) at a rate of \mathcal{F}_s Hz (\mathcal{F}_s samples per second) can be accomplished by multiplying f(t) by an impulse train $\delta_T(t)$ (Fig. 5.1c), consisting of unit impulses repeating periodically every T seconds, where $T=1/\mathcal{F}_s$. The result is the sampled signal $\overline{f}(t)$ resented in Fig. 5.1d. The sampled signal consists of impulses spaced every T seconds (the sampling interval). The nth impulse, located at t=nT, has a strength f(nT), the value of f(t) at t=nT.

$$\overline{f}(t) = f(t)\delta_T(t) = \sum_n f(nT)\delta(t - nT)$$
(5.1)

†The theorem stated here (and proved subsequently) applies to lowpass signals. A bandpass signal whose spectrum exists over a frequency band $\mathcal{F}_c - \frac{B}{2} < |\mathcal{F}| < \mathcal{F}_c + \frac{B}{2}$ has a bandwidth of B Hz. Such a signal is uniquely determined by 2B samples per second. In general, the sampling scheme is a bit more complex in this case. It uses two interlaced sampling trains, each at a rate of B samples per second (known as second-order sampling). See, for example, the references. 1.2 †The spectrum $F(\omega)$ in Fig. 5.1b is shown as real, for convenience. However, our arguments are valid for complex $F(\omega)$ as well.

ELEC 3004: System

319

17 Manage 2017 42

Next Time...

• Digital Systems

- Review:
 - Chapter 8 of Lathi
- A signal has many signals 0 [Unless it's bandlimited. Then there is the one ω]

