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State Space

Can you use this for
more than Control?

YES!
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Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in

pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.




“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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« Constrained Least-Squares ...
One formulation: Given x:[0]
u[0]
, ull]
minimize  ||@]|*, whered = |
u[0],u[l],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that
n—1
w[n] = A"2[0] + Y " AU Bk,
k=0

so this problem can be written as

Apsrys — b{SHQ subjectto  Cisays = Dys.

minimize
Ils




Controllability
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Controllability

where

—

C=

state vector (n-vector)

control vector (r-vector)

output vector {m-vector) (m = n)
n X n matrx

n X r matrix

m X nmatrix

is completely output controllable if and only if the composite m X nr matrix P, where

P=|[CB i CAB | CA’B | --- | CA"'B|

complete output controllability.)

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for




Controllability matrix

» To convert an arbitrary state representation in F, G, H and J to
control canonical form A, B, C and D, the “controllability
matrix”’

¢c=[G FG F*G -- F"'G]
must be nonsingular.

Why is it called the “controllability” matrix?

Controllability matrix

 If you can write it in CCF, then the system equations must be
linearly independent.

 Transformation by any nonsingular matrix preserves the
controllability of the system.

» Thus, a nonsingular controllability matrix means x can be
driven to any value.




Controllability Example

e T ML
1SS e
an-| IJLJ -4

* We see that vectors B and AB are not linearly independent and
» The rank of the matrix [B | AB] is 1 <m (m=2)
[> ~ the system is not completely state controllable.

l‘\)'

+ Infact, elimination of x, from the given problem yields: X,(s) s+25
X+ 15% - 250 =0 +25u T g T Gres)s o)

» Notice that cancellation of the factor (s + 2.5) occurs in the numerator and denominator of the transfer
function. Because of this cancellation, this system is not completely state controllable and it’s
unstable system (s=1, RHP!). Remember that stability and controllability are quite different things.
There are many systems that are unstable, but are completely state controllable.

Controllability Example |l

5] _[o —047][ =" [og]
LJ L —!.JJ! .xpj "l l

STy Fl

« TF = CCF N
HEEE NN

y = [08 ]j] * | Solu
X controlabi

system defined by Equations (9-120 and (9-121). The rank of the
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Observability

 Observability is concerned with the issue of what can be said
about the state when one is given measurements of the plant
output.

 Definition: The state x0 = 0 is said to be unobservable if,
given x(0) = x0, and u[K] = 0 for k > 0, then y[k] = 0 for k > 0.
The system is said to be completely observable if there exists
no nonzero initial state that it is unobservable.

Observability and Detectability

+ Consider again the state space model

dzlk] = Aszlk] + Bsulk]
ylk| = Csalk| + Dsulk|

* In general, the dimension of the observed output, y, can be less
than the dimension of the state, x. However, one might
conjecture that, if one observed the output over some
nonvanishing time interval, then this might tell us something
about the state. The associated properties are called
observability (or reconstructability). A related issue is that of
detectability. We begin with observability.

11



2. Criteria for observability

Theorem 2-8 Dynamical equation

z=A)x+ B(t)u
y=C@{t)x+D(t)u, telty,+o) (2-1)

Is observable at time t, if and only if there exists a
finite t;>t,, such that the n columns of matrix

CHD(t, 1)
is linearly independent over [t,, t].

Proof: Sufficiency:

1). Consider

y(t) =C@)D(t,ty)x(t,) + JC(t)CD(t,T)B(T)U(T)dT (*)

fy

2). Pre-multiplying both sides of the equation ( * ) with

[CODP( )] = D" (£.4)C™ (2)

we have

12



~

w = y(t) = [ CODET)B(rYu(r)dr

to

3). Integrating both sides from t,to t;, we have

t
Vit h)a(te) = | @ (7,4)C" (Dpu(r)dr

to

4
V(tg.ty) = | @ (7,4,)C" (1)C() (7, to)dT

to

Form Theorem 2-1, it follows that V(¢ ;) is
nonsingular if and only if the columns of C(#)®(¢,
t,) are linearly independent over [t,, t,].

Necessity: the proof is by contradiction.

Assume that the system is observable but the columns
of C(t)®(t, t,) are linearly dependent for any t,;>t .
Then, there exists a column vector «=0, such that

Ct)D(t,t,)a=0, Vtelt,t]
If we choose x(t,)=c, then we have

y(t) = C()D(L, ty)a = OVt > 1,

which means that x(t;) can not be determined by y.

13



Observability criteria for LTI systems

Theorem 2-11 For the n-dimensional linear time
invariant dynamical equation

t=Ax+ Bu
(2-21)
y=Cxr+ Du

the following statements are equivalent:

(1). (2—-21) is observable for any t, in [0, +00);

(2). All the columns of CeAtare linearly independent on [t,,
+00).

(3). The matrix

t
V(to,t) = [ T0C*Ce T dr

to
is nonsingular for any #>0 and t>1,

(4). The ngxn observability matrix

C

CA
rank : =n

14



)

(5). All columns of C(sI—A)~!are linearly
independent over C.

(6) For every eigenvalue \; of A,

=n (2-15)

{A—Azf}
rank

Stability
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Recall dynamic responses

« Ditto the z-plane:

Img(z)

Y

3

More
Oscillatory =

More damped 2(

"-:Pure integrator

3

Re(z)

Faster

>\More unstable”

%

15

Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle
unstable

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r

16



S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s=0 4+ jw
o = constanjt S I
I z =
|z| = ¢”T = constant
Alm(s)
0 : I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)

24 Cwos + wd=0

4 0
s =—Cwo£j/1—(Cwo %0 'Re(s)
cosl = ¢

=05 Alm(s)

C=0.7 -

C=05
s = —C(wo + j\/1 — (2wp: ¢ = constant 2 = e~SwoT =i/ 1=¢PwoT




Specification bounds

» Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) 4 Img(s) Img(s)
wy, = |s| _ 9
£ X
'I
3 Re(s) Re(s) Re(s)
\\ X X
\\
s=0
|S|:? g:? 6 =sin~1¢
T S

Discrete bounds

» These map to the discrete domain:

In practice, you’d use Matlab to plot these, and check that the spec is satisfied




Stability of a 2" order regulator

u=Ke + £le)e

state equations let e

.

= x; and e = xj

X1 = X2
X2 =-Kx1 - f(x1) x2
assume for simplicity that K = 1.
0 = x}
0 = -x{ - £(x})x}

The Jacobian matrix is

0 1
=1 -£(0)
The linear behavior of the system in the close

neighborhood of the origin is described by

X1 = X2

X, ==X ~ f(OJXZ

AND, the characteristic equation is:
s[ls + £(0)]J+ 1 =0

with the eigenvalues

Ay e % £(0) + E £2(0)-1
A = -3 £(0) - ,Fj £2(0)-1

Various Types of Singularities (2" order systems)

o

Stable Unstable
Trajectory type Eigenvalues Trajectory type| Eigenvalues
0 Jo Jw 0
——d -
O a
Stable focus

Unstable focus

jw
% _D_—D-_h‘

Stable node

Jw
__J_c}__{}-y
Unstable node

A i

@ | —+

Vortex

N\ ’

Saddle

19



Linear Transformation

of State Vectors

ELEC 3004: Systems 18 May 2017 - 41

Discretization FPW!

» We can use the time-domain representation to produce
difference equations!

kT+T

x(KT +T) = T x(kT) + f eFT+T=0 Gy (1) dr
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T

20



Similarity Transformations

It is readily seen that the definition of the state of a system is
nonunique. Consider, for example, a linear transformation of x(t)
to defined as

Z(t) = T 'z(t) z(t) = TZ(t)

where T is any nonsingular mairiy, called a similarity
transformation.

Similarity Transformations

The following alternative state description is obtained

2p

CT D
Where

u(t) Z(t,) = T 'z,

The above model is an equally valid description of the system.

21



Similarity Transformations

An illustration, say that the matrix A can be diagonalized by a
similarity transformation T; then

A-—AZ2T AT

where if A4, A,, ..., A, are the eigenvalues of A, then

A= diag()\l, )\2, Ces /\n)

Similarity Transformations

Because A is diagonal, we have

L
T;(t) = erilt—to)z +/ eAi(t*T)Eiu(T)dT
t

o

where the subscript i denotes the i component of the state vector.

22



Similarity Transformations: Example

The matrix T can also be obtained by using the
MATLAB command eig, which yields

0.2673 —0.7071 0.7071

0.8018 0.7071  0.0000
T —
—0.5345 —0.0000 0.7071

Similarity Transformations: Example

We obtain the similar state space description given by

B -5 0 0 B 0.0
A=A=|0 -3 0|; B=|-1414|;
0 0 -2 0.0

23



Transfer Functions Revisited

The solution to the state equation model can be obtained via

Y(s) = [C(sI - A) 'B + D|U(s) + C(sI — A) '=z(0)
[CT(sI — T 'AT) 'T !B + DJU(s) + CT(sI — T 'AT) T '2(0)
[C(sI — A) !B+ DJ|U(s) 4+ C(sI — A) 1z(0)

Transfer Functions Revisited

We thus see that different choices of state variables lead to
different internal descriptions of the model, but to the same input-
output model, because the system transfer function can be
expressed in either of the two equivalent fashions.

CI-A) ' B+D=C(sI-A) 'B+D

for any nonsingular T.

24



From | ranster Function

to State Space Representation
Consider a transfer function G(s) = B/, We can then write

i—1

S

Y(s):Zbi,lvi(s) where  Vi(s) = A(S)U(s)

We note from the above definitions that

From Transfer Function
to State Space Representation

» We can then choose, as state variables, xi(t) = vi(t), which lead
to the following state space model for the system.

0 1 0 0 0 8
0 0 1 0 0
A= . . .| B=|:
: : 0
—Gg —a1 —0a2 —Qp—2 —0p 1

C=1[b b by bo1] D=0

» The above model has a special form. Any completely
controllable system can be expressed in this way.

25



Extension!

Additional Notes on
Calculating @ and T
for Discrete Control
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Discretization FPW!

» We can use the time-domain representation to produce
difference equations!
KT+T

x(KT +T) = T x(kT) + f eFT+T=0 Gy (1) dr
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) = u(kT), kT <t <kT+T

26



Discretization FPW!

» Put this in the form of a new variable:
n=kT+T-—1

Then:
KT+T

x(kT +T) = efTx(kT) + <f eF”dr)> Gu(kT)
k

T

Let’s rename @ = efT and T = (f:;”rT andn) G

Discrete state matrices

So,
x(k+1) = ®dx(k) + Tu(k)
y(k) = Hx(k) + Ju(k)

Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write & as:

®=1+FTWY
where
B F F2T?
lP—I-l—i‘l' 30

27



Simplifying calculation

« We can also use W to calculate T’

— Note that:
ka

Z k+1)'

=YTG
Y jtself can be evaluated with the series:

FT (. FT FT
Yl — I+ — |1+ I+

2 3 n—1

FT

Bl

n

State-space z-transform

We can apply the z-transform to our system:
(z1 - ®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2)
X(z)

=G(z) =H(zI - ®)7T

28



= State-space Control Design

 Design for discrete state-space systems is just like the

continuous case.
— Apply linear state-variable feedback:

u=—Kx
such that det(zl — ® +I'K) = a.(2)

where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[I ®r &2r -- & ir] tobe full-rank.

Next Time...

« Digital Control via Emulation!

* Review:

— Chapter 5 of FPW

» Deeper Pondering??

@/
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