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Final.Exam.Tip:. Longhand Notes > Typed
e - P

'EDUCATION
Attention, Students: Put Your Laptops Away

The Pen Is Mightier Than the Keyboard:
Advantages of Longhand Over Laptop
Note Taking

Pam A, Mueller' and Danicl M. Oppenheimert

g, research shows that laptops and tablets have a tendency to be

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away|

10.1177/0956797614524581

doi:

Friendly computing tale...

« Please save (as) often ©
 Use Platypus, (€loud-baged © )
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PID Recap
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Effects of Increasing Gain

Effects of increaSI n g a parameter independently

Parameter | Rise time | Overshoot | 221N ST ST Stability™!
time error
K Small
P Decrease Increase change Decrease Degrade
K; Decrease Increase Increase Eliminate Degrade
- Minor No effect in Improve
K, change Decrease Decrease theory if K, small
Matlab helps with PID tuning: .
G_system=[???]; H=[1]; )
D_compensator = pidtune(G_system, 'PIDE'")
CL_system = feedback (series (D compensator,G system), H)

step (CL_system)




Seeing PID — No Free Lunch

» The energy (and sensitivity)
(in this case in “frequency”)

moves around

Serious design

Log magnitude

1.5

1.0
Frequency

20

« Sensitivity reduction at low frequency unavoidably leads to
sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.

When Can PID Control Be Used?

When:

* “Industrial processes” such
that the demands on the
performance of the control
are not too high.

— Control authority/actuation
— Fast (clean) sensing
* PI: Most common

— All stable processes can be
controlled by a Pl law
(modest performance)

— First order dynamics

o

PID (Pl + Derivative):

» Second order
(A double integrator cannot
be controlled by PI)

» Speed up response
When time constants differ
in magnitude
(Thermal Systems)

Something More Sophisticated:
* Large time delays

 Oscillatory modes between
inertia and compliances




Quarter decay ratio

4 ¥(0)

Ziegler-Nichols Tuning — Reaction Rate

FPW § 5.8.5 [p.224]

y(t)
! K
/Slope R=— =reaction rate

dx '

/7

4
|
|
|
|
|

/)
L=tg—e 1 t

lag

Table 5.2 Ziegler-Nichols tuning
parameters using transient response.

K, T Tp
P 1/RL
PI 09/RL 3L

PID 1.2/RL 2L 0.5L




Ziegler-Nichols Tuning — Stability Limit Method

FPW § 5.8.5 [p.226]

« Increase K, until the system has continuous oscillations
= K|, : Oscillation Gain for “Ultimate stability”
= Py, : Oscillation Period for “Ultimate stability”

Table 5.3 Ziegler-Nichols tuning
parameters using stability limit.

K, T, Tp
P 0.5K.
PI 045K,  Pu/1.2
PID  0.6K, P./2 P./8

Ziegler-Nichols Tuning / Intuition

Tm Plim)

I/‘\
Nk

g

Re Pliw)

D

Nyquist Plot

wd g

. . 1 .
Cliay,) = K (1 +;(mRT - -—)) r 0.6K,,(1 + 0.467i)

« For a Given Point (%), the effect of increasing P,I and D
in the “s-plane” are shown by the arrows above Nyquist plot




State-Space
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Or more aptly...

Welcome to

State-Space!

(It be stated -- Hallelujah!)

More general mathematical model
— MIMO, time-varying, nonlinear

Matrix notation (think LAPACK = MATLAB)
Good for discrete systems
More design tools!




Affairs of state

* Introductory brain-teaser:
— If you have a dynamic system model with history (ie. integration)
how do you represent the instantaneous state of the plant?

Eg. how would you setup a simulation of a step response, mid-step?

start

State-Space Control

X = Fx

(That can not be all of it? There has to be more to it than this...)




State-Space Control

X = Fx 4+ Gu

Benefits:

+ Characterises the process by systems of coupled, first-order
differential equations

» More general mathematical model

— MIMO, time-varying, nonlinear

Mathematically esoteric (who needs practical solutions)

Yet, well suited for digital computer implementation

— That is: based on vectors/matrices (think LAPACK = MATLAB)

Difference Equations & Feedback

£

Input H output 5; % k H y

« Start with the Open-Loop:
y = kHu

 Close the loop:

u=ke=k(y-y)>y=Hk® -yl
_ Hk
" 1+Hk

« Alleasy! (yesal)

10



Difference Equations & Feedback

|anuIz_> H _oyusz> SN 5]\—><%>—> k H

« Now add delay (image the plant is a replica with a delay 1)
y() =u(t—1)
* Close the loop:
u(t —1) = ke(t —7) = k [§(t = 7) — y(t = 7)]
2y =k [t —1) -yt —1)]

 Notice we have a difference equation!

Difference Equations & Feedback

£

Input H +put 5; % k H

« What happens with a single delay and a unit step?
u(t) = k for O<t< 1

y(t) = u(t — ) for t<t<2t
« Then with feedback we get:

u(t) =k(1—k) =k —k?

y() =k —k?+ k34 -+ (=D g
« Ifk<1: then:
Slim y(t) = -

1+k

11



Introduction to state-space

* Linear systems can be written as networks of simple dynamic
elements:

stz _ 2 -1
s24+7s4+12 s+4 s+3

1
u % 2 :%)_>y

—-12

2RI

Introduction to state-space

» We can identify the nodes in the system
— These nodes contain the integrated time-history values of the
system response
— We call them “states”

1
Xy Xy %
u % > 2 y

—-12

[N

12



Linear system equations

» We can represent the dynamic relationship between the states

with a linear system:

.x:l - —7x1 - 12x2 + u
.x:z - x1 + 0x2 + Ou
y = x1+ 2x,+0u

State-space representation

« We can write linear systems in matrix form:

e =[7 P+l
y =[1 2]x+0u
Or, more generally:

X = Ax + Bu “State-space
y=Cx+Du equations”

13



State-Space Terminology

(7] [

x(0) ‘(L
u®| 3 Tx(t) _Axero) A

& (t) = Az (t) + B () u(t)
y(@)=C @)z (t)+ D) u(t)

LTI State-Space

(1) =A@z () + B () u(t)
y(@)=C@® =z )+ D#)u(?)

* If the system is linear and time invariant,

then A,B,C,D are constant coefficient

— = Ax + Bu

—y = Cx + Du

14



Discrete Time State-Space

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

* If the system is discrete,
then x and u are given by difference equations

Salk+1] = Ak = [k] + B[k w[k]
y [k] = C[k] z [k] + D [k] u [K]
—>ac+=A:c—|—Bu

y=Cx+ Du

Block Diagram Algebra in State Space

» Series:

X(s) Y(s) 4 Ae BgCr| |ta BaDr
F(s)G o=
/5 )= )] e

System 1: Ya
.l';_— = Apxp + Bru Ur
yr = Cprp + Dru

System 2:

-l'rc = Agrg + Bgyr
Yo = Carg + Dgyr

15



Block Diagram Algebra in State Space

« Parallel:

X(s) F(s) Y(s)
G(s) 3

a8 a5 E )

=| Cz”ié]—l—(DrFDz)u

State-space representation

« State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

» Control canonical form

— Each node — each entry in x — represents a state of the system

(each order of s maps to a state)

* Modal form

— Diagonals of the state matrix A are the poles (“modes”) of the

transfer function

16



Why is this “Kind of awesome”?

» The controllability of a system depends on the particular set of

states you chose

* You can’t tell just from a transfer function whether all the

states of x are controllable

» The poles of the system are the Eigenvalues of F, (p;).

State evolution

 Consider the system matrix relation:
x=Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=t0) x(t,) + f = eFt=) Gu(r)dr
to

If you didn’t know, the matrix exponential is:

1 1
eXt =1+ Kt +5K2t2 +§K3t3 + o

17
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Solving State Space
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Great, so how about control?

» Given x = Fx + Gu, if we know F and G, we can design a

controller u = —Kx such that
eig(F—GK) <0

+ In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

Solving State Space...

* Recall:

r= f(x,u,t)
» For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

 ForLTI:
— x = Ax + Bu

Cx+ Du

— Y

19



=» Solutions to State Equations

x = Ax + Bu
sX(s) —x(0) = AX(s) + BU(s)
X(s) = (sl —A) x(0) + (sI — A)~1BU(s)

X(s) = L[e4t]x(0) + L[e4t]BU(s)

t
x(t) =.[ et Bu(t)dr
0

= eAt

=» State-Transition Matrix ©

o O(t) =edt =L7(s] —A)™]

« It contains all the information about the free motions of the
system described by x = Ax

LTI Properties:

o ®(0) =e% =1

o ®71(t) = d(-t)

o D(t; +1tp) = P(t)P(t;) = P(t)P(ty)
o [®(O]" = ®(nt)

=>» The closed-loop poles are the eignvalues of the system matrix

20



Digital State Space:

« Difference equations in state-space form:

« Where:

x[n+ 1] = Ax[n] + Bu[n]
y[n] = Cxn] + Duln]

— u[n], y[n]: input & output (scalars)
— X[n]: state vector

Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% = Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k +1) = ®x(k) + Tu(k),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /ﬂ ePdnG, (6.4b)

21



A Systematic Procedure for Determining State Egs.

1. Choose all independent capacitor voltages and inductor
currents to be the state variables.

2. Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

3. Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)

A Quick Example

20 @ mm n
oYYV AAA

\AAJ
L '
210 O QA LE

\AAS

D) S

AAA
Al

1. The inductor current g, and the capacitor voltage g2 as the state variables.

2, W=h =201~ i)~ @2
|
Y =iy—i ‘
2 T l QG =—q—q+ ‘5"'
3 411 —?.ig =X 1?2:2({| - §q2
-+ +¢2=0

AR AR

See also: Fig. 13.2, Lathi p. 789

22



Another Example

Lead-211"

Thallium-207

TG B VYo

at

IN2(¢ N AN
o a. d_{;) = A 2}\- 2({) + A lj\l l(f)

o« S8 = AN+ AN

Iris

£20 =) N3(D)

dt

Bismuth-211*
p @ | 2.1 minutes
36 minutes

Lead-207 (stable)

4.8 minutes

Another Example

Bismuth-211*

b @ | 2.1 minutes

36 minutes

Lead-211*

Thallium-207

N, Nl
. NQ o NQ
X = N3 -+ X = N3
Ng Na
Ny -1 O
o N2 . A1 —Ao
X=FX > N3 |~ | 0 X
Ny 0 0

Lead-207 (stable)

4.8 minutes

0
0
_)\3
A3

efeRole)

23



Another Example

Bismuth-211*
B @ | 2.1 minutes
36 minutes

Lead-211* Lead-207 (stable)

B

4.8 minutes

Thallium-207

* Ny(1)=N,(0)exp(-A,1)

A

e N2(f) = N2(0)exp(~ k ,1) - N1(0)

- __(exp(— A f) = exp(— A 1))

%S

. J?\."S(r) = A 1)'.. 2:\—1(0) [l’?x )

exp(=h ,f) | exp(=h 5 1) ) exp(—h 50)
k) A )shy) | Gk (k)

® NA@) =k h A N10) [Ez;—a e)?fl_j/;u—f 51 S S 1 ]

RS T A T Mo h ) * Gk kg

Discretisation (FPW!)

» We can use the time-domain representation to produce
difference equations!
kT+T

x(KT +T) = T x(kT) + f eFT+T=0 Gy (1) dr
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) = u(kT), kT <t <kT+T

24



State-space z-transform

We can apply the z-transform to our system:
(z1 - ®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2) _
XD - G(z) = H(zl — ®)~1r

State-space control design
Que pasa????

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:
u = —Kx
such that det(zl — @ +T'K) = a,.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[I ®r &?r .- & 1r] to be full-rank.

25



Example: PID control

» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
—2

y=1[0 1 O0]x+0u

x — Ku

X, 1s the output state of the system;
x11s the value of the integral;
x5 1S the velocity.

Example: PID control [2]

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2 — K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

26



Can you use this for
more than Control?

YES!

ELEC 3004: Systems Il May 2017 - 53

Frequency Response in State Space

1
10022 — 200z + 80

H(z)=C(:I-A)"'B+D=
Poles at == (.55, 1.45.
Eigenvalues of A4:
1,1,1.45,.55 x X

What are the (physical)
implications?

The Approach:
« Formulate the goal of control as an optimization (e.g. minimal impulse response,
minimal effort, ...).

*  You’ve already seen some examples of optimization-based design:
— Used least-squares to obtain an FIR system which matched (in the least-squares sense)
the desired frequency response.
— Poles/zeros lecture: Butterworth filter

27



Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
| 08
06
L 0.4
o 08
E o 02
T 08l c 0 O X
% - -02
= 0.4} -0.4
-0.6
02t -08
-1
o ‘ ‘ ‘
0 1 2 3 4 5 6 -1 0.5 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
; 0.8
06
g 08f 3-‘2‘ X
2 g "
T 08 g o O
>4 = 02
E 0.4 -0.4 X
~06
02+ -0.8
-1
% 1 5 6 -1 -05 0.5 1

2 3 4
Frequency (rad/sec)




“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
. 0.8
: .
= g
T 06 g o O X
2 = _02
=4 -0.4
-0.6 X
0.2 —0.8
-1
% 1 2 3 4 5 6 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

1
1 08
0.6 X
L 0.4 '
% 0.8
=] = 0.2 X
T 06 = O
=) =
o -0.2 X
= 0.4r -0.4
-0.6 " X
0.2t -0.8 :
-1
0

05 1

0
Real
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

1
1 0.8
06 . X
. 04
8 0.8
S = 0.2
E 0. c 0 O
()] =
] -0.2
s X
0.4} -0.4
-0.6 N pd
0.2t -038 :
-
0 ‘ ‘
0 1 2 3 4 5 6 -1 05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
;
1 0.8
0.6 x
o %8 0.4 X
g g ° x
c 06 e 0 O
S = X
= 0.4 -0.4 : X
-0.6 . X
0.2F -0.8
-1
0
0 1 2 3 4 5 6 -1 -0.5 0 0.5 1
Frequency (rad/sec) Real
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

,
0.8 )
1 0.6 ; x
b 0.4 X
§ " o 02 X
E os E or © X
& = o2 X
= 0.41 0.4 X
-0.6 .
0.2r -0.8 X
-1
GO 1 2 3 4 5 6 -1 -0.5 0 0.5 1
Frequency (rad/sec) Real
How?
« Constrained Least-Squares ...
One formulation: Given x:[0]
u[0]
, ull]
minimize  ||@]|*, whered = |
u[0],u[l],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that
n—1
w[n] = A"2[0] + Y " AU Bk,
k=0

so this problem can be written as

Apsrys — b{SHQ subjectto  Cisays = Dys.

minimize
Ils

31



Extension!

Solving State Space
(Extended Version)

Solving State Space (Extended Version)...
* Recall:

r= f(x,u,t)
» For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

 ForLTI:
—x = Axz + Bu

—y=Czx+ Du




Solving State Space

+ In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

« With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.

State-transition matrix P(t)

 Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

x(t) =D (t,7)x (1)

33



Solving State Space...

O

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the “homogeneous,” i.e., unforced equation

X = Ax (3.2)
where A is a constant k by k matrix. The solution to (3.2) can be expressed as
x(1) = e™ec (3.3)
where ' is the matrix exponential function
i t3
e"':1+A:+A25+A3;+~~ (3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative of x(t)

dx(r) __i At
T—d[(e )L‘ (35)

and, from the defining series (3.4),
i(e“')~A+A’1+A3'—2+--»*A(I+A1+A2£+~- ) =A™
d B 21 B 2! -

Thus (3.5) becomes

dx(f) _

& Ae?e = Ax(1)

Solving State Space

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(r) is given. Then, from (3.3),

x{r) = e™c (3.6)
Multiplying both sides of (3.6) by the inverse of e"” we find that
c=(e")"x(7)

Thus the general solution to (3.2) for the state x(t) at time ¢, given the state x(7)
at time 7, is

x(1) = eM(e®) ' x(7) (3.7
The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition
(3.4)—

M) = oM g (3.8)
for any f, and t,. From this property it follows that
(e™)™ =" (3.9)
and hence that (3.7) can be written
x(1) = e x(1) (3.10)

34



Solving State Space

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or ““forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e™e(t) (3.11)

is a special form of the state-transition matrix to be discussed

where c(f) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Aee(t) + eMé(1) = Ae™el(t) + Bult)
or, upon cancelling the terms A e*c(s) and premultiplying the remainder by
e—Al,
é(t) = e ™Bu(t) (3.12)

Thus the desired function c¢{(¢) can be obtained by simple integration {the
mathematician would say “by a quadrature”)

!
c(t) = J e ““*Bu(A) dA
-
The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

Solving State Space

homogeneous cquation to obtain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 ¢
x(t) = e™ J e MBu(A) da = J AN BR(N) dr (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write eMg A = gAY

The complete solution to (3.1) is obtained by adding the *complementary
solution™ (3.10) to the particular solution (3.13). The result is

t

x(t) = e x(1) FJ- e M Bu(A) di (3.14)

T
We can now determine the proper value for lower limit T on the integral. At
t = 7 (3.14) becomes

x(7) = x(r) + JTeA“’“Bu(A) dx (3.15)
.

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

t
x(1) = ™" Vx(r) + j MM By (A} da (3.16)

T
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This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time r and the “‘present” time ({ The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ Z 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral’: the contribution to the state x(r) due to the input u is
the convolution of u with e™B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is #(f).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=0Cx

then this output is expressed by

1

(1) = Ce"f'"‘)x(r)+J— Ce*"MBu()) da (3.17)

=

O

Solving State Space

and the impulse response of the system with y regarded as the output is
C eA(‘_“B_

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C are time-varying, (3.16) and (3.17) generalize to

ml) g™ b} J e B(A)u(A) dr (3.18)
and

y(t) = C(¢) e““"’x(f)+J C(1) e* " MB(A)u(A) di (3.19)

T

o
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Next Time...

+ Digital Feedback Control

* Review:
— Chapter 2 of FPW

* More Pondering??
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