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Control Systems Design:

tf2ss

Basic Closed-loop Block Diagram
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TF 2 SS — Control Canonical Form)
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Control Canonical Form as a Block Diagram
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Modal Form

» CCF is not the only way to tf2ss

« Partial-fraction expansion of the system
=>» System poles appear as diagonals of Am

« Two issues:
— The elements of matrix maybe complex if the poles are complex
— It is non-diagonal with repeated poles

Modal Form
,},,(5) ) b_ohsn + bl_""” . T B bn—ls + b-'l
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Modal Form Block Diagram
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Matlab’s tf2ss

Y(s) _ 25.045+5.008
U(s)  s3+45.03247s2+25.10265+5.008
Get a state space representation of this system

* Given:

« Matlab:
num [25.04 5.0087;
den = [1 5.03247 25.1026 5.0087;
[A,B,C,D] = tf2ss(num/den) ;

e Answer:

¥, 50325 -25.1026 - 5.008 r]_l 1]
X | = 1 0 0 Xy |+ 0 fu
iy 0 1 0 o] Lo
X
y=1[0 2504 5008]| x, | + [0]u
5}




Control System Design:

Obtaining a Time Response

ELEC 3004: Systems 23 May 2017 -

From SS to Time Response — Impulse Functions

« Given: x = Ax + Bu
 Solution: Y L
x(t) = e 0lx(yy) / e* I Bu(r) dr
— Substituting t, = 0 into this: |

‘:‘f:l — (.Jl\fx_[l(]_) + / eA[l T)lllli:T](!r
JO

- Writethe impulse as: ;) — 501y

— where w is a vector whose components are the magnitudes of r
impulse functions applied at t=0

4
x(1) = e*x(0-) + /(”\"’”:Bc‘?(-r}w dt

—> b

= eMx(0-) + eMBw




From SS to Time Response — Step Response

* Given: x = Ax + Bu

o Startwithu(t) =k
Where K is a vector whose components are the magnitudes
of r step functions applied at t=0.

x(t) = eMx(0) + [ MTBkdr
JO

Vs A"rz \ b
= eMx(0) + M-‘! /(1 ~ A7+ - = Jdr | Bk
LJo A & J

A A

oy + o1 — AL L AT )
= eM'x(0) + e \.Ir T + 3l "|“l\

— Assume A is non-singular

C x(1)

eMx(0) + eM[—(A)(e™ - 1) |Bk
eMx(0) + A(e™  I)Bk

From SS to Time Response — Ramp Response

» Given: x = Ax + Bu

 Start with u(t) = tv
Where v is a vector whose components are magnitudes of ramp
functions applied att =0

x(1) = e*x(0) 4 M RBrv dr

= eMx(0) + e"“/ e 7 drBv
]
) (1, 2A AT, A \
--.»-".\[llj—u"“il\ir 3 O 4‘71 Tl +‘--’JBv

— Assume A is non-singular

Il

eMx(0) + (A%)(e* — I — At)Bv
eMx(0) + [A(eM — 1) - At]Bv

x(1)
=

Il




Example: Obtain the Step Response

. Given: [} _ [*1‘ *?}5][:] + [(ﬂm BESH - [SJ
y=1 ()]E} u(t) = 1()
« Solution:

s+1 05 [ 1 [ -05 | (¢ oA = ol isl - A)
e Y 7[ ' 1 . ¢ ' (e o (51 - A)]
1 § 2+s+0501 s+1] [(- 5((c0s 0.5¢ — sin0.5¢) ¢ % sin 0.5¢ |

- = = e sin .51 e "¥(cos0.5r + sin0.51) |
s+ 05— 05 0.5 1 )

s+ 052+ 035 (54 05) + 052

s+ 05+05
(s + 0.5)* + 057 (5 + 05) + 0.5
— Set k=1, x(0)=0:
x(t) = eMx(0) Al eM I)Bk

= A B

1)
- 0 ij‘ 0.5¢ ¥ (cos0.5¢ - sin0.5t) — 05 | :> y(t) = H U}[ "[':| = i = e " 5in0.5¢
L~z -2 ¢ X
5t |

Example II: Obtain the Step Response

* Given:

« Solution:

. |r : ‘J e m :> B(r) = e = L7 (s1 — A)7]

[o]-[20em cosnlim] [
— Assume x(0)=0:

xi(0) | _ 2et — e ™ et — g
x5(1) ,l 2e + 2e W —gt + 2e7¥

7"‘1(031 . [ &t Je ]
_x,(0) et — e




Break ©

ELEC 3004: Systems

The Direct Method
of Digital Controls —

to be confused with
Controller Emulation
(e.g., Tustin’s Method)

ELEC 3004: Systems
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Direct Design Method Ot Ragazzini
(See also: FPW 5.7 pp.216-222)

Start with 3 Discrete Transfer Functions:
— G(2): TF! of a plant + a hold (e.g., from a ZOH)
— D(2): A controller TF to do the job (what we want here)
— H(2): The final desired TF between R (reference) and Y (output)

— Thus?:
DG
H(z) = 1+DG
1 H
>D(z) =c15

This calls for a D(z) that will cancel the plant effects and that will add whatever is
necessary to give the desired result. The problem is to discover and implement
constraints on H(z) so that we do not ask for the impossible.

— This implies that we need some constraints on both H(z) and D(z)

1: Transfer Function

2: Mental Quiz: What does 1+DG say about the sign of the feedback (positive or negative)?
That is, what is the characteristic equation for a system with positive feedback?

Direct Design Method Ot Ragazzini [Z]:
Design Constraints: |. Causality

» Remember/Recall an Interesting Point:
— From z-transform theory we know that if D(z) is causal,
then as z —» oo its transfer function is well behaved
& it does not have a pole at infinity.

e D(2) = %& implies that if G(z) = 0 (at ),
then D(z) would have a pole (at ©) unless H(z) cancels it.

H(z) must have a zero (at o) of the same order as G(z)’s 0s (at )

- Which means: If there is a lag in the plant (G(z) starts with z)
then causality requires that the delay of H(z) is that the closed-loop
system must be at least as long a delay of the plant.

(Whoa! It might sound deep, but it’s rather intuitive ©)
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Direct Design Method Ot Ragazzini [5]:
Design Constraints: |l. Stability

» The characteristic equation and the closed loop roots:
1+D(2)G(z) =0

« Define3 D =§and ng-) ad +bc=0

» Define z — a as a pole of G(z) and a common factor in DG that

represents D(z) cancelling a pole/zero of G(z).
» Then this common factor remains a factor of the characteristic polynomial.

If this factor is outside the unit circle, then the system is unstable!

1-H(z) must contain as zeros
all the poles of G(z) that are outside the unit circle &
H(z) must contain as zeros
all the zeros of G(z) that are outside the unit circle

3: Note the switching of the “alphabetical-ness” of these two fractions

Direct Design Method Ot Ragazzini [4]:
Design Constraints: lll. Steady State Accuracy

« The error from H(z) is given by:
E(z) =R(z)(1-H(z))
If the system is “Type 17 (with a constant velocity/first derivative (K,,)
— Then*E P = 0and Eg ™ =1/,

H(Zjl=
&
dH(z) 1
e 1 K—UH(Z)=1

4: Eg: steady-state error




Direct Design Method Ot Ragazzini [5]:
An Example

« Consider the plant: s2 +s+1 =10
With T;=1 > z-Transform: z% + 0.786z + 0.368=0

» Let’s design this system such that

-K,=1
- P(;JIes at the roots of the plant equation & additional poles as needed
PH() = BT
. Causality: H(z)|;—e = 0> by =0
I1.  Stability: All poles/zeros of G(z) are in the unit circle
— except for by, which is taken care of by by = [Const] = 0
1. Tracking:

H(L) = by + by + by + =1 -(1—0.786 + 0.368) &
a by+2b,+3bg+ —[—.05014 _
H() ! Loy L ! (note the z~1)

. -1 =1
o azl,., (1-0.786+0.368)
= Truncate the number of unknowns to 2 “zeros” ... thus solve for b, and b, (& set bg,b,,...=0)
D(z) = (z - 1)(z - 0.9048)(0.6321) (2 - 0.07932)
b12+b2 (0.04837)(z +0.9672)  (z—1)(z — 0.4180)
o H(Z) =3 o (2 =0.9048) (z —0.07932)
z%—0.786z+0.368 = 13.07 s
(2 +0.9672) (z - 0.4180)

Application Example 1:

Command Shaping

ELEC 3004: Systems

23 May 2017 - 26
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Experiments: Scanning Over Obstacle

Vombe e

PO LB
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Command Shaping

0.6
A, ==A, Response
AR ﬁ A, ™ A, Response
' = —e—Total Response |~

Position
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Rabuct Control
NUUUOL UTILT VI,
Command Shaping for Vibration Reduction

Integrated COTE]
Planner —— - ero—p{ Regulator }——»] Plant
Shapping
Controller
T -

Sensor

L —Tunning — —

Command Shaping

Original velocity profile

Input shaper

*

Time= Time
Command-shaped velocity profile

\ Tirrie

Velocity

Velocity
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Command Shaping

Ao Y T
* a2 From Aj
s From Ag

Initial Command Input Shaper Shaped Command

« Zero Vibration (ZV)
1 K

Al_|1+K 1+K o
b L K = o<
« Zero Vibration and Defivative (ZvD)

1 2K K?
{ﬂz 1+K)? (1+K)? (1K)
k 0 %d T,
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Experiments: Command Shaping
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Next Time...

+ Digital Feedback Control

* Review:
— Chapter 2 of FPW

* More Pondering??
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