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Lecture Schedule: 
Week Date Lecture Title 

1 
28-Feb Introduction 

2-Mar Systems Overview 

2 
7-Mar Systems as Maps & Signals as Vectors 

9-Mar Systems: Linear Differential Systems 

3 
14-Mar Sampling Theory & Data Acquisition 

16-Mar Aliasing & Antialiasing 

4 
21-Mar Discrete Time Analysis & Z-Transform 

23-Mar Second Order LTID (& Convolution Review) 

5 
28-Mar Frequency Response 

30-Mar Filter Analysis 

6 
4-Apr Digital Filters (IIR) & Filter Analysis 

6-Apr Digital Filter (FIR) 

7 
11-Apr Digital Windows 

13-Apr FFT 

  

18-Apr 

Holiday 20-Apr 

25-Apr 

8 27-Apr Active Filters & Estimation 

9 
2-May Introduction to Feedback Control 

4-May Servoregulation/PID 

10 
9-May PID & State-Space 

11-May State-Space Control 

11 
16-May Digital Control Design 

18-May Stability 

12 
23-May Digital Control Systems: Shaping the Dynamic Response 

25-May Applications in Industry 

13 
30-May System Identification & Information Theory 

1-Jun Summary and Course Review 
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G. Franklin,  

J. Powell,  

M. Workman 

Digital Control  

of Dynamic Systems 

1990 

 

TJ216.F72 1990  

[Available as  

UQ Ebook] 

 

 

Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

  State-space   

• FPW 

– Ch. 5: Transfer Functions: The 
Digital Filter 

• Lathi Ch. 13 

– § 13.2 Systematic Procedure for 
Determining State Equations 

– § 13.3 Solution of State Equations 

 
• FPW 

– Chapter 6 - Design of Digital Control 

Systems Using State-Space Methods 

  

Today 
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Can you use this for  

more than Control? 
 

YES! 
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Discrete Time Butterworth Filters 
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• Constrained Least-Squares …  

How? 
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Controllability 
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Controllability 
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Controllability matrix 
 

• To convert an arbitrary state representation in F, G, H and J to 

control canonical form A, B, C and D, the “controllability 

matrix” 

 
𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be nonsingular. 

 

 

 

 

Why is it called the “controllability” matrix? 
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Controllability matrix 
 

• If you can write it in CCF, then the system equations must be 

linearly independent.  

 

• Transformation by any nonsingular matrix preserves the 

controllability of the system. 

 

• Thus, a nonsingular controllability matrix means x can be 

driven to any value. 

 

18 May 2017 - ELEC 3004: Systems 16 



9 

• Is this fully controllable: 

 

• Solution: 

 

 

 
• We see that vectors B and AB are not linearly independent and  

• The rank of the matrix [B | AB] is 1 < m (m=2)  

∴ the system is not completely state controllable.  

 

• In fact, elimination of x2 from the given problem yields: 

 

• Notice that cancellation of the factor (s + 2.5) occurs in the numerator and denominator of the transfer 

function. Because of this cancellation, this system is not completely state controllable and it’s  

unstable system (s=1, RHP!).  Remember that stability and controllability are quite different things. 

There are many systems that are unstable, but are completely state controllable. 

Controllability Example 
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• TF  CCF 

Controllability Example II 
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Break  
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Observability 

 

18 May 2017 - ELEC 3004: Systems 20 



11 

 

• Observability is concerned with the issue of what can be said 

about the state when one is given measurements of the plant 

output. 

 

• Definition:  The state x0  0 is said to be unobservable if, 

given x(0) = x0, and u[k] = 0 for k  0, then y[k] = 0 for k  0.  

The system is said to be completely observable if there exists 

no nonzero initial state that it is unobservable. 

Observability 

18 May 2017 - ELEC 3004: Systems 21 

• Consider again the state space model  

 

 

 

• In general, the dimension of the observed output, y, can be less 

than the dimension of the state, x.  However, one might 

conjecture that, if one observed the output over some 

nonvanishing time interval, then this might tell us something 

about the state.  The associated properties are called 

observability (or reconstructability).  A related issue is that of 

detectability.  We begin with observability. 

Observability and Detectability 

18 May 2017 - ELEC 3004: Systems 22 



12 

Theorem 2-8 Dynamical equation 

0

( ) ( )

( ) ( ) , [ , ) (2 1)

x A t x B t u

y C t x D t u t t

 

    

is observable at time t0 if and only if there exists a 

finite t1>t0, such that the n columns of matrix 

is linearly independent over [t0, t1]. 

0( ) ( , )C t t t

2. Criteria for observability 
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0

0 0( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

t

t

y t C t t t x t C t t B u d    (＊) 

Proof: Sufficiency: 

2). Pre-multiplying both sides of the equation (＊) with 

0 0[ ( ) ( , )] ( , ) ( )C t t t t t C t   

1). Consider  

we have 

 

18 May 2017 - ELEC 3004: Systems 24 



13 

0 0 0 0 1( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( )t t C t C t t t x t t t C t y t     

0

1 : ( ) ( ) ( , ) ( ) ( )

t

t

y y t C t t B u d  

3). Integrating both sides  from t0 to t1,  we have 
1

0

0 1 0 0 1( , ) ( ) ( , ) ( ) ( )

t

t

V t t x t t C y d  
1

0

0 1 0 0( , ) : ( , ) ( ) ( ) ( , )

t

t

V t t t C C t d   

Form Theorem 2-1, it follows that V(t0, t1) is 
nonsingular if and only if the columns of C(t)(t, 
t0) are linearly independent over [t0, t1]. 
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Necessity: the proof is by contradiction.  

Assume that the system is observable but the columns 
of C(t)(t, t0) are linearly dependent for any t1>t0 . 

Then, there exists a column vector 0, such that  

0 0( ) ( ) ( , ) 0y t C t t t t t    

0 0 1( ) ( , ) 0 [ , ]C t t t t t t   ，

If we choose  x(t0)=, then we have  

which means that x(t0) can not be determined by y. 
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the following statements are equivalent: 
(1). (221) is observable for any t0 in [0, +); 

(2). All the columns of CeAt are linearly independent on [t0, 
+). 

Theorem 2-11 For the n-dimensional linear time 
invariant dynamical equation 

x Ax Bu

y Cx Du

 

 
（2-21） 

 

Observability criteria for LTI systems 
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1n

C

CA
rank n

CA 

 
 
  
 
 
 

(4). The nqn observability matrix 

is nonsingular for any t0≥0 and t>t0. 

0 0

0

*( ) ( )
0( , ) *

t
A t A t

t

V t t e C Ce d 
 

(3). The matrix  
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(6) For every eigenvalue i of A, 

(2 15)
iA I

rank n
C

 
  

 

(5). All columns of C(sIA)1 are linearly 
independent over . 

18 May 2017 - ELEC 3004: Systems 30 

Stability 
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Recall dynamic responses 
• Ditto the z-plane: 

Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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• Poles inside the unit circle 

are stable 

 

• Poles outside the unit circle 

unstable 

 

• Poles on the unit circle 

are oscillatory 

 

• Real poles at 0 < z < 1 

give exponential response 

 

• Higher frequency of 

oscillation for larger  

 

• Lower apparent damping 

for larer  and r 

Pole positions in the z-plane 
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S-Plane to z-Plane [1/2] 
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S-Plane to z-Plane [2/2] 
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Specification bounds 
• Recall in the continuous domain, response performance 

metrics map to the s-plane: 

Img(s) 

Re(s) 

𝑠 =
4.6

𝑡𝑠
 

𝑠 = 𝜎 

Img(s) 

Re(s) 

𝜃 = sin−1𝜁 

𝜃 

Img(s) 

Re(s) 

𝑠 =
1.8

𝑡𝑟
 

𝜔𝑛 = 𝑠  
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• These map to the discrete domain: 

 

 

 

 

 

 

 

 

 

 
In practice, you’d use Matlab to plot these, and check that the spec is satisfied 

Discrete bounds 

Img(z) 

Re(z) 

𝑧 = 𝑒−𝑡𝑠𝑇 

𝑧  

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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Stability of a 2nd order regulator 

 

 

 

 

 

 

 

 
• The linear behavior of the system in the close 

neighborhood of the origin is described by 

 

 

 

 

• AND, the characteristic equation is: 
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Various Types of Singularities (2nd order systems) 
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Linear Transformation  
of State Vectors 

18 May 2017 - ELEC 3004: Systems 41 

Discretization FPW! 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 

an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Similarity Transformations 
It is readily seen that the definition of the state of a system is 

nonunique.  Consider, for example, a linear transformation of x(t) 

to          defined as 

 

 

where  T  is any nonsingular matrix, called a similarity 

transformation.  

)( tx
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Similarity Transformations 
The following alternative state description is obtained 

 

 

Where 

 

 

 

 

The above model is an equally valid description of the system. 
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Similarity Transformations 
An illustration, say that the matrix A can be diagonalized by a 

similarity transformation T; then 

 

 

where if 1, 2, …, n  are the eigenvalues of A, then 
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Similarity Transformations 
Because  is diagonal, we have 

 

 

 

 

where the subscript i denotes the ith component of the state vector. 
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Similarity Transformations: Example 

The matrix T can also be obtained by using the 

MATLAB command eig, which yields 
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Similarity Transformations: Example 

We obtain the similar state space description given by 
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Transfer Functions Revisited 
The solution to the state equation model can be obtained via 
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Transfer Functions Revisited 
We thus see that different choices of state variables lead to 

different internal descriptions of the model, but to the same input-

output model, because the system transfer function can be 

expressed in either of the two equivalent fashions. 

 

 

 

 

for any nonsingular T. 
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From Transfer Function  
to State Space Representation 
Consider a transfer function G(s) = B(s)/A(s).  We can then write 

 

 

 

 

We note from the above definitions that 
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• We can then choose, as state variables,  xi(t) = vi(t), which lead 

to the following state space model for the system.     

 

 

 

 

 

 

• The above model has a special form.  Any completely 

controllable system can be expressed in this way.   

From Transfer Function  
to State Space Representation 
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Extension! 
 

Additional Notes on  
Calculating 𝚽 and 𝚪  
for Discrete Control 

18 May 2017 - ELEC 3004: Systems 54 

Discretization FPW! 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 

an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Discretization FPW! 
• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 

Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 
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Discrete state matrices 
So, 

𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  
 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  

 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  

 

Note that we can also write 𝚽 as: 

𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+⋯ 
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Simplifying calculation 
• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 

𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +
𝐅𝑇

3
𝐈 +⋯

𝐅𝑇

𝑛 − 1
𝐈 +
𝐅𝑇

𝑛
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State-space z-transform 
We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 −𝚽 −𝟏𝚪 
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∴ State-space Control Design 

• Design for discrete state-space systems is just like the 

continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 
where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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• Digital Control via Emulation! 

 

 

• Review:  
– Chapter 5 of FPW 

 

 

• Deeper  Pondering?? 

 

 

 

Next Time… 
 
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