

Sampling Theory & Data Acquisition

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 5

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

 π -day (2017)

2017 School of Information Technology and Electrical Engineering at The University of Queensland

(cc) BY-NC-SA

Lecture Schedule:

ELEC 3004: Systems

Week	Date	Lecture Title			
1	28-Feb	Introduction			
1	2-Mar	Systems Overview			
2	7-Mar	Systems as Maps & Signals as Vectors			
2	9-Mar	Systems: Linear Differential Systems			
3	14-Mar	Sampling Theory & Data Acquisition			
	16-Mar	Antialiasing Filters			
4	21-Mar	Discrete System Analysis			
	23-Mar	Convolution Review			
5	28-Mar	Frequency Response			
5	30-Mar	Filter Analysis			
5	4-Apr	Digital Filters (IIR)			
3	6-Apr	Digital Windows			
6	11-Apr	Digital Filter (FIR)			
O	13-Apr	FFT			
	18-Apr				
	20-Apr	Holiday			
	25-Apr				
7		Active Filters & Estimation			
8	2-May	Introduction to Feedback Control			
	4-May	Servoregulation/PID			
10	9-May	Introduction to (Digital) Control			
10		Digitial Control			
-11		Digital Control Design			
- 11		Stability			
12		Digital Control Systems: Shaping the Dynamic Response			
12		Applications in Industry			
13	,	System Identification & Information Theory			
1.5	1-Jun	Summary and Course Review			

4 March 2017 -

1

Follow Along Reading:

B. P. Lathi
Signal processing
and linear systems
1998
TK5102.9.L38 1998

- Chapter 5: Sampling
 - § 5.1 The Sampling Theorem
 - § 5.2 Numerical Computation of Fourier Transform: The Discrete Fourier Transform (DFT)

Also:

- § 4.6 Signal Energy

Equivalence Across Domains

System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, Q	Volume, V	Pressure difference, P ₂₁	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Source: Dorf & Bishop, Modern Control Systems, 12th Ed., p. 73

14 March 2017 -

Type of Element	Physical Element	Governing Equation	Energy E or Power 9	Symbol
Inductive storage Capacitive storage Energy dissipators	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	$v_2 \circ \overbrace{\qquad \qquad }^L \circ v_1$
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \bigcap^k v_1 \longrightarrow F$
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \bigcap^k \circ \uparrow^{\omega_1} T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \bigcap_{P_1} Q \circ P_1$
	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^{2}$	$v_2 \circ - i \qquad C \qquad \circ v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \longrightarrow U_2$ $M \longrightarrow U_1 = Constant$
	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \longrightarrow \omega_2$ $M_1 = constant$
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2}C_f P_{21}{}^2$	$Q \longrightarrow P_2 \longrightarrow P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E=C_t\mathcal{I}_2$	$q \xrightarrow{\mathfrak{T}_2} C_t \xrightarrow{\mathfrak{T}_1} =$ constant
	Electrical resistance	$i=\frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \longrightarrow \stackrel{R}{\longrightarrow} \circ v_1$
	Translational damper	$F = bv_{21}$	$\mathcal{P}=b{v_{21}}^2$	$F \xrightarrow{v_2} \overline{\bigcup_b} \circ v_1$
	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}{}^2$	$T \xrightarrow{\phi_2} b \circ \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$
	Thermal resistance	$q=\frac{1}{R_t}\mathcal{T}_{21}$	$\mathcal{P}=\frac{1}{R_{\rm f}}\mathcal{T}_{21}$	$\mathcal{T}_2 \circ \overset{R_1}{\longrightarrow} q \circ \mathcal{T}_1$

3

Example: Quarter-Car Model (2)

$$\begin{split} \ddot{x} + \frac{b}{m_1}(\dot{x} - \dot{y}) + \frac{k_s}{m_1}(x - y) + \frac{k_w}{m_1}x &= \frac{k_w}{m_1}r, \\ \ddot{y} + \frac{b}{m_2}(\dot{y} - \dot{x}) + \frac{k_s}{m_2}(y - x) &= 0. \end{split}$$

$$\begin{split} s^2X(s) + s\frac{b}{m_1}(X(s) - Y(s)) + \frac{k_s}{m_1}(X(s) - Y(s)) + \frac{k_w}{m_1}X(s) &= \frac{k_w}{m_1}R(s), \\ s^2Y(s) + s\frac{b}{m_2}(Y(s) - X(s)) + \frac{k_s}{m_2}(Y(s) - X(s)) &= 0, \end{split}$$

$$\frac{Y(s)}{R(s)} = \frac{\frac{k_w b}{m_1 m_2} \left(s + \frac{k_s}{b}\right)}{s^4 + \left(\frac{b}{m_1} + \frac{b}{m_2}\right) s^3 + \left(\frac{k_s}{m_1} + \frac{k_s}{m_2} + \frac{k_w}{m_1}\right) s^2 + \left(\frac{k_w b}{m_1 m_2}\right) s + \frac{k_w k_s}{m_1 m_2}}.$$

ELEC 3004: Systems

Economics: Cost of Production

Materials, parts, labour, etc. (*inputs*) are combined to make a number of products (*outputs*):

- x_i : price per unit of production input j
- a_{ij} : input j required to manufacture one unit of product i
- y_i : production cost per unit of product i
- For y = Ax:
 - o i^{th} row of A is bill of materials for unit of product i
- Production inputs needed:
 - q_i is quantity of product i to be produced
 - r_i is total quantity of production input j needed
- $r = A^T q$
- & Total production cost is:

$$r^T x = (A^T q)^T x = q^T A x$$

Source: Boyd, EE263, Slide 2-18

14 March 2017 -

ELEC 3004: Systems

Estimation (or inversion)

$$y = Ax$$

- y_i is i^{th} measurement or sensor reading (which we have)
- x_j is j^{th} parameter to be estimated or determined
- a_{ij} is sensitivity of i^{th} sensor to j^{th} parameter
- sample problems:
 - o find x, given y
 - o find all x's that result in y (i.e., all x's consistent with measurements)
 - o if there is no x such that y = Ax, find x s.t. $y \approx Ax$ (i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Source: Boyd, EE263, Slide 2-26

14 Manual 2017 10

Digital Signals & Systems

Signal: A carrier of (desired) information [1]

- Need **NOT** be electrical:
 - Thermometer
 - · Clock hands
 - Automobile speedometer
- Need **NOT** always being given
 - "Abnormal" sounds/operations
 - Ex: "pitch" or "engine hum" during machining as an indicator for feeds and speeds

ELEC 3004: Systems

Signal: A carrier of (desired) information [2]

- Electrical signals
 - Voltage
 - Current
- Digital signals
 - Convert analog electrical signals to an appropriate digital electrical message
 - Processing by a microcontroller or microprocessor

14 March 2017 - 1

Transduction (sensor to an electrical signal)

- Sensor reacts to environment (physics)
- Turn this into an electrical signal:
 - V: voltage source
 - I: current source
- Measure this signal
 - Resistance
 - Capacitance
 - Inductance

Happy π-day © - **14**

Digital Signal

- Representation of a signal against a discrete set
- The set is fixed in by computing hardware
- $s \in \mathbb{Z}$ Can be scaled or normalized ... but is limited

$$s \in \mathbb{Z}(0,\ldots,2^{16})$$

· Time is also discretized

$$s' \in \frac{\mathbb{Z}(0,\dots,2^{16})}{2^{16}}$$

ELEC 3004: Systems

14 March 2017 - 15

Analog vs Digital

- Analog Signal: An analog or analogue signal is any variable signal continuous in both time and amplitude
- *Digital Signal*: A digital signal is a signal that is both **discrete** and quantized

E.g. Music stored in a CD: 44,100 Samples per second and 16 bits to represent amplitude

ELEC 3004: Systems

14 Marrala 2017 17

Digital Systems

• Continuous:

• Digital:

→ Digital Systems 😯

Better SNR

- We trade-off "certainty in time" for "signal noise/uncertainty"
- Analog: ∞ time resolution
 - Digital has fixed time steps

 This avoids the noise and uncertainty in component values that affect analogue signal processing.

Better Processing

 Digital microprocessors are in a range of objects, from obvious (e.g. phone) to disposable (e.g. Go cards). (what doesn't have one?)

Compared to antilog computing (op-amp):

- **Accuracy**: digital signals are usually represented using 12 bits or more.
- **Reliability**: The ALU is stable over time.
- **Flexibility**: limited only programming ability!
- Cost: advances in technology make microcontrollers economical even for small, low cost applications. (Raspberry Pi 3: US\$35)

Noise: "Unwanted" Signals Carrying Errant Information

- Cross-coupled measurements
- Cross-talk (at a restaurant or even a lecture)
- A bright sunny day obstructing picture subject
- Strong radio station near weak one
- observation-to-observation variation
 - Measurement fluctuates (ex: student)
 - Instrument fluctuates (ex: quiz!)
- Unanticipated effects / variation (<u>Temperature</u>)
- One man's noise might be another man's signal

ELEC 3004: Systems

4 Marris 2017 22

Noise: Fundamental Natural Sources

- Voltage (EMF) Capacitive & Inductive Pickup
- Johnson Noise thermal / Brownian
- $1/f(V_j = \sqrt{4k_bTR})$
- Shot noise (interval-to-interval statistical count)

$$V_f = \sqrt{\frac{\alpha V_R^2}{Nf}}$$

ELEC 3004: Systems

14 March 2017 - **2**4

SNR: Signal to Noise Ratio

$$V = V_s + V_n$$

Magnitude:
$$\bar{V^2} = \bar{V_s^2} + \bar{V_n^2} + V_s\bar{V}_n$$

$$\frac{S}{N} = \frac{V_s^2}{V_n^2}$$

in dB:
$$10 \log \left(\frac{\bar{V_s}^2}{\bar{V_n}^2} \right) = 20 \log \left(\frac{V_s^{rms}}{V_n^{rms}} \right)$$

ELEC 3004: Systems

Sampling Theorem

• The Nyquist criterion states:

To prevent aliasing, a **bandlimited** signal of bandwidth w_B rad/s must be sampled at a rate greater than $2w_B$ rad/s

$$w_s > 2w_B$$

Note: this is a > sign not a \geq

Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter

Mathematical Model of Sampling

• x(t) multiplied by impulse train $\delta T(t)$

$$x_{c}(t) = x(t)\delta_{T}(t)$$

$$= x(t)[\delta(t) + \delta(t - \Delta t) + \delta(t - 2\Delta t) + \cdots]$$

$$= \sum_{n} x(n\Delta t)\delta(t - n\Delta t)$$

• $x_c(t)$ is a train of impulses of height $x(t)|_{t=n\Delta t}$

Signal Manipulations

• Shifting

$$y\left(n\right) = x\left(n - n_0\right)$$

Reversal

$$y(n) = x(-n)$$

• Time Scaling (Down Sampling)

$$y(M) = x(Mn)$$

(Up Sampling)

$$y\left(n\right) = x\left(\frac{n}{N}\right)$$

ELEC 3004: Systems

Nyquist Sampling Theorem and Aliasing

• A signal y(t) is uniquely defined by its samples y(kT) if the sampling frequency is more than twice the bandwidth of y(t).

14 Manah 2017 40

Sampling Theorem

• The Nyquist criterion states:

To prevent aliasing, a **bandlimited** signal of bandwidth w_B rad/s must be sampled at a rate greater than $2w_B$ rad/s

$$-w_s > 2w_B$$

Note: this is a > sign not a \geq

Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter

4 Marrala 2017 - 41

Time Domain Analysis of Sampling

- · Frequency domain analysis of sampling is very useful to understand
 - sampling $(X(w)*\sum \delta(w 2\pi n/\Delta t))$
 - reconstruction (lowpass filter removes replicas)
 - aliasing (if $w_s \le 2w_B$)
- Time domain analysis can also illustrate the concepts
 - sampling a sinewave of increasing frequency
 - sampling images of a rotating wheel

Frequency Domain Analysis of Sampling

- Consider the case where the DSP performs no filtering operations
 - i.e., only passes xc(t) to the reconstruction filter
- To understand we need to look at the frequency domain
- Sampling: we know
 - multiplication in time \equiv convolution in frequency
 - $F\{x(t)\} = X(w)$
 - $F\{\delta T(t)\} = \sum \delta(w 2\pi n/\Delta t),$
 - i.e., an impulse train in the frequency domain

14 Manah 2017

Frequency Domain Analysis of Sampling

• In the frequency domain we have

$$X_{c}(w) = \frac{1}{2\pi} \left(X(w) * \frac{2\pi}{\Delta t} \sum_{n} \delta \left(w - \frac{2\pi n}{\Delta t} \right) \right)$$
$$= \frac{1}{\Delta t} \sum_{n} X \left(w - \frac{2\pi n}{\Delta t} \right)$$

Remember convolution with an impulse?
Same idea for an impulse train

- Let's look at an example
 - where X(w) is triangular function
 - with maximum frequency w_m rad/s
 - being sampled by an impulse train, of frequency w_s rad/s

4 Marrala 2017 46

Sampling Frequency

- In this example it was possible to recover the original signal from the discrete-time samples
- But is this always the case?
- Consider an example where the sampling frequency w_s is reduced
 - i.e., Δt is increased

Sampling and Reconstruction Theory and Practice

- Signal is bandlimited to bandwidth WB
 - Problem: real signals are not bandlimited
 - Therefore, require (non-ideal) anti-aliasing filter
- Signal multiplied by ideal impulse train
 - problems: sample pulses have finite width
 - and not ⊗ in practice, but sample & hold circuit
- Samples discrete-time, continuous valued
 - Problem: require discrete values for DSP
 - Therefore, require A/D converter (quantisation)
- Ideal lowpass reconstruction ('sinc' interpolation)
 - problems: ideal lowpass filter not available
 - Therefore, use D/A converter and practical lowpass filter

14 Manah 2017

Time Domain Analysis of Reconstruction

- Frequency domain: multiply by ideal LPF
 - ideal LPF: 'rect' function (gain Δt , cut off w_c)
 - removes replica spectrums, leaves original
- Time domain: this is equivalent to
 - convolution with 'sinc' function
 - as $F^{-1}\{\Delta t \operatorname{rect}(w/w_c)\} = \Delta t w_c \operatorname{sinc}(w_c t/\pi)$
 - i.e., weighted sinc on every sample
- Normally, $w_c = w_s/2$

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n\Delta t) \Delta t w_c \operatorname{sinc}\left(\frac{w_c(t - n\Delta t)}{\pi}\right)$$

14 Marris 2017 **F7**

Reconstruction

• Whittaker-Shannon interpolation formula

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$

ELEC 3004: Systems

14 Manage 2017 F

Zero Order Hold (ZOH)

ZOH impulse response

ZOH amplitude response

ZOH phase response

ELEC 3004: Systems

Finite Width Sampling

- Impulse train sampling not realisable
 - sample pulses have finite width (say nanosecs)
- This produces two effects,
- Impulse train has sinc envelope in frequency domain
 - impulse train is square wave with small duty cycle
 - Reduces amplitude of replica spectrums
 - smaller replicas to remove with reconstruction filter ©
- Averaging of signal during sample time
 - effective low pass filter of original signal
 - can reduce aliasing, but can reduce fidelity 🕾
 - negligible with most S/H ©

14 March 2017 - 6

Practical Sampling

- Sample and Hold (S/H)
 - 1. takes a sample every Δt seconds
 - 2. holds that value constant until next sample
- Produces 'staircase' waveform, $x(n\Delta t)$

Practical Reconstruction

Two stage process:

- Digital to analogue converter (D/A)
 - zero order hold filter
 - produces 'staircase' analogue output
- 2. Reconstruction filter
 - non-ideal filter: $w_c = w_s/2$
 - further reduces replica spectrums
 - usually 4th 6th order e.g., Butterworth
 - for acceptable phase response

D/A Converter

- Analogue output y(t) is
 - convolution of output samples y(n∆t) with h_{ZOH}(t)

$$y(t) = \sum_{n} y(n\Delta t)h_{ZOH}(t - n\Delta t)$$

$$y(t) = \sum_{n} y(n\Delta t) h_{ZOH}(t - n\Delta t)$$
$$h_{ZOH}(t) = \begin{cases} 1, & 0 \le t < \Delta t \\ 0, & \text{otherwise} \end{cases}$$

$$H_{ZOH}(w) = \Delta t \exp\left(\frac{-jw\Delta t}{2}\right) \frac{\sin(w\Delta t/2)}{w\Delta t/2}$$

D/A is lowpass filter with sinc type frequency response It does not completely remove the replica spectrums Therefore, additional reconstruction filter required

Quantisation

- Analogue to digital converter (A/D)
 - Calculates nearest binary number to $x(n\Delta t)$
 - $x_a[n] = q(x(n\Delta t))$, where q() is non-linear rounding fctn
 - output modeled as $x_q[n] = x(n\Delta t) + e[n]$
- Approximation process
 - therefore, loss of information (unrecoverable)
 - known as 'quantisation noise' (e[n])
 - error reduced as number of bits in A/D increased
 - i.e., Δx , quantisation step size reduces

$$|e[n]| \le \frac{\Delta x}{2}$$

ELEC 3004: Systems

Signal to Quantisation Noise

- To estimate SQNR we assume
 - -e[n] is uncorrelated to signal and is a
 - uniform random process
- assumptions not always correct!
 - not the only assumptions we could make...
- Also known a 'Dynamic range' (R_D)
 - expressed in decibels (dB)
 - ratio of power of largest signal to smallest (noise)

$$R_D = 10\log_{10}\left(\frac{P_{signal}}{P_{noise}}\right)$$

ELEC 3004: Systems

1 extra bit halves ∆x

i.e., $20\log 10(1/2) = 6dB$

Dynamic Range

Need to estimate:

- Noise power
 - uniform random process: $P_{\text{noise}} = \Delta x^2/12$
- Signal power
 - (at least) two possible assumptions
 - sinusoidal: $P_{\text{signal}} = A^2/2$
 - zero mean Gaussian process: $P_{signal} = \sigma^2$ Note: as $\sigma \approx A/3$: $P_{signal} \approx A^2/9$

 - where σ^2 = variance, A = signal amplitude

Regardless of assumptions: R_D increases by 6dB for every bit that is added to the quantiser

ELEC 3004: Systems

Summary

- Theoretical model of Sampling
 - bandlimited signal (wB)
 - multiplication by ideal impulse train (ws > 2wB)
 - convolution of frequency spectrums (creates replicas)
 - Ideal lowpass filter to remove replica spectrums
 - wc = ws /2
 - · Sinc interpolation
- · Practical systems
 - Anti-aliasing filter (wc < ws /2)
 - A/D (S/H and quantisation)
 - D/A (ZOH)
 - Reconstruction filter (wc = ws / 2)

Don't confuse theory and practice!

Next Time...

Aliasing and Anti-Aliasing

- Review:
 - Chapter 5 of Lathi
- A signal has many signals © [Unless it's bandlimited]

ELEC 3004: Systems

Alliasing

• Aliasing - through sampling, two entirely different analog sinusoids take on the same "discrete time" identity

For $f[k] = \cos \Omega k$, $\Omega = \omega T$:

The period has to be less than Fh (highest frequency):

Thus: $0 \le \mathcal{F} \le \frac{\mathcal{F}_s}{2}$ ω_f : aliased frequency: $\omega T = \omega_f T + 2\pi m$

ELEC 3004: Systems

Practical Anti-aliasing Filter

- · Non-ideal filter
 - wc = ws /2
- Filter usually 4th 6th order (e.g., Butterworth)
 - so frequencies > wc may still be present
 - not higher order as phase response gets worse
- Luckily, most real signals
 - are lowpass in nature
 - signal power reduces with increasing frequency
 - e.g., speech naturally bandlimited (say < 8 KHz)
 - Natural signals have a (approx) 1/f spectrum
 - so, in practice aliasing is not (usually) a problem

ELEC 3004: Systems

4 Manuali 2017 02

