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Follow Along Reading:

"ﬁ‘ B. P. Lathi _
Biear Signal processing ¢ Chapter o

| and linear systems Samp“ng
1998

TK5102.9.1 381998 — §5.1 The Sampling Theorem
— §5.2 Numerical Computation of
Fourier Transform: The Discrete
Fourier Transform (DFT)

Also:
— 8§ 4.6 Signal Energy

Linear Differential Systems

(Recap)
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http://library.uq.edu.au/record=b2013253~S7

Equivalence Across Domains

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

Variable Integrated Variable Integrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, i Charge, q Voltage Flux linkage, Ay,
difference, vy,
Mechanical ~ Force, F Translational Velocity Displacement
translational momentum, P difference, vy difference, y;
Mechanical ~ Torque, T’ Angular Angular velocity ~ Angular
rotational momentum, 2 difference, wy; displacement
difference, 6,
Fluid Fluid Volume, V Pressure Pressure
volumetric rate difference, Py, momentum, sy
of flow, Q
Thermal Heat flow Heat energy, Temperature
rate, q H difference, 75,

Source: Dorf & Bishop, Modern Control Systems, 12" Ed., p. 73
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Table 2.2 Summary of Governing Differential Equations for Ideal Elements
Type of Physical Governing Energy E or
Element Element Power % Symbol
i di p S L i
Electrical inductance vy = LZ E= ELI vl Y Y Y oy,
. 8 1dF 1P s
== == '
‘Translational spring vy % di 2k v oYY Yy
Inductive storage
Rotational sprin, . E= ety 2
pring on % dt “=2% @y oYY \op T
L . U
Fluid inertia Py= 1 E=3IQ porrdop,
Electrical capacitas =C dvn Lo i e
pacitance i= dt =3 gy n;o—»—”—oul
d
‘Translational mass F=M22 E=imp  Fog M-
dt 20" = constant
Capacitive storage Rotational mass T=1J doy E= l]a»,’ T o=
dt 2 constant
Fluid capacitance 0= s} =lepg Qa0 Py
pa 1ds =3CFn Py 4
3 47, C}—o
Thermal capacitance a=Cg" E=CT; 7 g, =
constant
Electrical resistance i= ;v;, ==y u,e—'\/f/\r—»i—oﬂ,
i = = 2
Translational damper F = bvy, P = by F o ] - v
Energy dissipat Rotational d; = b = buy’ ]
nergy dissipators otational damper T = by P = bwy T —ou,
Fluid resistance e & o
Ry Ry Py o AAA—— P,
Thermal resistance q= RLEIU P = l321 R4
3 R, T3 0-AAA—+— T,
Source: Dorf & Bishop, Modern Control Systems, 12" Ed., p. 74
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Example: Quarter-Car Model

&,

Road surface
Inertial reference

2 1
3

ky(y — -\')I ]17(.\" = %)
x y
1 ky(x — 1) ky(y — .\‘)1 lh()" —%)

o

Example: Quarter-Car Model (2)

ky w
—x=—r,

wo B o ks
X+ —@E =)+ —x—-y)+—
my my my my

_—k o ks
Y+ —0G -3+ —(-x)=0.
my my

5 b ks Ky w
S°X () +5s—(X(s) = Y(5)) + —(X(5) — Y(5)) + — X (s) = —R(s),
my my my my

5 b ky
s7Y(s) +s— (Y (s) — X(5)) + —(Y(s) = X(5)) =0,
my my

kb i ks
S
mymy b

R(s) b ks K ke kb Kuks
© s4+(—+—’>s3+(—+—'+—)s2+( )s+ ‘
mp mymy mymy

nmj my
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Economics: Cost of Production

Materials, parts, labour, etc. (inputs) are combined to make a
number of products (outputs):
e x;: price per unit of production input j
* a;;: input j required to manufacture one unit of product
e y;: production cost per unit of product i
« Fory = Ax:

o it" row of A is bill of materials for unit of product i
« Production inputs needed:

- g; i1s quantity of product i to be produced

— 17 is total quantity of production input j needed

r = Alqg
& Total production cost is:

rTx = (ATq)Tx = qTAx

Source: Boyd, EE263, Slide 2-18

Estimation (or inversion)

| i

W e

y = Ax
o y; is i" measurement or sensor reading (which we have)
o Xxjis jt" parameter to be estimated or determined
* a; is sensitivity of i** sensor to j** parameter
« sample problems:
o find x, given y
o find all x’s that result in y (i.e., all x’s consistent with measurements)

o ifthereisno xsuchthaty = Ax,findxst y = Ax
(i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Source: Boyd, EE263, Slide 2-26

o




Digital

Signals & Systems
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Signal: A carrier of (desired) information [1]

* Need NOT be electrical:

» Thermometer
* Clock hands
» Automobile speedometer

* Need NOT always being given
— “Abnormal” sounds/operations

— Ex: “pitch” or “engine hum” during machining as an
indicator for feeds and speeds

)




Signal: A carrier of (desired) information [2]

« Electrical signals
— Voltage
— Current

 Digital signals

— Convert analog electrical signals to an appropriate
digital electrical message

— Processing by a microcontroller or microprocessor

Transduction (sensor to an electrical signal)

 Sensor reacts to environment (physics)

 Turn this into an electrical signal:
— V: voltage source
— I: current source

» Measure this signal
— Resistance
— Capacitance
— Inductance




Digital Signal

» Representation of a signal against a discrete set

» The set is fixed in by computing hardware

S

e (Can be scaled or normalized ... but 1s limited

s € 7(0,...,210)

« Time is also discretized

7.(0,...,219)
216

s e

Analog vs Digital

» Analog Signal: An analog or analogue signal is any
variable signal continuous in both time and

amplitude Q Q Q

« Digital Signal: A digital signal is a signal that is both
discrete and quantized

E.g. Music stored in a
CD: 44,100 Samples

per second and 16 bits
to represent amplitude




Digital Systems

« Continuous:

()

Controller

U]

Sensor

...................

Controller

1)

Plant

Sensor

=> Digital Systems ¢’

Better SNR

We trade-off
“certainty in time” for “signal
noise/uncertainty”

Analog: oo time resolution
— Digital has fixed time steps

J-" ;IL, (-LL
/\/\/\/ 1 | Hl\ 1|I

.

This avoids the noise and
uncertainty in component values
that affect analogue signal
processing.

Better Processing

« Digital microprocessors are in a
range of objects, from obvious (e.g.
phone) to disposable (e.g. Go cards).
(what doesn’t have one?)

Compared to antilog computing

(op-amp):

» Accuracy: digital signals are usually
represented using 12 bits or more.

* Reliability: The ALU is stable over
time.

» Flexibility: limited only
programming ability!

» Cost: advances in technology make
microcontrollers economical even for
small, low cost applications.
(Raspberry Pi 3: US$35)




Digital
Signals & Systems

WHY?
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BUT there is Noise ...

. fa heve's awd Weaw's Wlaclines ( Suwibelve -« T dend
o Hae uz,-.—él pbwm-'u-é—-t-ﬁt‘)

Il r i‘Q&A'-ﬂ: TU'J v Euﬂ.t\_]
tr
[t \L\\_ﬂyﬂ T — et
] |
[N By L e
! f“"
ﬂ.'u{x.(_,'\._l'c T /_FH
c/ilj':m.iil ? T
Lokl I| . - lli' |_s](. lf,cc.\_{:J
:5'.-,-\"(\!': . diuswedd § e
e \ tudes | ehe
LE8LEng \\h—f“_"‘\vr‘—'——*— ¥
retaining imachineny, S
l-uaJI-Hr_,vzaLPiu,.\ ete. -
F e S A PRI PP L L L I L A
T i+ e T
| [
ICULlpq.\-; lyenn '|.,,|MH._'| o, g
Note: this picture illustrates the concepts but it is not quantitatively precise
Source: Prof. M. Siegel CMU

Noise: “Unwanted” Signals
Carrying Errant Information

+ Cross-coupled measurements

+ Cross-talk (at a restaurant or even a lecture)
A bright sunny day obstructing picture subject
« Strong radio station near weak one

* observation-to-observation variation
— Measurement fluctuates (ex: student)
— Instrument fluctuates (ex: quiz !)

» Unanticipated effects / variation (Temperature)
* One man’s noise might be another man’s signal

11



Noise: Fundamental Natural Sources

» Voltage (EMF) — Capacitive & Inductive Pickup

« Johnson Noise — thermal / Brownian
« Uf(V; = 3k TR

« Shot noise (interval-to-interval statistical count)

aV2
Vi=\=xf

SNR : Signal to Noise Ratio

V=Vs+Vy

Magnitude: V2 =V2 4+ V24 ViV,
S __ V&

NE vz

- . ‘732 . Srms
in dB: 10log (V_2> = 20109 (pim)

TS
n Vn

12



A theory for all this ..

Sampling!

13



Not this type of sampling ... ©

SEMINAR REFRESHMENTS!/

Cafteine More Carbs
' Catfeine Sugar Sfeaight C:r.;:r:
L for your Up Sugar SUGBE  carere

Caffeine /

Nothing says “We are confident this seminar will be intellectually
stimulating for you”like a table full of things 1o help you stay awake.

JORGE CHAM ® 2013
WWW.PHDCOMICS. COM

This type of sampling...

S(t)
S.

g 10 11 12

13

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png
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Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

W, > 2wy

Note: this is a > sign nota >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

Mathematics of Sampling and Reconstruction

sampling reconstruction
X(t t
(t) () DSP Ideal y(®)
LPF
Impulse train Gain
()= 28(t - nAt) .
t 0 fe I;req
Sampling frequency f, = 1/A4t Cut-off frequency = f,

15



Mathematical Model of Sampling

X:(t)

 X(t) multiplied by impulse train 5T (t)

x(t)o; (t)
X()[S() + S(t — At) + 5(t — 2At) + -+
D X(nAt)S(t —nAt)

n

* X (t) is a train of impulses of height X(t)}.=n

Continuous-time
2
1t T
P e
—~~ / T -
< 00—
~—~_

1 \ ///

-2 ! .

-10 8 4 2 0 2 4 6 8 10

t
Discrete-time
2 T . .
17 (7\‘ <‘> \‘/ \‘/
/ o T

= L T [ ¥4 t [ N
[5) 0 ¥ |
X k \ | { r

1 O] L L 1

_2 L L L

-10 8 4 2 0 2 4 6 8 10
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Discrete Time Signal

* Image a signal...

! gl [ [N I [ ! m e
Signal
— Digitized Signal
0.5~ B
[}
=}
2
3 or 7
£
<
-0.5~ B
|
1 Lr VI i Mt i e I I e
-8 -6 -4 -2 0 2 4 6

time (s)

Discrete Time Signals

« Digitization helps beat the Noise!

T T
Signal + 5% Gausian Noise
— Digitized Noisy Signal
\ 7 T l

15 T T T T
1 nm m mm N
0.5+ / ! ,‘ \‘ 1 I | \‘ “ I ‘1 \‘
4
2 \ I L]
= | | J
E‘ o R I f I I
< |
-0.5 | ! I . ! - [‘
. ) 1Y) I,‘ l' lv \J I ‘
15 [ [ [ [
’8 6 -4 2 0
time (s)

N -

17



Discrete Time Signals

* But only so much...

15 T T T T T : ; ;
Signal + 20% Gausian Noise
1L ‘A l‘ ‘ I I Iy “I] P l o — Digitized Noisy Signal
T Uil l‘
| |
0.5~ il l | ’\ \‘ JHit ] I ‘] b A I ‘ 4
[}
E |
= ok | I |\ | ‘ ‘ B
g | | {
< i bl
-0.5- i [ i i 1 \rl 7
1+ - ' l ! ! | | _
15 ! I ; r ; [ ;
-8 6 4 2 0 2 4 6 8
time (s)

Signal Manipulations

« Shifting

y(n) =z (n—ng)
* Reversal

y(n) = z(—n)

» Time Scaling
(Down Sampling)

y(M) = z(Mn)

(Up Sampling) n
n)=—I\| —
y(n) ~

18



Discrete Time Signals

» Can make control tricky!

=1

Fle Edit View Insert Tools Desktop Window Help

DEHE k| Rams(e 0@ O

Step Response
14 - - T

Cortinuous
ZOH Discretization

Ampltude

30 a0 50 50 70
Time (sec)
« Can make control tricky!
=
3
2
Eos 1T =80 Hz
z
=IOl =l % 02 04 06 08 1
Fle Edb View Insert Tooks Deskiop Window Help ~ Time (sec)
DEEE M RAME|E 0E| 5O 15
z e
21 F sed
Step Response: 3
14 g
Cartinuaus 505 1T =40 Hz
02 ZOH Discretization
0
0 02 04 06 08 1
A Time (sec)
! t i
i .
w 08 >
< 05 3
o5 Vi 1T =20 Hz
&
04
‘» % 02 04 06 08 1
02 Time (sec)
ﬂ 15
DD 10 20 30 40 50 60 70 oy — a—— -
Time: (sec) g ! J h
3
505 / 1T =10 Hz
&
0
0
o 02 08 1

0.4 0.
Time (sec)




Nyquist Sampling Theorem and Aliasing

* | A signal y(t) is uniquely defined by its samples y(kT') if the
sampling frequency is more than twice the bandwidth of y(t).

Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

—W, > 2Wpg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

20



Time Domain Analysis of Sampling

» Frequency domain analysis of sampling is very useful to understand
— sampling (X(wW)*% &(w - 27n/At) )
— reconstruction (lowpass filter removes replicas)
— aliasing (if w, < 2wg)
» Time domain analysis can also illustrate the concepts
— sampling a sinewave of increasing frequency
— sampling images of a rotating wheel

Original signal
Discrete-time samples
[ R R
T
Reconstructed signal
A signal of the original frequency is reconstructed
L]

21



Original signal

Discrete-time samples

&LL &L

Reconstructed signal

A signal with a reduced frequency is recovered, i.e., the signal is
aliased to a lower frequency (we recover a replica)

Sampling < Nyquist = Aliasing

15

signal

--------- True signal
—6— Aliased (under sampled) signal
-1.5 . L
0 5 10 15
time

22



Nyquist is not enough ...

1Hz Sin Wave: Sin@2rt) - 2 Hz Sampling

1+ T/ T T T T T
0.8 ‘ ‘ | | | | .
0.6]- \ . - | | i
o 04k | [ B | .
° | [ | [
2 | | | |
c 0.2} | | | | | g
g I | ‘ 1 | | | \ } !
Oy—é—e———@—e———e—e———e—e———e—e———e—é ~
3 ‘ SRR SR
N I N L |
® -0.2} | | | | | | .
= 0 | | |
5] ‘ L : L
Z 04 | | | | | .
0.6/ ‘ | | .
08k - | \ 1 “‘ || | i
1 U r Vo / ¢ r | 1 | ¢
0 1 2 3 4 5 6 7

Time(s)

A little more than Nyquist is not enough ...

1Hz Sin Wave: Sin@nt) > 4 Hz Sampling

T T —"a —a

Normalized magnitude

Time(s)




Frequency Domain Analysis of Sampling

 Consider the case where the DSP performs no filtering
operations
— 1.e., only passes xc(t) to the reconstruction filter
» To understand we need to look at the frequency domain
« Sampling: we know
— multiplication in time = convolution in frequency
- F{x()} = X(w)
— F{8T(t)} = X8(w - 2ntn/At),
— i.e., an impulse train in the frequency domain

Frequency Domain Analysis of Sampling

* In the frequency domain we have

XC(W):%(X(W)*ZA_TZ:&(W_@D Remember

At convolution with
1 27 an impulse?

T A4 X(W_Ej Same idea for an
impulse train

Let’s look at an example
= where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency wg rad/s

24



Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

+ Consider an example where the sampling frequency w; is
reduced
— i.e., At is increased

Fourier transtorm of original signal X(W)
(signal spectrum)

Fourier transform of impulse train 6(w/2n) (sampling signal)

FL87(0]

wg = 2n/At 4/At w

0
Fourier transform of sampled signal

X ()

Original spectrum
convolved with

VAt spectrum of
**+ |impulse train
Y

Original Replica 1 Replica 2

25



Spectrun x«f sampled signal

1/At

Original Replica 1 Replica 2

Reconstruction filter (ideal lowpass filter)

H(w)

At

W, W= W,
Spectrum of reconstructed signal

X(w)=H;(0) X (@)

w

Reconstruction filter
removes the replica
spectrums & leaves

only the original

W Wi W
Sampled Spectrum w, > 2wm
LPFE 3
'Wm W‘m Wy b
Y .
orignal replica 1

original freq recovered

Sampled Spectrum wg < 2w,
LPF \

Original and replica
spectrums overlap
Lower frequency
recovered (Wg — W,,)

orignal %f—)

replica 1

26



RECEHNSTROCTIGN

ELEC 3004: Systems

14 March 2017 - 54

Reconstruction

9

10 11 12 13

5

6

|

!

l
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Sampling and Reconstruction
Theory and Practice

« Signal is bandlimited to bandwidth WB
— Problem: real signals are not bandlimited
* Therefore, require (non-ideal) anti-aliasing filter
Signal multiplied by ideal impulse train
— problems: sample pulses have finite width
— and not ® in practice, but sample & hold circuit

Samples discrete-time, continuous valued
— Problem: require discrete values for DSP
* Therefore, require A/D converter (quantisation)
Ideal lowpass reconstruction (‘sinc’ interpolation)

— problems: ideal lowpass filter not available
 Therefore, use D/A converter and practical lowpass filter

Time Domain Analysis of Reconstruction

» Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w)
— removes replica spectrums, leaves original

» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample

*  Normally, w, = w2

X, (t) = i X(NAt)Atw, sinc(Mj

T

N=—o0

28



Reconstruction

» Whittaker—Shannon interpolation formula

x(t) = % __a[n] - sinc (#)

AX(f)

Zero Order Hold (ZOH)

}"ZOH(I)
1
ZOH impulse response
0 At
| Hypy ()
ZOH amplitude respanse
[ H, ()
ZOH phase response N m o
_4dn n j T @
At ar | |

29



Reconstruction

» Zero-Order Hold [ZOH]
L

10 11

s
l

12 13

Reconstruction

» Whittaker—Shannon interpolation formula

o1 ... i 4

| I?szan:zﬂ
5 6 73‘.‘1

30



Ideal sinc Interpolation of sample values [0 0 0.75 | 0.5 0 0]

T T

.— reconstructed signal x(t)

4 -3 2 0 1 2 3 4
Sample
‘staircase’ OUtpUt from D/A converter (LUH)
N L—;—T ’ pS | | \ ‘ output s‘amples
14 | 1 & — DI/A output
12- & J
10+ _
>
6 ® -
4r &
2r 4
0 | 1 1 | | | 1 | |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
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Smooth output from reconstruction tilter

16 T T T
/kﬁ\‘\ [ —— D/A output

| ‘ < ‘ —— Reconstruction filter output
14

12

=
o
T

Amplitude (V)
©
T

Time (sec)

12

I:xample: error due to S|gnal quantisation

16 T T % T T T T i i

, original signal x(t)
/ [o) ~ quantised samples x(t)
14+

Amplitude (V)
©
T

4 Samplesnumber 6

10
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Finite Width Sampling

» Impulse train sampling not realisable
— sample pulses have finite width (say nanosecs)

This produces two effects,

Impulse train has sinc envelope in frequency domain
— impulse train is square wave with small duty cycle
— Reduces amplitude of replica spectrums

- smaller replicas to remove with reconstruction filter ©
Averaging of signal during sample time

— effective low pass filter of original signal
« can reduce aliasing, but can reduce fidelity ®
* negligible with most S/H ©

Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, X(NAt)

sample instant

f/rﬁl — X(nAt)

— t

hold for At




Practical Reconstruction

Two stage process:
1. Digital to analogue converter (D/A)
—  zero order hold filter
— produces ‘staircase’ analogue output
2. Reconstruction filter
— non-ideal filter: w, = w,/2
—  further reduces replica spectrums

— usually 4t — 6t order e.g., Butterworth
«  for acceptable phase response

D/A Converter

» Analogue output y(t) is
— convolution of output samples y(nAt) with h,q(t)

y(t) =D y(nAt)hg, (t—nAt)

1, 0<t<At
hyon (1) =14
on (1) {0, otherwise
— JwWAt \sin(wAt/2)
H w) =Ate
o ()= terp 1AL SIS

D/Ais lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required




Data Acquisition
(A/D Conversion)
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Representation of Signal

« Time Discretization

Coarse time discretization

B a D
[=} o (=}
(=] (=] (=}

Expected signal (mV)
N w
o o
o o

[
o
(=]

True signal
— Discrete time sampled points
oL 1 | 777
0 5 10 15

time (s)

« Digitization

Expected signal (mV)
w
o
(=]

Coarse signal digitization

True signal

— Digitization

5
time (s)

10

15
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Quantisation

» Analogue to digital converter (A/D)
— Calculates nearest binary number to x(nAt)
* %4[n] = q(x(nAt)), where q() is non-linear rounding fctn
— output modeled as x,[n] = x(nAt) + e[n]
»  Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise’ (e[n])
— error reduced as number of bits in A/D increased
* i.e., AX, quantisation step size reduces

AX
<
‘e[n]‘ - 2

Input-output tor 4-bit quantiser
(two’s compliment)

Diaital

'Y IJIgILuI

0111

0110

0101 -

0100 !
010

0001 ", Analogue
0000 quantisation
1111 step size

-2/ 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1000

2A
AX=—
2" -1
where A = max amplitude
m = no. quantisation bits

#OHI\)(DAO‘ICD\I

36



Signal to Quantisation Noise

* To estimate SQNR we assume
— e[n] is uncorrelated to signal and is a
— uniform random process
+ assumptions not always correct!
— not the only assumptions we could make...
* Also known a ‘Dynamic range’ (Rp)
— expressed in decibels (dB)
— ratio of power of largest signal to smallest (noise)

=3
R, =10log, | =™

noise

Dynamic Range

Need to estimate:

1. Noise power
—  uniform random process: P, ;. = Ax%/12

2. Signal power 1 extra bit halves Ax
- (at least) two possible assumptions i -
I sinusoidal: Pywre A2 i.e., 20log10(1/2) = 6dB

2. zero mean Gaussian process: Pggny = o?
Note: as o = A/3: Pggny =~ A%9
»  where o2 = variance, A = signal amplitude

Regardless of assumptions: R increases by 6dB
for every bit that is added to the quantiser

37



Derivatives magnify noise!

e sin(10xt)

1
05
of

o 10cOoS(107t ymomn

007t) *10 cos(10xt) + 10 cos(100xt)

>
~
-

s sin(10mt) + 0.1sir

Summary

» Theoretical model of Sampling
— bandlimited signal (wB)
— multiplication by ideal impulse train (ws > 2wB)
« convolution of frequency spectrums (creates replicas)
— ldeal lowpass filter to remove replica spectrums
s WC=Ws/2
+ Sinc interpolation
* Practical systems
— Anti-aliasing filter (wc <ws /2)
— A/D (S/H and quantisation)

— DI/A (ZOH) Don’t confuse
— Reconstruction filter (wc = ws /2) theory and
practice!
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Next Time...

« Aliasing and Anti-Aliasing

* Review:
— Chapter 5 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited]

Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f[k]=cosQk, Q=wT:
The period has to be less than Fh (highest frequency): T <

F
Thus: 0=7F<=)

o aliased frequency:  wT' = wyT + 2wm

|
2}‘f|,
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Aliasing: Another view of this

Practical Anti-aliasing Filter

* Non-ideal filter

— WC=WS/2
* Filter usually 4th — 6th order (e.g., Butterworth)

— so frequencies > wc may still be present
— not higher order as phase response gets worse

* Luckily, most real signals

— are lowpass in nature
signal power reduces with increasing frequency

— e.g., speech naturally bandlimited (say < 8KHz)

— Natural signals have a (approx) 1/f spectrum
— S0, in practice aliasing is not (usually) a problem
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Amplitude spectrum of original signal

Y, W

_W m

m

Fourier transform of sampling signal (pulses have finite width

______________________________________________ sinc envelop
[ """"" | -------- ‘/Z ero at harmg
1/duty cycl

] 0 w, =2n/At - An/At W
Fourier transform of sampled signal

1/At

Original Replical  Replica2

Fourier transtorm of original signal X(W)
(signal spectrum) [AGAIN!]

Fourier transform of impulse train 6(w/2n) (sampling signal)

FL87(0]

] 0 wg = 2n/At . An/At w
Fourier transform of sampled signal

X ()

Original spectrum
convolved with

VAt spectrum of
**+ |impulse train
Y

Original Replica 1 Replica 2
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Original Spectrum

_Wm

Fourier transform of impulse train (sampling signal)

Wm

w

0

2n/At

4n/At 6m/At

Amplitude spectrum of sampled signal

w

Replica spectrums

T overlap with origina
7| 7N 7N 7\ (and each other)
// \\ // \\ // \\ // \\ This is Aliasing
/ v A A \
/ /7 \ /7 N\ /7 N\ \
Original Replica 1 Replica 2 ...

sampled signal

Amplitude sTpectrum of sampled signal

7% A A
/7 |\ /7 N\ /7 N\ /7 N\
/ \ / \ / \ / \

/ N7 N/ N/ \
/ v A A \
/ /\ /7 \ /7 \ \
~ 5\ ~ 5\ ~ 5\

spectrum

Original Replica 1 Replica 2 ...
Reconstruction filter (ideal lowpass filter)

A

W, W, =W,

w

Spectrum of reconstructed signal
The effect of aliasing is
that higher frequencies
of “alias to” (appear as)

lower frequencies

Due to overlapping
replicas (aliasing)
the reconstruction
filter cannot recover
the original spectrum

M Wiy

w
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Another way to see Aliasing Too!

Rotating wheel and peg

N

Need both top and front
view to determine rotation

= TTFHLLEEET
= FHEEEEETTE

=

Temporal Aliasing

90° clockwise rotation/frame  270° clockwise rotation/frame
clockwise rotation perceived  (90°) anticlockwise rotation
perceived i.e., aliasing

Require LPF to ‘blur’ motion

L
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