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QIl: Complex Solutions to Real Problems

Can an ODE with only real constant coefficients have a complex
solution?

Yes, because the coefficients do not give the solution,
but rather setup an equation that instead gives a solution

For example:
y'+y=0

Has solutions:
e and e~*




Q2: Transfer Functions and the s-Domain [1]

Final VValue Theorem

lim f(t) = limsF(s)
t—oo s—0

Latex Version:

 For systems that are valid (i.e., stable):
— Roots of the denominator of H(s) must have negative real parts.
- H(s) must not have more than one pole at the origin.

Ay, 50 = i ar (o)

Q2: Transfer Functions and the s-Domain [2]
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Q2: Transfer Functions and the s-Domain [3]
3004 3004
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Q2: Transfer Functions and the s-Domain [4]
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Q2: Transfer Functions and the s-Domain [2]
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QZ: Transfer Functions and the s-Domain [5]
Matlab Source for Graphs

% Ga

impulse(Ga);

% Gb

% GcC

% Gd

% Ge

% Gf

%% ELEC 3004 Quiz 0 -- Q2

a=[3004]; b=[1 4]; Ga=tf(a, b);
title('Impulse Response of G_a');

a=[3004]; b=[1 -4]; Gb=tf(a, b);
impulse(Gb); title('Impulse Response of G_b');

a=[3004]; b=[1 0 4]; Gc=tf(a, b);
impulse(Gec); title('Impulse Response of G_c');

a=[3004]; b=[1 4 0]; Ge=tf(a, b);
impulse(Ge); title('Impulse Response of G_e');

a=[3004]; b=[4]; Gf=tf(a, b);
impulse(Gf); title('Impulse Response of G_f');

figure(10);

figure(20);

figure(30);

a=[3004]; b=[1 0@ 0 4]; Gd=tf(a, b);
impulse(Gd); title('Impulse Response of G_d');

figure(40);

figure(50);

figure(60);




Q3: Free Determination
« False:
det(A + B) # det(4A) + det(B)
e True:
det(AB) = det(4) - det(B)

Q4: Free Determination : All TRUE

* True:
A = LU: is a factorization that is basically an elimination

» True:
If A is invertible, then the only solutionto Ax = 0is x = 0.

* True:
Linear Equations (Ax = b) come from steady-state problems.
eigenvalues (Ax = Ax) have importance in dynamic problems.




Q5: Convolution!: All TRUE

m. N1AA . I
m. M
_[Ii__tICI__J’EI__D:LI-I

Qé6: A Signal Re-volution!

I/ I/ W A%
POO®

Frame 1 Frame 2 Frame3 Frame 4

A. It could be rotating either way (CW or CCW). The angular

velocity is 6 = i—f = (Znil)n = 12.5 rev/second
25

B. Speeds (m/s):

v=wxr=25r"2%.(0.32m) = 25.1 2 = 90.5 kmh

?

C. Speed,, = Speed el
Straight line (no turning)
Full traction
No suspension effects ...
What is the frame of reference? Should be picked with care!




Signals & Systems:

A Primer!

ELEC 3004: Systems 2 March 2017 - 15

Follow Along Reading:

« Chapter 1

;,@ o (Introduction to Signals
Lhear |gnal processing
- . and linear systems and Systems)
B 020,155 1068 — § 1.2: Classification of Signals
— §1.2: Some Useful Signal
Operations

— § 1.6 Systems

« Chapter B (Background)
— B.5 Partial fraction expansion
— B.6 Vectors and Matrices



http://library.uq.edu.au/record=b2013253~S7

An Overview of Systems

+ Today we are going to look at F(x)! g FX)

* F(x): System Model
— The rules of operation that describe it’s behaviour of a “system”
— Predictive power of the responses
— Analytic forms > Empirical ones
« Analytic formula offer various levels of detail
* Not everything can be experimented on ad infinitum

+ Also offer Design Intuition (let us devise new “systems’)
» Let’s us do analysis! (determine the outputs for an input)

— Various Analytic Forms
+ Constant, Polynomial, Linear, Nonlinear, Integral, ODE, PDE, Bayesian...

Modelling Ties Back with ELEC 2004

 Linear Circuit Theorems, Operational Amplifiers
+ Operational Amplifiers

 Capacitors and Inductors, RL and RC Circuits
» AC Steady State Analysis

» AC Power, Frequency Response

+ Laplace Transform

 Reduction of Multiple Sub-Systems
 Fourier Series and Transform

« Filter Circuits

=>» Modelling Tools!




System Terminology
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Linear Systems

y(x)

Model describes the relationship ue)
between the input u(x) and nput
the output y(X) g
If it is a Linear System (wk 3):

F(x)

output

y(t)zfotp(t—T)u(T)dT

If it is also a (Linear and) lumped, it can be expressed algebraically as:

z(t) =A@z )+ B#)u(?)
y(®) =C @z @)+ D) u)

If itis also (Linear and) time invariant the matrices can be reduced to:

i (t) = Az (t) + Bu (t)
y(t) = Cz (t) + Du(t)

Yaplacian: y(s) = F (s)u(s)

10



WHY? This can help simplify matters...
For Example: Consider the following system:

' ‘
1
0

=

1"

APl
M

: ‘W e

i i i i i i i i I
0 100 200 300 400 500 600 700 800 900 1000

» How to model and predict (an%l control the output)?

Source: EE263 (s.1-13)
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This can help simplify matters...
Consider the following system:

3 T

(=]
S
.

» How to model and predict (and control the output)?

Source: EE263 (s.1-13)
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[ 'his can help simplity matters...

?L

H
300 350
T

H
300 350
T

i
200 350

i
300 350

300 350

300 350

5 H H H H H H
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o T T T T T T
ok oo -
\ ) A : ; Source: EE263 (s.1-13)
02 H : H H H H
0 50 100 150 200 250 300 350

This can help simplify matters...

 Consider the following system:

= Auwx, y==Cux

« X(t) € R8, y(t) € R - 8-state, single-output system
« Autonomous: No input yet! (u(t)=0)

Source: EE263 (s.1-13)

12



System Classifications/Attributes

1. Linear and nonlinear systems

2. Constant-parameter and time-varying-parameter systems

3. Instantaneous (memoryless) and dynamic (with memory)
systems

4. Causal and noncausal systems

5. Continuous-time and discrete-time systems

6. Analog and digital systems

7. Invertible and noninvertible systems

8. Stable and unstable systems

Expanding on this: Types of Linear Systems

« LDS:
w(t) =A)z(t) + B(t)u(t)
y () =C @)z (t) + D (1) u(t)

() = A (D) + Bu ()
y (1) = Cz (t) + Du(?)

13



Types of Linear Systems

« LDS: )
c(t)=A)x(t) +B{)u(t)
y(t) =C )z (t) + D (t)ult)
To Review:
 Continuous-time linear dynamical system (CT LDS):
% = A(t)x(t) + B(t)u(t), y(t)=C(t)x(t)+ D(t)u(t)
t € R denotes time
X(t) € R" is the state (vector)
u(t) € R™ is the input or control
y(t) € RP is the output

Types of Linear Systems

 LDS:

z(t)=At)x(t)+ B()u(l)
y(t) =C @)z )+ D) u(t)

A(t) € R™" is the dynamics matrix

B(t) € R™™ is the input matrix

C(t) € RP*" js the output or sensor matrix
D(t) € RP*™ s the feedthrough matrix

=>» state equations, or “m-input, n-state, p-output’ LDS

14



Types of Linear Systems

« LDS:
() =A@)z(t) + B(t)u(t)
y (1) =C @)z () + D (1) u(t)

« Time-invariant: where A(t), B(t), C(t) and D(t) are constant
« Autonomous: there is no input u (B,D are irrelevant)
* No Feedthrough: D=0

« SISO: u(t) and y(t) are scalars
« MIMO: u(t) and y(t): They’re vectors: Big Deal ?

Discrete-time Linear Dynamical System

 Discrete-time Linear Dynamical System (DT LDS)
has the form:

x(t+1) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) + D(t)u(t)

t € Z denotes time index : Z={0, £1, ..., £ n}

X(t), u(t), y(t) € are sequences

Differentiation handled as difference equation:
=>» first-order vector recursion

15



Discrete Variations & Stability

y(s) = F(s)u(s)

+ Is in continuous time ... e SISO to MIMO

« To move to discrete time it is — Single Input, Single Output
more than just “sampling” at: — Multiple Input, Multiple Output
2 x (biggest Frequency) « BIBO:

— Bounded Input, Bounded Output
» Discrete-Time Exponential

F(t) N F[kT] » Lyapunov:

— Conditions for Stability

k L => Are the results of the system
el — fy asymptotic or exponential

1 __
T =InY

Linear Systems

Linearity:

* A most desirable property for many systems to possess

« Ex: Circuit theory, where it allows the powerful technique or
voltage or current superposition to be employed.

Two requirements must be met for a system to be linear:
 Additivity
« Homogeneity or Scaling

Additivity U Scaling = Superposition

16



Linear Systems: Additivity

» Given input x4 (t) produces output y,(t)
and input x, (t) produces output y, (t)

« Then the input x; (t) + x5 (t)
must produce the output y; (t) + y,(t)
for arbitrary x, (t) and x, (t)

 EX:
— Resistor
— Capacitor
* Not Ex:
- y(t) = sin[x(t)]

Linear Systems: Homogeneity or Scaling

» Given that x(t) produces y(t)

» Then the scaled input a - x(t)
must produce the scaled output a - y(t)
for an arbitrary x(t) and a

e EXx:

- y() = 2x(t)
* Not EX:

- y(t) = x*(t)

-y() =2x(t) +1

17



Linear Systems: Superposition

» Given input x4 (t) produces output y,(t)

and input x, (t) produces output y, (t)

Then: The linearly combined input

x(t) = ax;(t) + bx,(t)
must produce the linearly combined output
y(©) = ay,(¢) + by, (t)
for arbitrary a and b

» Generalizing:

— Input: x(t) = X arxr(t)
— Output: y(£) = Xy ary(t)

Linear Systems: Superposition [2]

Consequences:

« Zero input for all time yields a zero output.

— This follows readily by setting a = 0, then 0 - x(t) = 0

DC output/Bias =» Incrementally linear

Ex:y(t) = [2x(D)] + [1]
Set offset to be added offset [Ex: yo(t)=1]

x(1) | Linear w(t) . (
system \ l ,J' 4

18



Dynamical Systems...

+ A system with a memory
— Where past history (or derivative states) are relevant in
determining the response

Ex:

— RC circuit: Dynamical
* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)
— R circuit: is memoryless “- the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.

Causality:
Causal (physical or nonanticipative) systems

€ep HOw MUCH
9 TIME DO YoU —

: ‘ x|l b - I &

« Is one for which the output at any instant t, depends only
on the value of the input x(t) for t<t,. Ex:

(@) =a(t—2)=causal [u(t)==x(—2)+ 2+ 2) = noncausal

» A “real-time” system must be causals
— How can it respond to future inputs?

+ A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems

19



Causality:
Looking at this from the output’s perspective...

» Causal = The output before some time t does not depend on
the input after time t.

Given: y(t) = F (u(t))
For:
a(t)=u(t),v0<t<Torl[0,T)
Then for a T>0:
—gt) =y (), vVO<t<T

then:
t |

| | Lediaen
,, o . f
| a Ly | ¥
.

Causal Noncausal

else:

Systems with Memory

« A system is said t have memory if the output at an arbitrary

time t = t, depends on input values other than, or in addition
to, x(t,)

 Ex: Ohm’s Law
V(to) = Ri(to)

* Not Ex: Capacitor
t

1
V(ty) = Ef i(t)dt

20



Time-Invariant Systems

+ Given a shift (delay or advance) in the input signal
» Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — ty) produces output y(t — t,)

« Ex: Capacitor
.« V(te) =< [ it —ty)dr
=" limdr

:V(t - to)

Time-Invariant Systems

« Given a shift (delay or advance) in the input signal
« Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — t,) produces output y(t — t,)

¥ty === yit=1ty)
Shift

v

System

v

x{1)

®(t = tg) }’ru[”
System |p—

Shift

v
v




