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Lecture Schedule:

Week| Date

Lecture Title

28-FebjIntroduction

1

2-MarSystems Overview

2 7-Mar

Systems as Maps & Signals as Vectors

9-Mar|Data Acquisition & Sampling

14-Mar|Sampling Theory

16-MarjAntialiasing Filters

21-MarDiscrete System Analysis

23-Mar|Convolution Review

28-Mar|Frequency Response

30-MarfFilter Analysis

4-AprDigital Filters (IIR)

6-AprDigital Windows

11-AprDigital Filter (FIR)

13-AprFFT

18-Apr|
20-Apr|
25-Apr|

Holiday

7 27-AprjActive Filters & Estimation

2-May|Introduction to Feedback Control

4-May|

Servoregulation/PID

9-May|Introduction to (Digital) Control

11-May|Digitial Control

16-May|Digital Control Design

18-May|

Stability

23-May|Digital Control Systems: Shaping the Dynamic Response

30-Ma

25-May|Applications in Industry

System Identification & Information Theory

1-JunSummary and Course Review

Follow Along Reading:

o
Fasitng
ear

Syetems

B. P. Lathi

Signal processing

» Chapter 1:

and linear systems and SyStemS

1998

TK5102.9.L.38 1998

 Chapter 3:

Introduction to Signals

— 8§ 1.7 Classification of Systems

Signal Representation By
Fourier Series

— 8§ 3.1 Signals and Vectors

— 8§ 3.3 Signal Representation by
Orthogonal Signal Set



http://library.uq.edu.au/record=b2013253~S7

System Terminology
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System Classifications/Attributes

1. Linear and nonlinear systems

2. Constant-parameter and time-varying-parameter systems
(3. Instantaneous (memoryless) and dynamic (with memory)

systems

4, Causfal and n(_)ncausal s_ystems _

5. Continuous-time and discrete-time systems

6. Analog and digital systems

7. Invertible and noninvertible systems

8. Stable and unstable systems




Dynamical Systems...

+ A system with a memory
— Where past history (or derivative states) are relevant in
determining the response

Ex:

— RC circuit: Dynamical
* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)
— R circuit: is memoryless “- the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.

Causality:
Causal (physical or nonanticipative) systems

€ep HOw MUCH
9 TIME DO YoU —

: ‘ x|l b - I &

« Is one for which the output at any instant t, depends only
on the value of the input x(t) for t<t,. Ex:

(@) =a(t—2)=causal [u(t)==x(—2)+ 2+ 2) = noncausal

» A “real-time” system must be causals
— How can it respond to future inputs?

+ A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems




Causality:
Looking at this from the output’s perspective...

» Causal = The output before some time t does not depend on
the input after time t.

Given: y(t) = F (u(t))
For:
a(t)=u(t),v0<t<Torl[0,T)
Then for a T>0:
—gt) =y (), vVO<t<T

then:
t |

| | Lediaen
,, o . f
| a Ly | ¥
.

Causal Noncausal

else:

Systems with Memory

« A system is said t have memory if the output at an arbitrary

time t = t, depends on input values other than, or in addition
to, x(t,)

 Ex: Ohm’s Law
V(to) = Ri(to)

* Not Ex: Capacitor
t

1
V(ty) = Ef i(t)dt




Time-Invariant Systems

+ Given a shift (delay or advance) in the input signal
» Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — ty) produces output y(t — t,)

« Ex: Capacitor
.« V(te) =< [ it —ty)dr
=" limdr

:V(t - to)

Time-Invariant Systems

« Given a shift (delay or advance) in the input signal
« Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — t,) produces output y(t — t,)

¥ty === yit=1ty)
Shift

v

System

v

x{1)

®(t = tg) }’ru[”
System |p—

Shift

v
v




Unit Step Function

0,t<0
* u(t)={1 t>0

“Rectangular Pulse”
e p(O) =u@®) —ul-T)

pit)

Unit-Impulse Function

1. 8(r) = 0 for ¢ # 0.
2. &{r) undefined forr = 0.

iz 1, if 20 <t
lj 6(4*)(1*:--—-{ B 5= &

{.  otherwise.

a1

o]




EXAMPLE: First Order RC Filter

 Passive, First-Order Resistor-Capacitor Design:

mo Vo2 Out - 3dB (%2 Signal Power):
l C w = 27Tf

(Low-pass configuration) L fC e Qﬂ—RC

« Magnitude:
_a1s+ag [Vout| = (w RC’)2 [Vinl
T(s) =———
s + wo * Phase:

¢ = tan~1 (—wRC)

Example |: RC Circuits

$ = 1
10510 @ y(®) =Rf() +¢& J oo f(r)dr
T vO=RIO+¢ L xf (Ddr+ S (D dr

y(t) =vc(0)+Rf )+ & [§ F (r)dr

y () =vc (to) + Rf 1) + & JL f () dr
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Signals as Vectors
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Complex Exponential Signals

x(t) = Ae’t
« Aand A are generally complex numbers.

e If Aand A are, in fact, real-valued numbers, x(t) is
itself real-valued and is called a real exponential

x(t) x(n

(A =0)
! !
(2) 1)
Signals as Vectors
+ Back to the beginning!
F(...)=Tystem

ignal i
> F&0 =t

10



Signals as Vectors

F(.. .)=Tystem

Zignal Fd)() Si?jalt)

» There is a perfect analogy between signals and vectors ...
Signals are vectors!

« A vector can be represented as a sum of its components in a
variety of ways, depending upon the choice of coordinate
system. A signal can also be represented as a sum of its
components in a variety of ways.

Signals as Vectors

* Represent them as Column Vectors

11



Signals as Vectors

 Can represent phenomena of interest in terms of signals

« Natural vector space structure (addition/substraction/norms)

 Can use norms to describe and quantify properties of signals

Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

@ Can add two signals: 1 [n| + xa[n]
e Can multiply a signal by a scalar number: C' - x[n]
@ Form linear combinations: C - x1[n| + Ca - x2[n]

12



Various Types

Audio signal (sound pressure on microphone)
B/W video signal (light intensity on
photosensor)

Voltage/current in a circuit (measure with
multimeter)

Car speed (from tachometer)

Robot arm position (from rotary encoder)

Daily prices of books / air tickets / stocks
Hourly glucose level in blood (from glucose monitor) 7/ 4

Heart rate (from heart rate sensor)

Vector Refresher

Xy = |x||ylcos @ (6.46)

e

Length: I
Decomposition: x=cyte=cyte
Dot Product of L is0: X y=0

13



Vectors [2]

» Magnitude and Direction

f-x=|f]lz]cos(6)

« Component (projection) of a vector along another vector

< Error Vector

Vectors [3]

* oo bases given X

» Which is the best one?

foex
clx| = |fj cos 8
cfx|? = |flix| cos 6 = £ x

« Can | allow more basis vectors than | have dimensions?

14



Signals Are Vectors

» A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):
Total response = Zero-input response + Zero-state response

Initial conditions External Input

* Vectors are Linear
— They have additivity and homogeneity

Vectors / Signals Can Be Multidimensional

« Assignal is a quantity that varies as a function of an index set

» They can be multidimensional:
— 1-dim, discrete index (time): x[n]
— 1-dim, continuous index (time): x(t)
— 2-dim, discrete (e.g., a B/W or RGB image): x[j; k]
— 3-dim, video signal (e.g, video): x[j; k; n]

Discrete 1D Continuous 1D Discrete 2D

|
=|
|
B m B = = =

15



It’s Just a Linear Map

w[n) y[n]

cea 11T .rllllll_

uy = [1,2,3,4,...10]" y =[0,2.4,6,....18]"

* y[n]=2u[n-1] is a linear map
« BUT y[n]=2(u[n]-1) is NOT Why?

» Because of homogeneity!
T(au)=aT(u)

Norms of signals

Can introduce a notion of signals being "nearby.”

This is characterized by a mefric (or distance function).

d(x,y)

Tl

If compatible with the vector space structure, we have a norm.

X—Y




Examples of Norms

Can use many different norms, depending on what we want to do.

The following are particularly important:
@ {5 (Euclidean) norm:

||;(f||g = (Z ;(:[:’;HQ) norm(x,2)
k=1

[N

@ /i norm:
n
B :Z|~LH| norm(x,1)
k=1
e /.. norm:
.t:||:,U = m{mx|;z:[k]| norm(x,inf)

What are the differences?

Properties of norms

For any norm | - ||, and any signal x, we have:
@ Linearity; if C'is a scalar,
C-x|=|C]|x
@ Subadditivity (triangle inequality):

ll + ¥l < ll<[l + [yl

Can use norms:
o To detect whether a signal is (approximately) zero.
@ To compare two signals, and determine if they are “close.”

Xx—yll=0

17



Signal representation by Orthogonal Signal Set

» Orthogonal Vector Space

C¥i 43Xy

=>» A signal may be thought of as having components.

Component of a Signal

flt) xexlt) #<t<ty

t2
G I
e= ...‘_‘...‘.;____. =5 ft)z(t)dt
j 23(t) dt =n

" F()z(t) dt =0

* Let’s take an example:
f(t)~esint 0<t<2n

2w
z(t)=sint and E,,:f sin’(t)dt =7
o

P LSO

0 ™ [, S

..................
Fig. 8.3 Approximation of square signal in terms of a single sinusoid.

Thus
4

= 2eint (3.14)




Basis Spaces of a Signal

ta 0 m#n
m a(t)dt =
[I zm(t)ea(t) dt {Eﬂ men

F(t) ~ erwa(t) + cama(t) + -+ enza(t)

N
= Z Ccnan(t)

n=1

N
e(t) = f(£) = 3 cazalt)
n=1

[ ? Fe)zate) at

B
] znl(t) dt
t1

1 =
= —[ Ft)zn(t)dt n=12,..., N
En ty

Cn

f(t) = erza(t) +eaza(t) + - +enzn(t) +---

o
Seamalt) ti<t<ty

n=1

Basis Spaces of a Signal

f(t) = ciza(t) + cozaft) + -+ cnanl(t) +---
= icnwn(t) t1 St Sty

» Observe that the error energy Ee generally decreases as N, the
number of terms, is increased because the term Ck 2 Ek is
nonnegative. Hence, it is possible that the error energy -> 0 as
N -> 00. When this happens, the orthogonal signal set is said to
be complete.

* Inthis case, it’s no more an approximation but an equality

19



Linear combinations of signals

x[n]

¥in]

wqn}+yIn]

Application Example: Active Noise Cancellation

A “noise” signal, that we want to get rid of.

@ At subject location, signal is

x[n]

@ Microphone picks up signal

x.[n]

A= o

@ Subtract the two signals:

y(t) = x(t) — xc(t) ot T

Notice careful synchronization is needed!

20



Systems as Maps
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Then a System is a MATRIX

uln y[n
[n] D [n]
y = Du.

l,'[u DM D12 .- DL\" U[H
y[2] Doy Do --- Don | | uf2]
y[M] Dyy Dy -+ Dyn u[N]

1= 3 Dijulj]

J

21



Linear Time Invariant

LTI
u(t) | h()=F() y(t§:u(t)*h(t)

 Linear & Time-invariant (of course - tautology!)
» Impulse response: h(t)=F(8(t))
+ Why?
— Since it is linear the output response (y) to any input (x) is:
z(t) = [, x(r)d(t—T)dr
y(t)=F Uffx z(r)8(t—7) df} Hngar 100 4 (7Y F 6 (t — 1)) dr

h(t-)ZF[(t—7)
=y(t)= [ x(T)h(t—71)dr =2 (t) * h ()

« The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(a(t)) of the system.

Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

d™z
dtm

d'y

dy
GO'H"I‘“I%"F' ~tap din

dx
= boatbim g - by,
o0+ 1{if+ +bm

Laplace:

agY (s) +a1sY(s) + -+ ans"Y (s) = bgX (s} + b1sX(s) + - + bns™ X (s)
A(8)Y (s) = B(s)X(s)

« Total response = Zero-input response + Zero-state response

Initial conditions External Input

22



Linear Systems and ODFE’s

Linear system described by differential equation

dy =b0x+b1%+---+bm d”x
dt" dt dt™

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s) +b,sX(s) +---+b,s"X(S)

A(S)Y (s) =B(s)X(s)

where A(s) and B(s) are polynomials in s

Unit Impulse Response

LTI
30| FG®) [ h@=F@w)

« d(t): Impulsive excitation
* h(t): characteristic mode terms

23



Where are we going with this?

ELEC 3004: Systems

7 March 2016 47

I'his can help simplity matters...
An Example

Consider the following system:

3 T

H H H H H H H H 1
0 100 200 300 400 500 600 700 800 900 1000

» How to model and predict (anEI control the output)?

Source: EE263 (s.1-13)

24



I'his can help simplity matters...
An Example
Consider the following system:

3 T

&
‘\_\
N

. A
» How to model and predict (and control the output)?

Source: EE263 (s.1-13)
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I'his can help simplity matters...
An Example
+ Consider the following system:

= Aux, y=Cux

« Xx(t) € R?, y(t) € R! > 8-state, single-output system
« Autonomous: No input yet! (u(t)=0)

Source: EE263 (s.1-13)

ELEC 3004: Systems 7 March 2016 50
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[ 'his can help simplity matters...

An Example

« Consider the

following system:

0 100 200 300 400 500 600 700 800 900 1000
t
Source: EE263 (s.1-13)
['his can help simplify matters...
An Example t
2 ';C' ZEJ 1;3 3;0 350
350
it
ol e ._
i
-0.!
"3 ) 350
olll - il
_;l‘ﬂ 5; IE;'D 1 ;E' ZEITJ 2;3 Sli]D 350
_ln zjn |é-n ‘5[ 00 ; ] 350
o /! OO A
_:3 - ;3 II;D ';[' ZIZI!'J 2;3 3;[‘ 350
of : : A
o 0 5‘3 1["[} "5[' :Ell:l 2;3 3:;.lD 350
2 P T ‘ i ' T T
T NI : ] Source: EE263 (s.1-13)
_123 5‘3 1["[} "5[' :Ell:l 2;3 3:I.IE‘ 350
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Example: Let’s consider the control...

Expand the system to have a control input...
« Be R®2 C e R¥8(note: the 2" dimension of C)

b= Ar+Bu, y=Cr, 2(0)=0

» Problem: Find u such that vy, (t)=(1,-2)
« Asimple (and rational) approach:

— solve the above equation!

— Assume: static conditions (u, X, v constant)

i =0 = Az + Bugatic, Y = Ydes = Cx
=>» Solve for u:

I —0.63
Ustatic = (—CA 1B) Ydes = [ 0.3)6 ]

Example: Apply u=u. . and presto'

—
~  04r

20 0 200 400 600 B[}DtHIJE 1200 1400 1800 1800

U2

00 0 200 400 600 Bnuttozc 1200 1400 1600 1800

(750

00 0 200 400 Q00 al:ntmnc 1200 1400 1600 1800

U2

Zoo om0 a0 em w0 oo 120 ool teon veoo

» Note: It takes 1500 seconds fof the y(t) to converge .
but that’s natural ... can we do better?

Source EE263 (s.1-13)
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Example: Yes we can!

 How about:

]
=

Source: EE263 (s.1-13)

Example: How? How about a more clever input?

* How about:

o

0.2

U1

™
=
(o
-02 i
D 10 20 TBE a0 0 80
I i __ ]
L I md £
g 0.5 __::
) o S e
2 H i :
0 10 0 t@ﬁ 40 20 80 o 10 0

« Converges in 50 seconds (3.3% of the time ©)

Source: EE263 (s.1-13)
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Example: Can we beat it? Larger inputs & LDS

i

— H

(1]

5 ] 5 QE 5 .(ia =
. 5_ J i 5 " ‘IE i = -. § ource: s.1-
« Converges in 20 seconds (1.3% of the time ©) souee B 1

« We will introduce this via the lens of:
“Systems as Maps. Signals as Vectors”

* Review:
— Phasers, complex numbers, polar to rectangular, and general

functional forms.

— Chapter B and Chapter 1 of Lathi
(particularly the first sections on signals & classification thereof)

* Register on Platypus

+ Try the practise assignment

Next Time... /
« We’ll talk about Other System Properties © é 2 I
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