

Signals as Vectors Systems as Maps

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 3

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

March 7, 2017

(CC)) BY-NO-SA

2017 School of Information Technology and Electrical Engineering at The University of Queensland

Tomorrow: UN International Women's Day 2017

- Ada Lovelace: English mathematician and writer
- Creator of the first algorithm and first computer program

ELEC 3004: Systems

7 Marrala 2017

Week	Date	Lecture Title
1	28-Feb	Introduction
1	2-Mar	Systems Overview
2	7-Mar	Systems as Maps & Signals as Vectors
		Data Acquisition & Sampling
2	14-Mar	Sampling Theory
3	16-Mar	Antialiasing Filters
4	21-Mar	Discrete System Analysis
4	23-Mar	Convolution Review
5		Frequency Response
3		Filter Analysis
5		Digital Filters (IIR)
		Digital Windows
6		Digital Filter (FIR)
	13-Apr	
	18-Apr	
	20-Apr	
7	25-Apr	Active Filters & Estimation
/		Introduction to Feedback Control
8		Servoregulation/PID
		Introduction to (Digital) Control
10		Digitial Control
		Digital Control Design
11		Stability
12	23-May	Digital Control Systems: Shaping the Dynamic Response
12	25-May	Applications in Industry
13	30-May	System Identification & Information Theory
13	1-Jun	Summary and Course Review

Follow Along Reading:

B. P. Lathi Signal processing and linear systems 1998 TK5102.9.L38 1998

- Chapter 1: Introduction to Signals and Systems
 - § 1.7 Classification of Systems
- Chapter 3:
 Signal Representation By
 Fourier Series
 - § 3.1 Signals and Vectors
 - § 3.3 Signal Representation by Orthogonal Signal Set

ELEC 3004: Systems

7 March 2017 -

System Terminology ELEC 3004: Systems 7 March 2017 - 5

System Classifications/Attributes

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

Dynamical Systems...

- A system with a memory
 - Where past history (or derivative states) are <u>relevant</u> in determining the response
- Ex:
 - RC circuit: Dynamical
 - Clearly a function of the "capacitor's past" (initial state) and
 - Time! (charge / discharge)
 - R circuit: is memoryless : the output of the system
 (recall V=IR) at some time t only depends on the input at time t
- Lumped/Distributed
 - Lumped: Parameter is constant through the process
 & can be treated as a "point" in space
- Distributed: System dimensions ≠ small over signal
 - Ex: waveguides, antennas, microwave tubes, etc.

ELEC 3004: Systems

7 March 2017 -

Causality:

Causal (physical or nonanticipative) systems

• Is one for which the output at any instant t_0 depends only on the value of the input x(t) for $t \le t_0$. Ex:

 $u\left(t\right)=x\left(t-2\right)\Rightarrow\mathsf{causal}$

 $u(t) = x(t-2) + x(t+2) \Rightarrow \text{noncausal}$

- A "real-time" system must be causals
 - How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
 - The output would begin before t₀
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems

Causality:

Looking at this from the output's perspective...

• **Causal** = The output *before* some time *t* does not depend on the input *after* time *t*.

Given: y(t) = F(u(t))

For:

$$\widehat{u}(t) = u(t), \forall 0 \le t < T \text{ or } [0, T)$$

Then for a T>0:

Noncausal

ELEC 3004: Systems

7 March 2017 -

Systems with Memory

- A system is said t have *memory* if the output at an arbitrary time $t = t_*$ depends on input values other than, or in addition to, $x(t_*)$
- Ex: Ohm's Law

$$V(t_o) = Ri(t_o)$$

• Not Ex: Capacitor

$$V(t_0) = \frac{1}{C} \int_{-\infty}^{t} i(t) dt$$

ELEC 3004: Systems

7 March 2017 - **10**

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If x(t) produces output y(t)
- Then $x(t-t_0)$ produces output $y(t-t_0)$
- Ex: Capacitor
- $V(t_0) = \frac{1}{c} \int_{-\infty}^{t} i(\tau t_0) d\tau$ $= \frac{1}{c} \int_{-\infty}^{t t_0} i(\tau) d\tau$ $= V(t t_0)$

7 March 2017 - 1

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If x(t) produces output y(t)
- Then $x(t-t_0)$ produces output $y(t-t_0)$

ELEC 3004: Systems

March 2017 - **12**

Unit Step Function $u(t) = \begin{cases} 0, t < 0 \\ 1, t > 0 \end{cases}$

"Rectangular Pulse"

• p(t) = u(t) - u(t-T)

ELEC 3004: Systems

Unit-Impulse Function

- 1. $\delta(t) = 0$ for $t \neq 0$.
- 2. $\delta(t)$ undefined for t = 0.

3.
$$\int_{t_1}^{t_2} \delta(t) dt = \begin{cases} 1, & \text{if } t_1 < 0 < t_2 \\ 0, & \text{otherwise.} \end{cases}$$

ELEC 3004: Systems

EXAMPLE: First Order RC Filter

• Passive, First-Order Resistor-Capacitor Design:

$$T(s) = \frac{a_1 s + a_0}{s + \omega_0}$$

- 3dB (½ Signal Power): $\omega = 2\pi f$ $f_c = \frac{1}{2\pi RC}$
- Magnitude:

$$|V_{\text{out}}| = \sqrt{\frac{1}{(\omega RC)^2}} |V_{\text{in}}|$$

• Phase:

$$\phi = \tan^{-1} \left(-\omega RC \right)$$

7 March 2017 - 15

Example 1: RC Circuits

$$y(t) = Rf(t) + \frac{1}{C} \int_{-\infty}^{t} f(\tau) d\tau$$

$$y(t) = Rf(t) + \frac{1}{C} \int_{-\infty}^{0} f(\tau) d\tau + \frac{1}{C} \int_{0}^{t} f(\tau) d\tau$$

$$y(t) = v_{C}(0) + Rf(t) + \frac{1}{C} \int_{0}^{t} f(\tau) d\tau$$

$$y(t) = v_{C}(t_{0}) + Rf(t) + \frac{1}{C} \int_{t_{0}}^{t} f(\tau) d\tau$$

$$g(v) = v_C(v_0) + iv_J(v) + C_Jv_0 + C_Jv_0$$

ELEC 3004: Systems

7 March 2017 - **16**

Complex Exponential Signals

$$x(t) = Ae^{\lambda t}$$

- A and λ are generally complex numbers.
- If A and λ are, in fact, real-valued numbers, x(t) is itself real-valued and is called a **real exponential**

ELEC 3004: Systems

7 March 2017 10

Signals as Vectors

• Back to the beginning!

ELEC 3004: Systems

Signals as Vectors

• There is a perfect analogy between signals and vectors ...

Signals are vectors!

 A vector can be represented as a sum of its components in a variety of ways, depending upon the choice of coordinate system. A signal can also be represented as a sum of its components in a variety of ways.

7 March 2016 **21**

Signals as Vectors

• Represent them as Column Vectors

$$x = \begin{bmatrix} x[1] \\ x[2] \\ x[3] \\ \vdots \\ x[N] \end{bmatrix}.$$

ELEC 3004: Systems

Signals as Vectors

- Can represent phenomena of interest in terms of signals
- Natural vector space structure (addition/substraction/norms)
- Can use norms to describe and quantify properties of signals

7 March 2016 **23**

Signals as vectors

Signals can take real or complex values.

In both cases, a natural vector space structure:

- Can add two signals: $x_1[n] + x_2[n]$
- Can multiply a signal by a scalar number: $C \cdot x[n]$
- Form linear combinations: $C_1 \cdot x_1[n] + C_2 \cdot x_2[n]$

ELEC 3004: Systems

Various Types

- Audio signal (sound pressure on microphone)
- B/W video signal (light intensity on
- photosensor)
- Voltage/current in a circuit (measure with
- multimeter)
- Car speed (from tachometer)
- Robot arm position (from rotary encoder)
- Daily prices of books / air tickets / stocks
- Hourly glucose level in blood (from glucose monitor)
- Heart rate (from heart rate sensor)

ELEC 3004: Systems

7 March 2016 **25**

Vector Refresher

- Length: $|\mathbf{x}|^2 = \mathbf{x}$
- Decomposition: $\mathbf{x} = c_1 \mathbf{y} + \mathbf{e}_1 = c_2 \mathbf{y} + \mathbf{e}_2$
- Dot Product of \perp is 0: $x \cdot y = 0$

ELEC 3004: System:

Vectors [2]

• Magnitude and Direction

$$f \cdot x = |f||x|\cos(\theta)$$

• Component (projection) of a vector along another vector

ELEC 3004: Systems

7 March 2016 **27**

Vectors [3]

• ∞ bases given $\overrightarrow{\mathbf{x}}$

• Which is the best one?

$$f \simeq c\mathbf{x}$$

$$c|\mathbf{x}| = |\mathbf{f}|\cos \theta$$

$$c|\mathbf{x}|^2 = |\mathbf{f}||\mathbf{x}|\cos \theta = \mathbf{f} \cdot \mathbf{x}$$

$$c = \frac{\mathbf{f} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} = \frac{1}{|\mathbf{x}|^2} \mathbf{f} \cdot \mathbf{x}$$

• Can I allow more basis vectors than I have dimensions?

ELEC 3004: Systems

Signals **Are** Vectors

• A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):

Total response = Zero-input response + Zero-state response

Initial conditions External Input

- Vectors are Linear
 - They have additivity and homogeneity

7 March 2016 **29**

Vectors / Signals Can Be Multidimensional

- A signal is a quantity that varies as a function of an index set
- They can be multidimensional:
 - 1-dim, discrete index (time): x[n]
 - 1-dim, continuous index (time): x(t)
 - $-\,$ 2-dim, discrete (e.g., a B/W or RGB image): x[j;k]
 - 3-dim, video signal (e.g, video): x[j; k; n]

It's Just a Linear Map

- y[n]=2u[n-1] is a linear map
- BUT y[n]=2(u[n]-1) is **NOT Why?**
- Because of homogeneity!

$$T(au)=aT(u)$$

7 March 2017 2

Norms of signals

Can introduce a notion of signals being "nearby."

This is characterized by a metric (or distance function).

$$d(\mathbf{x}, \mathbf{y})$$

If compatible with the vector space structure, we have a $\operatorname{\mathsf{norm}}$.

$$\|\mathbf{x} - \mathbf{y}\|$$

Examples of Norms

Can use many different norms, depending on what we want to do.

The following are particularly important:

• ℓ_2 (Euclidean) norm:

$$||x||_2 = \left(\sum_{k=1}^n |x[k]|^2\right)^{\frac{1}{2}}$$
 norm(x,2)

 \bullet ℓ_1 norm:

$$||x||_1 = \sum_{k=1}^n |x[k]|$$
 norm(x,1)

• ℓ_{∞} norm:

$$\|x\|_{\infty} = \max_{k} |x[k]|$$
 norm(x,inf)

What are the differences?

7 March 2016 3

Properties of norms

For any norm $\|\cdot\|$, and any signal x, we have:

Linearity: if C is a scalar,

$$||C \cdot \mathbf{x}|| = |C| \cdot ||\mathbf{x}||$$

Subadditivity (triangle inequality):

$$\|x+y\|\leq \|x\|+\|y\|$$

Can use norms:

- To detect whether a signal is (approximately) zero.
- To compare two signals, and determine if they are "close."

$$\|\mathbf{x} - \mathbf{y}\| \approx 0$$

Signal representation by Orthogonal Signal Set

• Orthogonal Vector Space

→ A signal may be thought of as having components.

7 March 2016 35

Component of a Signal

$$f(t) \simeq cx(t) \qquad t_1 \le t \le t_2$$

$$c = \frac{\int_{t_1}^{t_2} f(t)x(t) dt}{\int_{t_1}^{t_2} x^2(t) dt} = \frac{1}{E_x} \int_{t_1}^{t_2} f(t)x(t) dt$$

$$\int_{t_1}^{t_2} f(t)x(t) dt = 0$$

• Let's take an example:

$$f(t) \simeq c \sin t \qquad 0 \le t \le 2\pi$$

$$x(t) = \sin t \qquad \text{and} \qquad E_x = \int_0^{2\pi} \sin^2(t) \, dt = \pi$$

Fig. 3.3 Approximation of square signal in terms of a single sinusoid

Inus

 $f(t) \simeq \frac{4}{\pi} \sin t$

(3.14)

Basis Spaces of a Signal

$$\begin{split} \int_{t_1}^{t_2} x_m(t) x_n(t) \, dt &= \begin{cases} 0 & m \neq n \\ E_n & m = n \end{cases} \\ f(t) &\simeq c_1 x_1(t) + c_2 x_2(t) + \dots + c_N x_N(t) \\ &= \sum_{n=1}^N c_n x_n(t) \\ e(t) &= f(t) - \sum_{n=1}^N c_n x_n(t) \\ c_n &= \frac{\int_{t_1}^{t_2} f(t) x_n(t) \, dt}{\int_{t_1}^{t_2} x_n^2(t) \, dt} \\ &= \frac{1}{E_n} \int_{t_1}^{t_2} f(t) x_n(t) \, dt \qquad n = 1, 2, \dots, N \\ f(t) &= c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots \\ &= \sum_{n=1}^\infty c_n x_n(t) \qquad t_1 \leq t \leq t_2 \end{split}$$

Basis Spaces of a Signal

$$f(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots$$
$$= \sum_{n=1}^{\infty} c_n x_n(t) \qquad t_1 \le t \le t_2$$

- Observe that the error energy *Ee* generally decreases as *N*, the number of terms, is increased because the term *Ck* 2 *Ek* is nonnegative. Hence, it is possible that the error energy -> 0 as *N* -> 00. When this happens, the orthogonal signal set is said to be complete.
- In this case, it's no more an approximation but an equality

ELEC 3004: Systems

ELEC 3004: Systems

Linear Time Invariant

$$\begin{array}{c|c} & & \\ \hline & \mathbf{u}(t) & \mathbf{h}(t) = \mathbf{F}(\boldsymbol{\delta}(t)) & \mathbf{y}(t) = \mathbf{u}(t) * \mathbf{h}(t) \end{array}$$

- Linear & Time-invariant (of course tautology!)
- Impulse response: $\mathbf{h}(t) = \mathbf{F}(\boldsymbol{\delta}(t))$
- Why?
 - Since it is linear the output response (y) to any input (x) is:

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

$$y(t) = F \left[\int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau \right] \stackrel{linear}{\to} \int_{-\infty}^{\infty} x(\tau) \, F \left[\delta(t - \tau) \right] \, d\tau$$

$$h(t - \tau) \stackrel{TI}{=} F \left[\delta(t - \tau) \right]$$

$$\Rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau) \, h(t - \tau) \, d\tau = x(t) * h(t)$$

• The output of any continuous-time LTI system is the <u>convolution</u> of input $\mathbf{u}(t)$ with the impulse response $\mathbf{F}(\boldsymbol{\delta}(t))$ of the system.

ELEC 3004: Systems

7 March 2016 **4**3

Linear Dynamic [Differential] System

≡ LTI systems for which the input & output are linear ODEs

$$a_0y + a_1\frac{dy}{dt} + \dots + a_n\frac{d^ny}{dt^n} = b_0x + b_1\frac{dx}{dt} + \dots + b_m\frac{d^mx}{dt^m}$$

Laplace:

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$

 $A(s)Y(s) = B(s)X(s)$

• Total response = Zero-input response + Zero-state response

Initial conditions

External Input

7 Marrala 2017 44

Linear Systems and ODE's

• Linear system described by differential equation

$$a_0 y + a_1 \frac{dy}{dt} + \dots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \dots + b_m \frac{d^m x}{dt^m}$$

· Which using Laplace Transforms can be written as

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$

 $A(s)Y(s) = B(s)X(s)$

where A(s) and B(s) are polynomials in s

7 March 2016 **45**

- $\delta(t)$: Impulsive excitation
- h(t): characteristic mode terms

LE 2.4

 $\begin{array}{ll} \left(D^2+3D+2\right)y(t)=Dx(t) & (2.25) \\ \text{This is a second-order system } (N=2) \text{ having the characteristic polynomial} \\ \left(\lambda^2+3\lambda+2\right)=(\lambda+1)(\lambda+2) & \end{array}$

The characteristic roots of this system are λ = -1 and λ = -2. Therefore $y_a(t) = c_1 e^{-t} + c_2 e^{-2t} \tag{2.26a}$

Differentiation of this equation yields $\dot{y}_{\rm e}(t) = -c_1 e^{-t} - 2c_2 e^{-2t}$

The initial conditions are [see Eq. (2.24b) for N = 2] $\dot{y}_{a}(0) = 1$ and $y_{a}(0) = 0$ Setting t = 0 in Eqs. (2.26a) and (2.26b), and substituting the initial conditions of the condition of the condit

 $1=-c_1-2c_2$ Solution of these two simultaneous equations yields $c_1=1$ and $c_2=-1$

Therefore $y_x(t) = e^{-t} - e^{-2t}$

Moreover, according to Eq. (2.25), P(D) = D, so that $P(D)y_n(t) = Dy_n(t) = \dot{y}_n(t) = -e^{-t} + 2e^{-2t}$

Also in this case, b_0 = 0 [the second-order term is absent in P(D)]. Therefore $h(t)=[P(D)y_{\rm e}(t)]u(t)=(-e^{-t}+2e^{-2t})u(t)$

This can help simplify matters... An Example

• Consider the following system:

$$\dot{x} = Ax, \qquad y = Cx$$

- $x(t) \in \mathbb{R}^8$, $y(t) \in \mathbb{R}^1 \rightarrow 8$ -state, single-output system
- Autonomous: No input yet! (u(t) = 0)

Source: EE263 (s.1-13)

ELEC 3004: Systems

7 Marrala 2017 **FO**

Example: Let's consider the control...

Expand the system to have a control input...

• $B \in \mathbb{R}^{8 \times 2}$, $C \in \mathbb{R}^{2 \times 8}$ (note: the 2nd dimension of C)

$$\dot{x} = Ax + Bu, \quad y = Cx, \quad x(0) = 0$$

- Problem: Find \mathbf{u} such that $y_{des}(t)=(1,-2)$
- A simple (and rational) approach:
 - solve the above equation!
 - Assume: static conditions (u, x, y constant)

$$\dot{x} = 0 = Ax + Bu_{\text{static}}, \quad y = y_{\text{des}} = Cx$$

→ Solve for u:

$$u_{\text{static}} = (-CA^{-1}B)^{-1}y_{\text{des}} = \begin{bmatrix} -0.63\\0.36 \end{bmatrix}$$

ELEC 3004: Systems

7 March 2017 **F**2

Next Time...

- We'll talk about Other System Properties ©
- We will introduce this via the lens of:
 "Systems as Maps. Signals as Vectors"
- Review:
 - Phasers, complex numbers, polar to rectangular, and general functional forms.
 - Chapter B and Chapter 1 of Lathi
 (particularly the first sections on signals & classification thereof)
- Register on Platypus
- Try the practise assignment

7 Na----- 2017 **FO**