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Lecture Schedule: 

7 March 2017 - ELEC 3004: Systems 3 

Week Date Lecture Title 

1 
28-Feb Introduction 

2-Mar Systems Overview 

2 7-Mar Systems as Maps & Signals as Vectors 
9-Mar Data Acquisition & Sampling 

3 
14-Mar Sampling Theory 

16-Mar Antialiasing Filters 

4 
21-Mar Discrete System Analysis 

23-Mar Convolution Review 

5 
28-Mar Frequency Response 

30-Mar Filter Analysis 

5 
4-Apr Digital Filters (IIR) 

6-Apr Digital Windows 

6 
11-Apr Digital Filter (FIR) 

13-Apr FFT 

  

18-Apr 

Holiday 20-Apr 

25-Apr 

7 27-Apr Active Filters & Estimation 

8 
2-May Introduction to Feedback Control 

4-May Servoregulation/PID 

10 
9-May Introduction to (Digital) Control 

11-May Digitial Control 

11 
16-May Digital Control Design 

18-May Stability 

12 
23-May Digital Control Systems: Shaping the Dynamic Response 

25-May Applications in Industry 

13 
30-May System Identification & Information Theory 

1-Jun Summary and Course Review 

Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 1: 

Introduction to Signals  

and Systems 

– § 1.7 Classification of Systems 

 

 

• Chapter 3: 

Signal Representation By 

Fourier Series 

– § 3.1 Signals and Vectors  

– § 3.3 Signal Representation by 

Orthogonal Signal Set 
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http://library.uq.edu.au/record=b2013253~S7
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System Terminology 
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1. Linear and nonlinear systems 

2. Constant-parameter and time-varying-parameter systems 

3. Instantaneous (memoryless) and dynamic (with memory) 

systems 

4. Causal and noncausal systems 

5. Continuous-time and discrete-time systems 

6. Analog and digital systems 

7. Invertible and noninvertible systems 

8. Stable and unstable systems 

System Classifications/Attributes 
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• A system with a memory 
– Where past history (or derivative states) are relevant in 

determining the response  

• Ex:  
– RC circuit:  Dynamical  

• Clearly a function of the “capacitor’s past” (initial state) and 

• Time! (charge / discharge)  

– R circuit: is memoryless ∵ the output of the system  

(recall V=IR) at some time t only depends on the input at time t 

 

• Lumped/Distributed  
– Lumped: Parameter is constant through the process  

& can be treated as a “point” in space 

• Distributed: System dimensions ≠ small over signal 
– Ex: waveguides, antennas, microwave tubes, etc. 

Dynamical Systems… 
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• Is one for which the output at any instant t0 depends only 

on the value of the input x(t) for t≤t0 .  Ex: 
 

 

• A “real-time” system must be causals 

– How can it respond to future inputs? 

• A prophetic system: knows future inputs and acts on it (now) 

– The output would begin before t0 

• In some cases Noncausal maybe modelled as causal with delay 

• Noncausal systems provide an upper bound on the performance  of 

causal systems  

Causality: 
Causal (physical or nonanticipative) systems 
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• Causal = The output before some time t does not depend on 

the input after time t. 

Given:  

For: 

 

Then for a T>0: 

 

 

Causality:  
Looking at this from the output’s perspective… 

 if: 

 then:  

Causal Noncausal 

else:  
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• A system is said t have memory if the output at an arbitrary 

time 𝑡 = 𝑡∗ depends on input values other than, or in addition 

to, 𝑥 𝑡∗  

 

• Ex: Ohm’s Law 

𝑉 𝑡𝑜 = 𝑅𝑖(𝑡𝑜) 

 

•  Not Ex: Capacitor 

𝑉 𝑡0 =
1

𝐶
 𝑖(𝑡)
𝑡

−∞

𝑑𝑡 

 
 

 

 

 

Systems with Memory 

7 March 2017 - ELEC 3004: Systems 10 



6 

• Given a shift (delay or advance) in the input signal  

• Then/Causes simply a like shift in the output signal 

 

• If  𝑥(𝑡) produces output 𝑦 𝑡  

• Then 𝑥(𝑡 − 𝑡0) produces output 𝑦 𝑡 − 𝑡0  

 

• Ex: Capacitor 

• 𝑉 𝑡0 =
1

𝐶
 𝑖(𝜏 − 𝑡0)
𝑡

−∞
𝑑𝜏 

 =
1

𝐶
 𝑖(𝜏)
𝑡−𝑡0
−∞

𝑑𝜏 

 =𝑉 𝑡 − 𝑡0  

 

Time-Invariant Systems 
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• Given a shift (delay or advance) in the input signal  

• Then/Causes simply a like shift in the output signal 

 

• If  𝑥(𝑡) produces output 𝑦 𝑡  

• Then 𝑥(𝑡 − 𝑡0) produces output 𝑦 𝑡 − 𝑡0  

 

 

Time-Invariant Systems 

7 March 2017 - ELEC 3004: Systems 12 



7 

• 𝑢 𝑡 =  
0, 𝑡 < 0
1, 𝑡 > 0

 

 

 

 

 

 

“Rectangular Pulse” 

• 𝑝 𝑡 = 𝑢 𝑡 − 𝑢 𝑡 − 𝑇  

 

 

 

Unit Step Function 
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Unit-Impulse Function 
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• Passive, First-Order Resistor-Capacitor Design: 

EXAMPLE: First Order RC Filter 

• 3dB (½ Signal Power): 

 

 

• Magnitude: 

 

 

• Phase: 

OutIn
R

C

(Low-pass configuration) 
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Example 1: RC Circuits 

  R

  C

y(t)=

ΔV(t)

AC

f(t)=i(t)
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BREAK 
 
  

7 March 2016 ELEC 3004: Systems 17 

 

Signals as Vectors 
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𝑥 𝑡 = 𝐴𝑒𝜆𝑡 

• A and 𝜆 are generally complex numbers.  

 

• If A and 𝜆 are, in fact, real-valued numbers, 𝑥 𝑡  is  

itself real-valued and is called a real exponential 

Complex Exponential Signals 

ELEC 3004: Systems 7 March 2016 19 

• Back to the beginning! 

Signals as Vectors 

F(x) 
signal  

(input) 

F(…)=system 

signal  

(output) 
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• There is a perfect analogy between signals and vectors … 

 

Signals are vectors!  

 

• A vector can be represented as a sum of its components in a 

variety of ways, depending upon the choice of coordinate 

system. A signal can also be represented as a sum of its 

components in a variety of ways.  

Signals as Vectors 

F(x) 
signal  

(input) 

F(…)=system 

signal  

(output) 
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• Represent them as Column Vectors 

Signals as Vectors 
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• Can represent phenomena of interest in terms of signals 

 

 

• Natural vector space structure (addition/substraction/norms) 

 

 

 

• Can use norms to describe and quantify properties of signals 

Signals as Vectors 
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Signals as vectors 
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• Audio signal (sound pressure on microphone) 

• B/W video signal (light intensity on 

• photosensor) 

• Voltage/current in a circuit (measure with 

• multimeter) 

• Car speed (from tachometer) 

• Robot arm position (from rotary encoder) 

• Daily prices of books / air tickets / stocks  

• Hourly glucose level in blood (from glucose monitor) 

• Heart rate (from heart rate sensor) 

Various Types 
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• Length:  

 

• Decomposition: 

 

• Dot Product of  ⊥ is 0:  

Vector Refresher  

7 March 2016 ELEC 3004: Systems 26 
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• Magnitude and Direction 

 

 

 

 

• Component (projection) of a vector along another vector 

 

 

 

 

Vectors [2] 

 Error Vector 
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• ∞ bases given x 

 

 

 

 

 

• Which is the best one? 

 

 

 

 

• Can I allow more basis vectors than I have dimensions? 

 

Vectors [3] 
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• A Vector / Signal can represent a sum of its components  

 

 

Signals Are Vectors 
 

 

 

 Remember (Lecture 5, Slide 10): 

 Total response = Zero-input response + Zero-state response 

 

 

 

• Vectors are Linear 
– They have additivity and homogeneity 

 

 

Initial conditions External Input 
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• A signal is a quantity that varies as a function of an index set 

 

• They can be multidimensional: 
– 1-dim, discrete index (time): x[n] 

– 1-dim, continuous index (time): x(t) 

– 2-dim, discrete (e.g., a B/W or RGB image): x[j; k] 

– 3-dim, video signal (e.g, video): x[j; k; n] 

Vectors / Signals Can Be Multidimensional 

7 March 2016 ELEC 3004: Systems 30 



16 

• y[n]=2u[n-1] is a linear map 

• BUT y[n]=2(u[n]-1) is NOT  Why? 

 

• Because of homogeneity! 

 T(au)=aT(u) 

It’s Just a Linear Map 
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Norms of signals 
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Examples of Norms 

7 March 2016 ELEC 3004: Systems 33 

 

Properties of norms 
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• Orthogonal Vector Space 

 

 

 

 

 

 

 

 

 

 

 A signal may be thought of as having components. 

 

Signal representation by Orthogonal Signal Set 
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• Let’s take an example: 

 

Component of a Signal 
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Basis Spaces of a Signal 

7 March 2016 ELEC 3004: Systems 37 

• Observe that the error energy Ee generally decreases as N, the 

number of terms, is increased because the term Ck 2 Ek is 

nonnegative. Hence, it is possible that the error energy -> 0 as 

N -> 00. When this happens, the orthogonal signal set is said to 

be complete.  

• In this case, it’s no more an approximation but an equality 

Basis Spaces of a Signal 
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Linear combinations of signals 
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Application Example: Active Noise Cancellation 
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Systems as Maps 
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Then a System is a MATRIX 
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• Linear & Time-invariant (of course - tautology!) 

• Impulse response: h(t)=F(δ(t)) 

• Why? 
– Since it is linear the output response (y) to any input (x) is: 

 

 

 

 

• The output of any continuous-time LTI system is the convolution of 

input u(t) with the impulse response F(δ(t)) of the system. 

 

Linear Time Invariant  

LTI 

h(t)=F(δ(t)) u(t) y(t)=u(t)*h(t) 

7 March 2016 ELEC 3004: Systems 43 

≡ LTI systems for which the input & output are linear ODEs 

 

 

 

 

 

 

 

• Total response = Zero-input response + Zero-state response 

Linear Dynamic [Differential] System 

Initial conditions External Input 
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• Linear system described by differential equation 

Linear Systems and ODE’s 

• Which using Laplace Transforms can be written as 

0 1 0 1

n m

n mn m

dy d y dx d x
a y a a b x b b

dt dt dt dt
      

)()()()(

)()()()()()( 1010

sXsBsYsA

sXsbssXbsXbsYsassYasYa m

m

n

n



 

where A(s) and B(s) are polynomials in s 
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• δ(t): Impulsive excitation 

• h(t): characteristic mode terms 

Unit Impulse Response 

LTI 

F(δ(t)) δ(t) h(t)=F(δ(t)) 

Ex: 
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Where are we going with this? 
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Consider the following system: 

 

 

 

 

 

 

 

 

 

 

• How to model and predict (and control the output)? 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 

7 March 2016 ELEC 3004: Systems 48 
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Consider the following system: 

 

 

 

 

 

 

 

 

 

 

• How to model and predict (and control the output)? 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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• Consider the following system: 

 

 

 

 

• x(t) ∈ ℝ8, y(t) ∈ ℝ1  8-state, single-output system 

• Autonomous:  No input yet!  ( u(t) = 0 ) 

 

 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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• Consider the following system: 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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Expand the system to have a control input… 

•  B∈ ℝ8×2, C ∈ ℝ2×8 (note: the 2nd dimension of C) 

 

 

 

• Problem: Find u  such that   ydes(t)=(1,-2) 

• A simple (and rational) approach:  
– solve the above equation! 

– Assume: static conditions (u, x, y constant) 

 

 Solve for u: 

 

 

 

Example:  Let’s consider the control… 
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Example:  Apply u=ustatic and presto! 

• Note: It takes 1500 seconds for the y(t) to converge … 

     but that’s natural … can we do better?  
Source: EE263 (s.1-13) 
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• How about: 

 

 

 

 

 

 

 

 

 

 

 

Example: Yes we can! 

Source: EE263 (s.1-13) 
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• How about: 

 

 

 

 

 

 

 
 

 

 
 

• Converges in 50 seconds (3.3% of the time ) 

Example: How?  How about a more clever input? 

Source: EE263 (s.1-13) 
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• Converges in 20 seconds (1.3% of the time ) 

Example: Can we beat it? Larger inputs & LDS 

Source: EE263 (s.1-13) 

7 March 2016 ELEC 3004: Systems 57 

• We’ll talk about Other System Properties  

 

• We will introduce this via the lens of: 

 “Systems as Maps.  Signals as Vectors” 

• Review:  
– Phasers, complex numbers, polar to rectangular, and general 

functional forms.   

– Chapter B and Chapter 1 of Lathi  

(particularly the first sections on signals & classification thereof) 

 

• Register on Platypus 

 

• Try the practise assignment 

Next Time… 
 
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