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Overview (i.e. today we are going to learn ...)

* Aliasing « Anti-Aliasing
— Low-pass filtering of
« Spectral Foldin signals so as to keep things
P | band limited

Follow Along Reading:

" B. P. Lathi _
: Signal processing » Chapter 5:

and linear systems Samp“ng
1998

TK5102.9.1 381998 — §5.1 The Sampling Theorem
— 8 5.2 Numerical Computation of
Fourier Transform: The Discrete
Fourier Transform (DFT)

Also:
— 8§ 4.6 Signal Energy



http://library.uq.edu.au/record=b2013253~S7
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Digital Systems
* Implies something “something discrete” or ...
that a mapping exists to an “integer set” S E Z

» Often the “state-space” and “time” are discretised.
(But they both need no be)

RO u(kT) b ut) ()
—> Controller DAC — Plant
R T Z R
! il CE e --1 .
YT [ 0
ADC : Sensor
_______________________________________________ y/A—
R
* Why?

— Beat the notse (e.g., more signal “sharing”)
— Leverage time-keeping (oscillator) precision




Sampling & Reconstruction...
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Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

W, > 2Wg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter
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Spectrum Replication

« Sampling with a pulse train (6 (¢t))...

o0
z(t) =z(t) - Y. 8(t—kTs)

k=—00
« Gives replication in X(f)

X ()= IS} x(f-7)

S k=—

Spectrum Replication & Nyquist

f max
/]

X(H if
S =
-B ' BT ] o 48 - m H -+
Xdif)
— VA

» This suggests a limit:
— Analog signal spectrum X (f) runs up to f,,.,.Hz

— Spectrum replicas are separated by f _ Tl Hz

2B




Violating Nyquist? Compressed Sensing

* Not so fast...
“Exploits” the observation that most signals are sparse

+ Why?
— Note that the Maximum Achievable Rate )
comes from the Karhunen-Loeve C = l/log V|H(-f)‘ df
Decomposition or DFT Decomposition 2 Sy(f)

=> This assumes a “dense” signal...

* Note:
— Analog Compressed Sensing — Xampling [MishaliEldar’10]
— Multi-band receivers at sub-Nyquist sampling rates
— Can be used in low-complexity cognitive radios

o W

f 3 f N f max

Reconstruction

o1 ... i 4 5

1’910111213
6 7 8




Reconstruction

» Whittaker—Shannon interpolation formula

z(t) =20 a[n] -sinc(

t—nT)
T

AX(f)

Why sinc?

Time Domain Analysis of Reconstruction

* Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w,)
— removes replica spectrums, leaves original

» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample

*  Normally, w, = w2

X, (t) = i X(NAt) Atw, sinc(M

T

N=—o0

J




Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, X(nAt)

sample instant

f/[ﬁﬁ — X(nAt)

— t

hold for At

Practical Reconstruction

Two stage process:

« Digital to analogue converter (D/A)
— zero order hold filter
— produces ‘staircase’ analogue output

* Reconstruction filter
— non-ideal filter: w, = =2
— further reduces replica spectrums

— usually 4th — 6th order e.g., Butterworth
« for acceptable phase response




Sampling & Aliasing
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Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f[k] = cos(Q2k,) Q = wT:
The period has to be less than F,, (highest frequency): 7 < ";;L
&

F;
Thus: o0<rF<®

)

oy aliased frequency:  wT' = wyT + 2am




Ex: Moire Effects

Source: Wikimedia https://en.wikipedia.org/wiki/Aliasing#/media/File:Moire_pattern_of_bricks.jpg (and aliased)

Aliasing: Another view of this

10
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Spectrum Overlap

Xitf)

M=

S

E ‘ BT 4 )3 7 fs=28B
> if f.<2B
=» then “Folding” or “aliasing”:
[???ﬂ..’]?
_2If5 _,'f.s { J;.s 2}‘5 frequency

Original Spectrum

"W Wi,

Fourier transform of impulse train (sampling signal)

\W

0 2n/At  4rn/At 6m/At W
Amplitude spectrum of sampled signal
P P P 9 Replica spectrums
t overlap with origina
R 7N 7\ 7\ (and each other)
// \\ // \\ // \\ // \\ This is Aliasing
/ v A A \
/ /7 \ /7 N\ /7 N\ \
Original Replica 1 Replica 2 ...
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Original Spectrum

X (i)
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Another way to see Aliasing Too!

Rotating wheel and peg

-

Need both top and front
view to determine rotation

“ TTFHLLEEET
= FHEEEEETTE

ELEC 3004: Systems 17 March 2016 25
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Temporal Aliasing

90° clockwise rotation/frame
clockwise rotation perceived

270° clockwise rotation/frame
(90°) anticlockwise rotation
perceived i.e., aliasing

Require LPF to ‘blur’ motion

ELEC 3004: Systems

16 March 2017 - 27
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Matlab

Example

%% Sample PSD

%% Set Values
f=1;

phi=0;
fs=1e2;

t0=0;

tf=1;

%% Generate Signal
t=linspace(t0,tf, (fs*(tf-t0)));
x1l=cos(2*pi*f*t + phi);
figure(10); plot(t, x1);

%% PSD

[p_x1, f_x1] =

pwelch(x1,[1,[1,[1,fs);

figure(20); plot(f_x1, pow2db(p_x1));
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');

%% PSD (Centered)

[p_x1, f_x1] =

pwelch(x1,[],[],[],fs, 'centered', 'power');

figure(30); plot(f_x1, pow2db(p_x1));
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');

Hello World

Hello World

A demonstration

14



No antialiasing

Prefiltering

15



Sampling & Antialiasing

ELEC 3004: Systems
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Practical Anti-aliasing Filter

* Non-ideal filter

w
rw, ===
2

* Filter usually 4th — 6th order (e.g., Butterworth)
— so frequencies > w, may still be present
— not higher order as phase response gets worse
 Luckily, most real signals

— are lowpass in nature
« signal power reduces with increasing frequency

— e.g., speech naturally bandlimited (say < 8KHz)
— Natural signals have a ~% spectrum

— S0, in practice aliasing is not (usually) a problem

16



Amplitude sTpectrum of sampled signal _ sampled signal

7] A

spectrum

oOriginal Replica 1 Replica 2 ...
Reconstruction filter (ideal lowpass filter)

W, W= W,

Spectrum of reconstructed signal

The effect of aliasing is

that higher frequencies

of “alias to” (appear as)
lower frequencies

\W

Due to overlapping
replicas (aliasing)
the reconstruction
filter cannot recover
the original spectrum

S Wi

w

Mathematics of Sampling and Reconstruction

Sampling frequency f, = 1/A4t

sampling reconstruction
X(t t
(t) () DSP Ideal y(t)
LPF
Impulse train Gain
8.(t)=25(t - nAt) .
- . t 0 fe I;req

Cut-off frequency = f,

17



Frequency Domain Analysis of Sampling

 Consider the case where the DSP performs no filtering

operations
— 1.e., only passes x.(t) to the reconstruction filter

« To understand we need to look at the frequency domain

» Sampling: we know
— multiplication in time = convolution in frequency
— F{x()} = X(w)
— F{oT(t)} = 28(w - 2nn/At),
— 1.e., an impulse train in the frequency domain

Frequency Space

Signal Time domain Transform
Impulse &[n] ]
d[n — ny)
Unit step uln] r 5(L2), 19| ==
1
[ J B(¢
- - " 1
Exponential a"uln] la] -
1
a"tu[-n -1 la|
| ae
Weighted exponential (e + a"uln]
DC signal 1, for all n 2m 6{Q2) Q=
Complex sinusoid egfsion 2w H(2 — Q, 1924, |19
Sine wave sin 2,n A ( 2
19,
Cosine wave cos £,n )

18



Frequency Domain Analysis of Sampling

* In the frequency domain we have

Xc(w)zi(X(w)*z—”25(W_2_”nD Remember
27 At 5 At J)| convolution with
1 27m an impulse?
TAt4 X W-— Same idea for an
impulse train

Let’s look at an example
= Where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency w, rad/s

Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

+ Consider an example where the sampling frequency w; is
reduced
— i.e., At is increased

19



Fourier transform of original signal X(w)

(signal spectrum)
Fourier transform of impulse train 6(w/27) (sampling signal)

FL8-(0]

w = 2m/At 41/At w

0
Fourier transform of sampled signal

X () Original spectrum

convolved with

VAL spectrum of
. *** |impulse train
W

Original Replica 1 Replica 2

Spectrun x«f sampled signal
1/At
Original Replica 1 Replica 2
Reconstruction filter (ideal lowpass filter)
Hy(w)
At
W, W, =W, w

Spectrum of reconstructed signal

Reconstruction filter
X(w) = Hy(o) X.(@) removes the replica
spectrums & leaves
only the original

Wy Wi w

20



Sampled Spectrum w. > 2wm

LPE 4
W, W, W, w
orignal replica 1
original freq recovered Original and replica
L%Ia:mpled Spectrum wg < 2w, spectrums overlap
4 Lower frequency
* ot * recovered (Wg — W)
W W‘mWs w
orignal — v
replica 1

Taking Advantage of the Folding

5.1 The Sampling Theorem

We now show that a real signal whose spectrum is bandlimited to B Hz
[F(w) = 0 for |w| > 2rB] can be reconstructed exactly (without any errer) from its
samples taken uniformly at a rate 7, > 2B samples per second. In other words,
the minimum sampling frequency is 7, = 2B Hz.t

To prove the sampling theorem, consider a signal f(t) (Fig. 5.1a) whose spec-
trum is bandlimited to B Hz (Fig. 5.1b).} For convenience, spectra are shown as
functions of w as well as of 7 (Hz)., Sampling f(¢) at a rate of F, Hz (F, samples
per second) can be accomplished by multiplying f(t) by an impulse train é7(¢)(Fig.
5.1c), consisting of unit impulses repeating periodically every T seconds, where
T = 1/F,. The result is the sampled signal f(t) resented in Fig. 5.1d. The sampled
signal consists of impulses spaced every T seconds (the sampling interval). The nth
impulse, located at ¢t = nT, has a strength f(nT), the value of f(t) at t = nT.

7(t) = £(0)r(t) = 3 f(nT)6(t — nT) (5.1)

{The theorem stated here (and proved subsequently) applies to lowpass signals. A bandpass signal
whose spectrum exists over a frequency band F. — % <|Fl< Fe+ % has a bandwidth of B Hz.
‘ Such a signal is uniquely determined by 2B samples per second. In general, the sampling scheme
is a bit more complex in this case. It uses two interlaced sampling trains, each at a rate of B
samples per second (known as second-order sampling). See, for example, the references.1?
{The spectrum F(w) in Fig. 5.1b is shown as real, for convenience. However, our arguments are
valid for complex F(w) as well.

319
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Next Time...

 Digital Systems

* Review:
— Chapter 8 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited. Then there is the one ®]
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