

Systems Overview

ELEC 3004: **Systems**: Signals & Controls

Dr. Surya Singh

Lecture 2

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

March 2, 2017

(CC) BY-NC-SA

2014 School of Information Technology and Electrical Engineering at The University of Queensland

Lecture Schedule:

ELEC 3004: Systems

Week	Date	Lecture Title
1	28-Feb	Introduction
	2-Mar	Systems Overview
2	7-Mar	Systems as Maps & Signals as Vectors
	9-Mar	Data Acquisition & Sampling
3		Sampling Theory
		Antialiasing Filters
4		Discrete System Analysis
		Convolution Review
5		Frequency Response
		Filter Analysis
5		Digital Filters (IIR)
		Digital Windows
6		Digital Filter (FIR)
	13-Apr	
	18-Apr	
	20-Apr	
_	25-Apr	
7		Active Filters & Estimation
8	,	Introduction to Feedback Control
		Servoregulation/PID
10		Introduction to (Digital) Control
		Digitial Control
11		Digital Control Design
		Stability
12		Digital Control Systems: Shaping the Dynamic Response
		Applications in Industry
13		System Identification & Information Theory
	1-Jun	Summary and Course Review

March 2017 -

1

Prere-**quiz**-ite Solutions ©

ELEC 3004: Systems

2 March 2017 - 3

Q1: Complex Solutions to Real Problems

Can an ODE with only real constant coefficients have a complex solution?

- Yes, because the coefficients do not give the solution, but rather setup an equation that instead gives a solution
- For example:

$$y'' + y = 0$$

• Has solutions:

$$e^{ix}$$
 and e^{-ix}

ELEC 3004: Systems

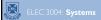
Q2: Transfer Functions and the s-Domain [1]

Final Value Theorem

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

Latex Version: $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$

- For systems that are valid (i.e., stable):
 - Roots of the denominator of H(s) must have negative real parts.
 - H(s) must not have more than one pole at the origin.



2 Manah 2017

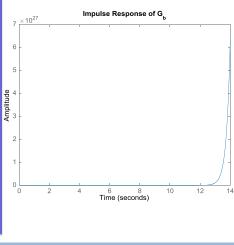
Q2: Transfer Functions and the s-Domain [2]

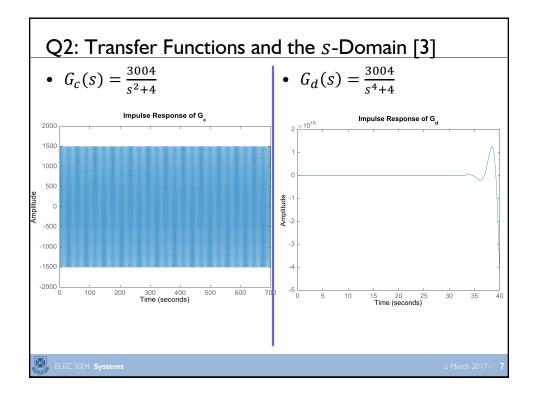
•
$$G_a(s) = \frac{3004}{s+4}$$

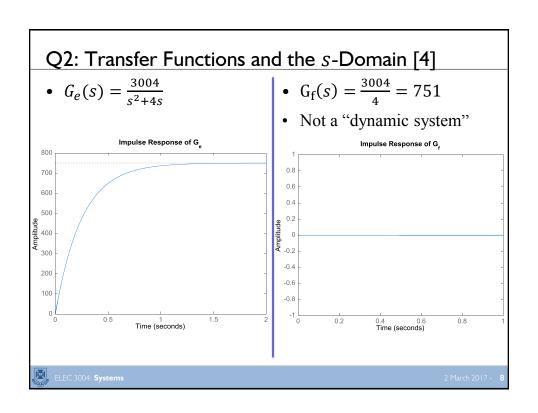
ELEC 3004: Systems



•
$$G_b(s) = \frac{3004}{s-4}$$







Q2: Transfer Functions and the s-Domain [2] • $G_a(s) = \frac{3004}{s+4}$ Impulse Response of G, Impulse Response o

Q2: Transfer Functions and the s-Domain [5] Matlab Source for Graphs %% ELEC 3004 Quiz 0 -- Q2 % Ga a=[3004]; b=[1 4]; Ga=tf(a, b); figure(10); impulse(Ga); title('Impulse Response of G_a'); % Gb a=[3004]; b=[1 -4]; Gb=tf(a, b); figure(20); impulse(Gb); title('Impulse Response of G_b'); a=[3004]; b=[1 0 4]; Gc=tf(a, b); figure(30); impulse(Gc); title('Impulse Response of G_c'); a=[3004]; b=[1 0 0 4]; Gd=tf(a, b); figure(40); impulse(Gd); title('Impulse Response of G_d'); % Ge a=[3004]; b=[1 4 0]; Ge=tf(a, b); figure(50); impulse(Ge); title('Impulse Response of G_e'); a=[3004]; b=[4]; Gf=tf(a, b); figure(60); impulse(Gf); title('Impulse Response of G_f'); ELEC 3004: Systems

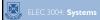
Q3: Free Determination

• False:

$$\det(A+B) \neq \det(A) + \det(B)$$

• True:

$$\det(AB) = \det(A) \cdot \det(B)$$



2 March 2017 - 1

Q4: Free Determination: All TRUE

• True:

A = LU: is a factorization that is basically an elimination

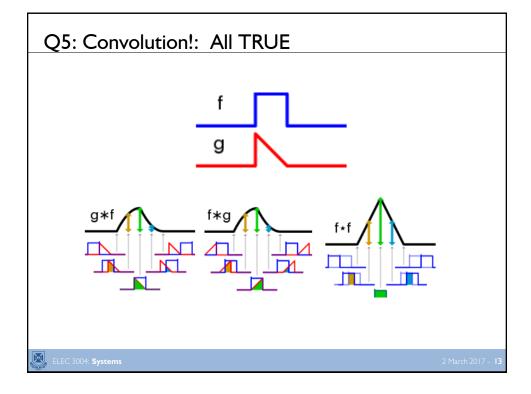
• True:

If **A** is invertible, then the only solution to Ax = 0 is x = 0.

• True:

Linear Equations (Ax = b) come from steady-state problems. eigenvalues $(Ax = \lambda x)$ have importance in dynamic problems.

ELEC 3004: Systems



Q6: A Signal Re-volution!

Frame 1

Frame 2

Frame 3

e 3 Frame 4

- A. It could be rotating either way (CW or CCW). The angular velocity is $\dot{\theta} = \frac{\Delta \theta}{\Delta t} = \left[\frac{(2n+1)\pi}{\frac{1}{25}}\right] \Rightarrow 12.5 \ rev/second$
- B. Speeds (m/s): $v = \omega \times r = 25\pi \frac{rad}{s} \cdot (0.32 \text{ m}) = 25.1 \frac{m}{s} = 90.5 \text{ kmh}$
- C. Speed_{car} ? Speed_{wheel}:
 Straight line (no turning)
 - Full traction
 - No suspension effects ...
 - What is the **frame of reference**? Should be picked with care!

2 Manah 2017 - 14

Signals & Systems: A Primer!

Follow Along Reading:

B. P. Lathi Signal processing and linear systems 1998 TK5102.9.L38 1998

- Chapter 1
 (Introduction to Signals and Systems)
 - § 1.2: Classification of Signals
 - § 1.2: Some Useful Signal Operations
 - § 1.6 Systems
- Chapter B (Background)
 - B.5 Partial fraction expansion
 - B.6 Vectors and Matrices

ELEC 3004: Systems

An Overview of Systems

• Today we are going to look at F(x)!

- F(x): System Model
 - The rules of operation that describe it's behaviour of a "system"
 - Predictive power of the responses
 - Analytic forms > Empirical ones
 - Analytic formula offer various levels of detail
 - Not everything can be experimented on ad infinitum
 - Also offer Design Intuition (let us devise new "systems")
 - Let's us do analysis! (determine the outputs for an input)
 - Various Analytic Forms
 - Constant, Polynomial, Linear, Nonlinear, Integral, ODE, PDE, Bayesian.

2 March 2017 - 17

Modelling Ties Back with ELEC 2004

- Linear Circuit Theorems, Operational Amplifiers
- Operational Amplifiers
- Capacitors and Inductors, RL and RC Circuits
- AC Steady State Analysis
- AC Power, Frequency Response
- Laplace Transform
- Reduction of Multiple Sub-Systems
- Fourier Series and Transform
- Filter Circuits

→ Modelling Tools!

System Terminology ELEC 3004: Systems 2 March 2017 - 19

Linear Systems

- Model describes the relationship between the input $\mathbf{u}(x)$ and the output y(x)

• If it is a Linear System (wk 3):
$$y(t) = \int_0^t F(t - \tau) u(\tau) d\tau$$

If it is also a (Linear and) **lumped**, it can be expressed **algebraically** as:

$$\dot{x}(t) = A(t) x(t) + B(t) u(t)$$

 $y(t) = C(t) x(t) + D(t) u(t)$

u(x)

If it is also (Linear and) **time invariant** the matrices can be reduced to:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

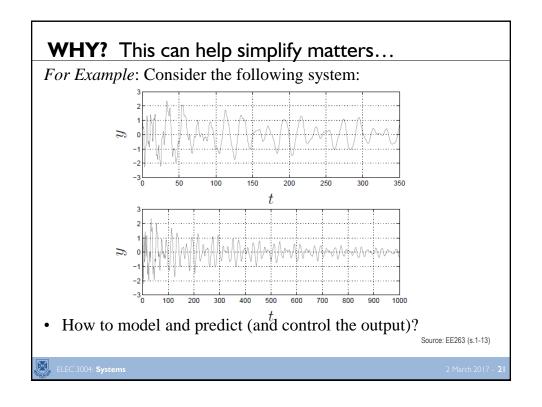
$$y(t) = Cx(t) + Du(t)$$

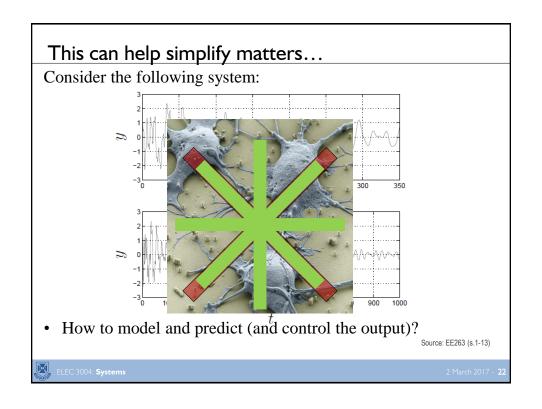
$$\mathscr{L}_{aplacian}$$
: $y(s) = F(s)u(s)$

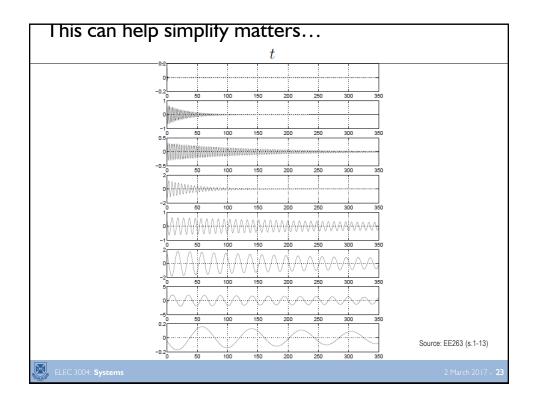
y(x)

output

 $\mathbf{F}(\mathbf{x})$







This can help simplify matters...

• Consider the following system:

$$\dot{x} = Ax, \qquad y = Cx$$

- $x(t) \in \mathbb{R}^8$, $y(t) \in \mathbb{R}^1 \rightarrow 8$ -state, single-output system
- Autonomous: No input yet! (u(t) = 0)

Source: EE263 (s.1-13)

ELEC 3004: Systems

2 Manuali 2017 24

System Classifications/Attributes

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

ELEC 3004: Systems

2 March 2017 - **2**

Expanding on this: Types of Linear Systems

• LDS:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

• LTI - LDS:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

ELEC 3004: Systems

M----- 2017 2/

Types of Linear Systems

• LDS:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

To Review:

• Continuous-time linear dynamical system (CT LDS):

$$\frac{dx}{dt} = A(t)x(t) + B(t)u(t), \quad y(t) = C(t)x(t) + D(t)u(t)$$

- $t \in \mathbb{R}$ denotes time
- $x(t) \in \mathbb{R}^n$ is the state (vector)
- $u(t) \in \mathbb{R}^{m}$ is the input or control
- $y(t) \in \mathbb{R}^p$ is the output



2 March 2017 - **2**7

Types of Linear Systems

• LDS:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

- $A(t) \in \mathbb{R}^{n \times n}$ is the dynamics matrix
- $B(t) \in \mathbb{R}^{n \times m}$ is the input matrix
- $C(t) \in \mathbb{R}^{p \times n}$ is the output or sensor matrix
- $D(t) \in \mathbb{R}^{p \times m}$ is the feedthrough matrix
 - → state equations, or "*m*-input, *n*-state, *p*-output' LDS

ELEC 3004: Systems

Types of Linear Systems

• LDS:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

- Time-invariant: where A(t), B(t), C(t) and D(t) are constant
- **Autonomous:** there is no input *u* (B,D are irrelevant)
- No Feedthrough: D = 0
- SISO: u(t) and y(t) are scalars
- MIMO: u(t) and y(t): They're vectors: Big Deal ?

2 March 2017 - 2

Discrete-time Linear Dynamical System

• Discrete-time Linear Dynamical System (DT LDS) has the form:

$$x(t+1) = A(t)x(t) + B(t)u(t),$$
 $y(t) = C(t)x(t) + D(t)u(t)$

- $t \in \mathbb{Z}$ denotes time index : $\mathbb{Z} = \{0, \pm 1, ..., \pm n\}$
- x(t), u(t), $y(t) \in \text{are sequences}$
- Differentiation handled as difference equation:
 - → first-order vector recursion

ELEC 3004: Systems

N----- 2017 20

Discrete Variations & Stability

$$y(s) = F(s)u(s)$$

- Is in continuous time ...
- To move to <u>discrete time</u> it is more than just "sampling" at: 2 × (biggest Frequency)
- Discrete-Time Exponential

$$F(t) \to F[kT]$$

$$e^{\frac{k}{T}} = \gamma^k$$

$$\frac{1}{T} = \ln \gamma$$

- SISO to MIMO
 - Single Input, Single Output
 - Multiple Input, Multiple Output
- · BIBO:
 - Bounded Input, Bounded Output
- Lyapunov:
 - Conditions for Stability
 - → Are the results of the system asymptotic or exponential

ELEC 3004: Systems

2 March 2017 - 3

Linear Systems

Linearity:

- A most desirable property for many systems to possess
- Ex: Circuit theory, where it allows the powerful technique or voltage or current superposition to be employed.

Two requirements must be met for a system to be linear:

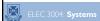
- Additivity
- Homogeneity or Scaling

Additivity ∪ *Scaling* → Superposition

N------ 2017 22

Linear Systems: Additivity

- Given input $x_1(t)$ produces output $y_1(t)$ and input $x_2(t)$ produces output $y_2(t)$
- Then the input $x_1(t) + x_2(t)$ must produce the output $y_1(t) + y_2(t)$ for arbitrary $x_1(t)$ and $x_2(t)$
- Ex:
 - Resistor
 - Capacitor
- **Not** Ex:
 - $-y(t) = \sin[x(t)]$



2 Manah 2017 **2**

Linear Systems: Homogeneity or Scaling

- Given that x(t) produces y(t)
- Then the scaled input $a \cdot x(t)$ must produce the scaled output $a \cdot y(t)$ for an arbitrary x(t) and a
- Ex:

$$-y(t)=2x(t)$$

• Not Ex:

$$-y(t)=x^2(t)$$

$$-y(t) = 2x(t) + 1$$

Linear Systems: Superposition

- Given input $x_1(t)$ produces output $y_1(t)$ and input $x_2(t)$ produces output $y_2(t)$
- Then: The linearly combined input

$$x(t) = ax_1(t) + bx_2(t)$$

must produce the linearly combined output

$$y(t) = ay_1(t) + by_2(t)$$

for arbitrary a and b

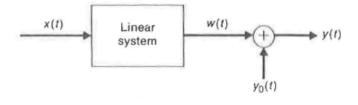
- Generalizing:
 - Input: $x(t) = \sum_{k} a_k x_k(t)$
 - Output: $y(t) = \sum_{k} a_k y_k(t)$

2 March 2017 - 3

Linear Systems: Superposition [2]

Consequences:

- Zero input for all time yields a zero output.
 - This follows readily by setting a = 0, then $0 \cdot x(t) = 0$
- DC output/Bias → <u>Incrementally linear</u>
- Ex: y(t) = [2x(t)] + [1]
- Set offset to be added offset [Ex: $y_0(t)=1$]



ELEC 3004: Systems

Dynamical Systems...

- A system with a memory
 - Where past history (or derivative states) are <u>relevant</u> in determining the response
- Ex:
 - RC circuit: Dynamical
 - Clearly a function of the "capacitor's past" (initial state) and
 - Time! (charge / discharge)
 - R circuit: is memoryless : the output of the system
 (recall V=IR) at some time t only depends on the input at time t
- Lumped/Distributed
 - Lumped: Parameter is constant through the process
 & can be treated as a "point" in space
- Distributed: System dimensions ≠ small over signal
 - Ex: waveguides, antennas, microwave tubes, etc.

2 March 2017 - **37**

Causality:

Causal (physical or nonanticipative) systems

• Is one for which the output at any instant t_0 depends only on the value of the input x(t) for $t \le t_0$. Ex:

 $u(t) = x(t-2) \Rightarrow \text{causal}$

 $u(t) = x(t-2) + x(t+2) \Rightarrow \text{noncausal}$

- A "real-time" system must be causals
 - How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
 - The output would begin before t₀
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems

Causality:

Looking at this from the output's perspective...

• **Causal** = The output *before* some time *t* does not depend on the input *after* time *t*.

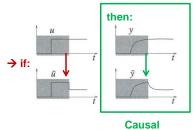
Given: y(t) = F(u(t))

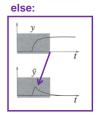
For:

$$\widehat{u}(t) = u(t), \forall 0 \le t < T \text{ or } [0, T)$$

Then for a T>0:

$$\rightarrow \hat{y}(t) = y(t), \ \forall 0 \le t < T$$





Noncausal

ELEC 3004: Systems

2 March 2017 - **39**

Systems with Memory

- A system is said t have *memory* if the output at an arbitrary time $t = t_*$ depends on input values other than, or in addition to, $x(t_*)$
- Ex: Ohm's Law

$$V(t_o) = Ri(t_o)$$

• Not Ex: Capacitor

$$V(t_0) = \frac{1}{C} \int_{-\infty}^{t} i(t) dt$$

ELEC 3004: Systems

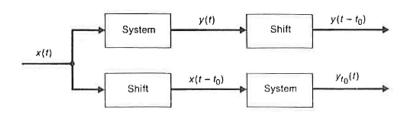
Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If x(t) produces output y(t)
- Then $x(t-t_0)$ produces output $y(t-t_0)$
- Ex: Capacitor
- $V(t_0) = \frac{1}{c} \int_{-\infty}^{t} i(\tau t_0) d\tau$ $= \frac{1}{c} \int_{-\infty}^{t t_0} i(\tau) d\tau$ $= V(t t_0)$

2 March 2017 - **4**

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If x(t) produces output y(t)
- Then $x(t t_0)$ produces output $y(t t_0)$



ELEC 3004: Systems