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In This Way Feedback May Be Seen as a Filter
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4 -40 dB/decade = double integrator
3 ¥
Bec o s
0.2
EE BN
Q_“-
ES N
<
c Resonance \
g N
-10 N
™N
0.1 1 10 100
__ 160
o
§ 120
% 80
©
& 40
0
0.1 1 10 100
Pulsation ®

ELEC 3004: Systems 4May2017- 8



Some standard approaches

« Control engineers have developed time-tested strategies for
building compensators

« Three classical control structures:
— Lead
— Lag
— Proportional-Integral-Derivative (PID)
(and its variations: P, I, PI, PD)

How do they work?

Lead/lag compensation

« Serve different purposes, but have a similar dynamic structure:

s+a
s+b

D(s) =

Note:

Lead-lag compensators come from the days when control engineers
cared about constructing controllers from networks of op amps using
frequency-phase methods. These days pretty much everybody uses
PID, but you should at least know what the heck they are in case
someone asks.




Lead compensation: a < b

Faster than
system dynamics ‘ Img(s)

'/ Fa NV ol Re(s)

-b -a Slow open-loop
plant dynamics

s-plane (A-plane)

« Acts to decrease rise-time and overshoot
— Zero draws poles to the left; adds phase-lead
— Pole decreases noise

* Set a near desired w,; set b at ~3 to 20x a

Lag compensation: a > b

Very slow Img(s)
Close to pole \‘\‘ ‘
> © Re(s)
plant -a -b
dynamics

s-plane (A-plane)

» Improves steady-state tracking
— Near pole-zero cancellation; adds phase-lag
— Doesn’t break dynamic response (too much)

» Set b near origin; setaat ~3to 10x b
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Proportional Control

A discrete implementation of proportional control is identical to continuous;
that is, where the continuous is

u(t) = Kpe(t) = D(s)=K,,
the discrete is

u(k) = Kpe(k) =

where e(t) is the error signal as shown in Fig 5.2.

v
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Derivative Control

For continuous systems, derivative or rate control has the form

u(t) = K,Tpe(t) = D(s)= K,Tps

where T'p is called the derivative time. Differentiation can be apprdximated
in the discrete domain as the first difference, that is,

(e(k) — e(k —1)) 1-2z71 z—1
u(k) = Blp———pg—— = D(z) = KpTp—r— = KpTp—o—

In many designs, the compensation is a sum of proportional and deriva-
tive control (or PD control). In this case, we have

D(z) =K, (1 § TE(;,—;H) .
or, equivalently,
z—a
D(z)=K 2

ELEC 3004: Systems 4May2017- 16




Derivative Control [2]

« Similar to the lead compensators

— The difference is that the pole isat z =0

[Whereas the pole has been placed at various locations
along the z-plane real axis for the previous designs. ]

In the continuous case:

— pure derivative control represents the ideal situation in that there
is no destabilizing phase lag from the differentiation
— the poleisats =-w

In the discrete case:

—z=0

— However this has phase lag because of the necessity to wait for
one cycle in order to compute the first difference

Derivative

« Derivative uses the rate of change of the error signal to
anticipate control action

— Increases system damping (when done right)

— Can be thought of as ‘leading’ the output error, applying
correction predictively

— Almost always found with P control*

*What kind of system do you have if you use D, but don t care
about position? Is it the same as P control in velocity space?




Derivative
« Itis easy to see that PD control simply adds a zero at s = —
with expected results ’

— Decreases dynamic order of the system by 1
— Absorbs a pole as k — oo

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

ICGw) /

Bode plot of !
a zero w

| =

PD for 2" Order Systems

1
R(s) ?E(@»‘ KotKgs 3 ( A B) Y(s)}—»

Consider:

Y(s) (Kp + Kps)
R(s) Js2+ (B+Kp)s+Kp

 Steady-state error: egg = K%

« Characteristic equation: /s + (B + Kp)s + Kp = 0

B+Kp

2\/KpJ

=> It is possible to make e, and overshoot small (|) by making
B small (), K; large 1, Ky such that {:between [0.4 — 0.7]

» Damping Ratio: { =

10



Integral

« Integral applies control action based on accumulated output
error

— Almost always found with P control
* Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!

Integral Control

For continuous systems, we integrate the error to arrive at the control,

. K K
u(t) = =2 t)dt D(s) = =E£,
ult) = 72 [ ety = D)= 72

where T7 is called the integral, or reset time. The discrete equivalent is to
sum all previous errors, yielding

K,T EY Kl |..
u(k) =u(k—1)+ 7’:[ e(k) = |D(2) = Ti—2T) TT(;ﬂ (5.60)

Just as for continuous systems, the primary reason for integral control is to
reduce or eliminate steady-state errors, but this typically occurs at the cost
of reduced stability.

11



Integral: P Control only

« Consider a first order system with a constant load
disturbance, w; (recall as t - o, s — 0)

=k -
y=k o =y +w
_ k N (s+a)
Yo s¥k+a " s+k+a’
Steady state gain = a/(k+a) |

+

(never truly goes away) w
- e 1
r k —> —> Y
s+a

Now with added integral action

1 1
=kl1+— -
y k( +‘L'l-S)S+a(T y)t+w

Same dynamics

k(s +7,71) s(s +a)

= r I w
Must go to zero Y (s> + (k+a)s + =~ k(s -I-'Lrl.-l)

for constant w!

W
+ - € 1 u 1
r k(1+—> —>Y
7S s+a

A\ 4
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PID — Control for the PID-dly minded

« Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,PI,PD, etc. just remove one or more terms

Proportional ij
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

PID

 Three basic types of control:
— Proportional
— Integral, and
— Derivative

» The next step up from lead compensation
— Essentially a combination of
proportional and derivative control

t e u y
r | D G >
4

13



PID Control

D(z):R’,,(l+ L ”).’

The user simply has to determine the best values of
. Kp

+ Tpand

. TI

PID

* Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors

» Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

14



PID as Difference Equation

R(z,

E(z)

D(z)

uz)

» G(z)

Y(z)

H(z)

F 3

U(z)

-p — K+ K Tz K z—1
E(z) (2) = Kp + i<ﬂ>+ d(Tz)

u(k) = [K, + K;T + (59)] - e(k) — [KqT] - e(k — 1) + [K;] - u(k — 1)

PID Implementation

» Non-Interacting
—Lr ]
uﬂm_,_

* Interacting Form

—*
&

EESCE

C(s) =K<1 +SiTi+sTd> C'(s) =K<1 +$>(1+5Td)

l

» Note: Different K,T; and Ty

15



Operational Amplifier Circuits for Compensators

Type of _ Vols)
Controller Cels) V,(s)
i T = RAR: 2 e —_ —_ — o
PD Ge= g RCis + 1) ‘r —LI% : W [

? . |

Ry —

, l iy

- RyRo(RyCos + 1) «»w»l{ A
- R3Ri(RoCas) hy 1]

RRA(R,Cys + 1)
Leadorlag G, = 2t T ) —E—
cadorfag <~ ReRy(RyCas + 1) \

— C,
Lead if R,C; > R:C, [ (,e % R,
|
Lagil R,Cy < R,C, N | B g
" o

L4 (Yet An Other Way to See P I D) Source: Dorf & Bishop, Modern Control Systems, p. 828

PID Algorithm (in various domains):

FPW §5.8.4 [p.224]
« PID Algorithm (in Z-Domain):

Tz Tp(z—1)
T,(z—1) T Tz >

D(z) = K, (1 +

 As Difference equation:
u(ty) = u(tp_1)+Kp [(1 + %" + %‘%) e(ty) + (—1 - %f) e(tp—1) + %‘%“(%—2)}
 Pseudocode [Source: Wikipedia]:

previous_error = 0, integral = 0
start:
error = setpoint - measured_value

integral = integral + error*dt

derivative = {(error - previous_error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error

wait(dt)

goto start

16



Another way to see P | |D

 Derivative * Integral

D provides: — Eliminates offsets
— High sensitivity (makes regulation ©)
— Responds to change — Leads to Oscillatory
_ Adds “damping” & behaviour

- permits larger K — Adds an “order” but

; ™ instability

— Noise sensitive (Makes a 2™ order system 3™ order)
— Not used alone

(- its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control”

- “Interesting cake of control”

Seeing PID — No Free Lunch

» The energy (and sensitivity) moves around
(in this case in “frequency”)

Serious design

Log magnitude

Frequency

« Sensitivity reduction at low frequency unavoidably leads to
sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.
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PID Intuition & Tuning

» Tuning — How to get the “magic” values:
— Dominant Pole Design
— Ziegler Nichols Methods
— Pole Placement
— Auto Tuning

 Although PID is common it is often poorly tuned
— The derivative action is frequently switched off!
(Why - it’s sensitive to noise)
— Also lots of “I”” will make the system more transitory &
leads to integrator wind-up.

PID Intuition

de(t)
dr

u(l) = K [e(r) ¥ l? ' e(s)ds + Ty,

. P:
— Control action is proportional to control error
— It is necessary to have an error to have a non-zero control signal

— The main function of the integral action is to make sure that the
process output agrees with the set point in steady state

18



PID Intuition

Lo
u(t) = K [e(r) = [ewras + 7,

i

de(t)
dr

— The purpose of the derivative action is to improve the closed loop
stability.

— The instability “mechanism” “controlled” here is that because of
the process dynamics it will take some time before a change in
the control variable is noticeable in the process output.

— The action of a controller with proportional and derivative action
may e interpreted as if the control is made proportional to the
predicted process output, where the prediction is made by
extrapolating the error by the tangent to the error curve.

PID Intuition

Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time  Steady-state error  Stability
K, ! n Minimal change ! !
K; ! n n Eliminate !
Improve
Kp Minor change l l .NO effect / (if Kp
minimal change
small)

19



PID Intuition: P and PI

1.8 1.8
1.6 1.6
14 l\ 14
PI PI

12 / 1.2 X /
wl AL 1 s

Al =g {

2 0.8 4 0.8 I T~

. \V/ A .
54 Proportional OE

5 : Proportional
04 04 ’
0.2 02 ]

0 0

0.0 100.0 200.0 300.0 400.0 0.0 100.0 200.0 300.0 400.0
Time (sec) Time (sec)
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PID Intuition: P and Pl and PID
» Responses of P, PI, and PID control to
8 1.8
6 L6 MTem
JE- LI
g s o UV
R ERt P W B =
E‘io’v‘\\l\/f}fﬂ 2 s T
VY < s fh)
i 9 R
4 PID
v 0.2
5o 1 2 3 4 5 6 % 1 2 3 4 5 6
Time (msec) Time (msec)
(a) step disturbance input (b) step reference input
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PID Example

A 3" order plant: b=10, {=0.707, o,=4
G(s) =

s(s+ b)(s + 2¢wy,)
 PID:

C
b K,
Ris) —w{ | Ko+ [

\
3 | N
g |
4 Ill
40 —— - f
; £ f
i =%k |
g o |- —& i
g’ oL
) f |
Ve “30 T 1

. Kp=855; - 40% Kp = 370

2 X = — o
[ N £ N / .| Quarter amplitude decay
2 1.5) 1 \ ” ||l -
LN / [ \
g ‘ i ~“\ / "I \\
g { I r)
% s | / | \ g
“ / ‘ \ X/ ! ! \
0 b= L = — =] )
0 02 04 06 )8 ] 12 14 6. 18 2 g
Time (s) A
-
84 0,
|

Ziegler-Nichols Tuning — Reaction Rate

FPW § 5.8.5 [p.224]

R0}

! K
/Slope R= + =reaction rate
Ax
/ 2

K {
|

|

|

|

7 |

L=tg—e 1 t

lag

Table 5.2 Ziegler-Nichols tuning
parameters using transient response.

K, T Tp
P 1/RL
PI 09/RL 3L

PID 1.2/RL 2L 0.5L

21



Quarter decay ratio

$ (0

1 J- Period

0.25

-

Vi

Ziegler-Nichols Tuning — Stability Limit Method

FPW § 5.8.5 [p.226]

* Increase K, until the system has continuous oscillations
=Ky, : Oscillation Gain for “Ultimate stability”
= P, : Oscillation Period for “Ultimate stability”

Table 5.3 Ziegler-Nichols tuning
parameters using stability limit.

- T} Tp
P 0.5K.
PI 0.45K,  P./1.2
PID  0.6K, P,/2 P,/8




Ziegler-Nichols Tuning

Im P{iw)

)

I Re Plin)

| | 1 |
Clioy) = K (1 iy - —_)) ~ 06Ky (1 + 0.467i)

wd g

Break!: Fun Application: Linear Algebra & KVL!

We can write this as:
247

So we have:

I 1 1 I\'/0
Li=1-2 3 o 24
I3 0 -3 6 0

Using a computer algebra system to perform the inverse and multiply by the constant matrix, we get:

I1=-6A
In=4A
Is=2A

We observe that I; is negative, as expected from the circuit diagram.
Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.php

23
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Break!: Fun Application: Linear Algebra & KCL!

We solve this using a computer as follows. We just write the coefficient matrix on the left, find the inverse (raise the matrix to the

power -1) and multiply the result by the constant matrix.

You can use Matlab, Mathcad or similar math software to do this. Wolfram|Alpha is a free alternative.

(72 0 17 35 0 0 07 '[-26
0 122 35 0 0 0 87 34
0 87 34 0 0 72 233 4
X=|-17 -35 149 0 28 35 -3 13

0 0 28 43 105 31 0 27
0 0 3 0 34 141 -T2 24
3 0 0 105 43 0 0

0.46801
0.42932
5.193 x 103
= 0.22243
0.27848

0.21115
0.20914

Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.php

28V

Next Time...

 Digital Feedback Control

e Review:
— Chapter 2 of FPW

* More Pondering??
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Extension!

Design by Emulation

ELEC 3004: Systems

4 May 2017 - 50

Two cases for control design

The system...
— Isn’t fast enough
— Isn’t damped enough
— Overshoots too much
— Requires too much control action
(“Performance”)

— Attempts to spontaneously disassemble itself
(“Stability”)

25



Dynamic compensation

» We can do more than just apply gain!
— We can add dynamics into the controller that alter the open-loop
response

compensator plant

-y u 1 y Im
s+2 s(s+1)

gy Lo e
N

Increasing k
combined system
-y s+2 y
s(s+1)

v

But what dynamics to add?

 Recognise the following:
— Aroot locus starts at poles, terminates at zeros
“Holes eat poles”
— Closely matched pole and zero dynamics cancel
— The locus is on the real axis to the left of an odd number of poles
(treat zeros as ‘negative’ poles)

Img(s)

@ Re(s)
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The Root Locus (Quickly)

« The transfer function for a closed-loop system can be easily

v
<

calculated:
y=CH( —y)
y+ CHy = CHr
'y CH
“r 14CH
+ e u
' c > H
) controller plant

The Root Locus (Quickly)

» We often care about the effect of increasing gain of a control

compensator design:

y  kCH
r  1+kCH
Multiplying by denominator:
y kC, H,

r C,H, + kCyH,

characteristic
polynomial

v
<

27



The Root Locus (Quickly)

« Pole positions change with increasing gain
— The trajectory of poles on the pole-zero plot with changing k is

called the “root locus”
— This is sometimes quite complex

Increasing k Img(s)

@ RE(S)

(In practice you’d plot these with computers)

Designing in the Purely Discrete...

Analyse/design a discrete controller D(z):

re e g | W) [ |0 8
k k D(2) ki i.f\:(l; (7) G(s) 'samp\e k

+ |
_T G2)

by considering the purely discrete time system:

Tk

€ I
> D(z) i G(2) -

h 4

Closed loop system tranfer function: IIV?E? =3 J(:(ég.gggz)

How do the closed loop poles relate to — stability?
— performance?

28



Now in discrete

 Naturally, there are discrete analogs for each of these controller

types:
Leadag: 120
ead/lag.
J 1-Bz~1
. 1 -1
PID: k(1+ m+‘l'd(1—Z ))

But, where do we get the control design parameters from?
The s-domain?

Sampling a continuous-time system

suppose & = Axr

sample = at times t; < to < ... define z(k) = =(y)
then z(k + 1) = elter1=t)A (L)

for uniform sampling t3.11 — t = h, so
2k 4+ 1) = (k)

a discrete-time LDS (called discretized version of continuous-time system)

Source: Boyd, Lecture Notes for EE263, 10-22
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Piecewise constant system

consider time-varying LDS & = A({)x, with

Ay 0<t <ty
A-‘iut) Al 1 <t <y
where 0 << 1 << {3 < - -+ (sometimes called jump linear system)

for t € [ti,ti11] we have
x(t) = =t A E(t3—f2)-42€(f2—11)141EHAOJ,(U)

(matrix on righthand side is called state transition matrix for system, and
denoted (%))

Source: Boyd, Lecture Notes for EE263, 10-23

Qualitative behaviour of x(t)

suppose & = Ax, x(t) € R®
then x(t) = etx(0); X(s) = (s — A)~z(0)
ith component X;(s) has form

a;(s)

X (s)

JY{(S) =
where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other
way around)

Source: Boyd, Lecture Notes for EE263, 10-24
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Qualitative behaviour of x(t) [2]

first assume eigenvalues A; are distinct, so X;(s) cannot have repeated
poles

then z;(t) has form
n
ri(t) = Byyett
=1

where 3;; depend on x(0) (linearly)
eigenvalues determine (possible) qualitative behavior of

e cigenvalues give exponents that can occur in exponentials

¢ real eigenvalue A corresponds to an exponentially decaying or growing
term e in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term ¢7% cos(wt + ¢) in solution
Source: Boyd, Lecture Notes for EE263, 10-25

Qualitative behaviour of x(t) [3]

first assume eigenvalues \; are distinct, so X,;(s) cannot have repeated
poles

then z;(t) has form
Ii(ﬂ = Z Bij(")\)f
j=1

where 3;; depend on x(0) (linearly)

eigenvalues determine (possible) qualitative behavior of x:

e eigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing

term ¢ in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term %! cos(wt + &) in solution
Source: Boyd, Lecture Notes for EE263, 10-26
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Qualitative behaviour of x(t) [4]

e R\, gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

e J)\; gives frequency of oscillatory term (if # 0)

eigenvalues S8
\ .
Y
X
- Rs
X
X

Source: Boyd, Lecture Notes for EE263, 10-27

Qualitative behaviour of x(t) [5]

now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as Aq...., A (distinct) with multiplicities nyq, . . ., Ny,
respectively (ny +--- +n, =n)

then x;(t) has form

r

zi(t) = Z}’t’j(ﬂe/\jt

j=1
where p;;(t) is a polynomial of degree < n; (that depends linearly on x(0))

Source: Boyd, Lecture Notes for EE263, 10-28
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Emulation vs Discrete Design

« Remember: polynomial algebra is the same, whatever symbol
you are manipulating:
eg. s’ +2s+1=(s+1)?
7224+ 2z+1=(z+1)>
Root loci behave the same on both planes!
« Therefore, we have two choices:

— Design in the s-domain and digitise (emulation)
— Design only in the z-domain (discrete design)

Emulation design process

Derive the dynamic system model ODE
Convert it to a continuous transfer function
Design a continuous controller

Convert the controller to the z-domain
Implement difference equations in software

a ks wn e

Img(s) [ Img(s) 4 Img(2)

Re(s) @
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Emulation design process

 Handy rules of thumb:
— Use a sampling period of 20 to 30 times faster than the closed-
loop system bandwidth
— Remember that the sampling ZOH induces an effective T/2 delay

— There are several approximation techniques:
* Euler’s method
* Tustin’s method
» Matched pole-zero
» Modified matched pole-zero

Euler’s method*

« Dynamic systems can be approximated® by recognising that:

x(k+1) —x(k)
T

I

X

X (tk+ 1) /2/

« AsT — 0, approximation Xt/
error approaches 0

*Also known as the forward rectangle rule
tJust an approximation — more on this later T
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An example!
s+2

Convert the system YS) _ $*2 intg 4 difference equation with period
X(s) s+1

T, using Euler’s method.

1. Rewrite the function as a dynamic system:
sY(s) +Y(s) =sX(s) + 2X(s)
Apply inverse Laplace transform:
y(t) +y() = x(t) + 2x(t)

2. Replace continuous signals with their sampled domain equivalents,
and differentials with the approximating function
k+1)—y(k k+1)—x(k
y(k +1) —y(k) x(k+1) x()+2x(k)

T +y(k) = T

An example!

Simplify:

yk+1)—yk) +Ty(k) = x(k + 1) — x(k) + 2Tx(k)
yk+1)+ (T —-1y(k) =x(k+1)+ QT — 1)x(k)

yk+1)=x(k+1)+ QT - Dx(k) — (T — Dy(k)

We can implement this in a computer.

Cool, let’s try it!
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Back to the future

A quick note on causality:

* Calculating the “(k+1)th” value of a signal using

yk+1)=x(k+1)+ Ax(k) - By(k)

Y
future value current values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

 Real systems always run with a delay:
y(k) =x(k) + Ax(k — 1) — By(k — 1)

Back to the example!

T = 0.02; //period of 50 Hz,
A =

B = T-1;

while (1)

{
if (interrupt_flag)
{
x0 = x;
y0 = vy;
x = update_input () ;

y = x + A*x0 - B*y0;

update_output (v) ;

(The actual calculation)

a number pulled from thin air

2*T-1; //pre-calculated control constants

//this triggers every 20 ms
//save previous values
//get latest x value

//do the difference equations

//write out current value
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Tustin’s method

« Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) =T [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z71
T 1 .
z* X(tk+1) ‘///
which can be substituted into continuous models
x(t)
(k—1T kT

Matched pole-zero

+ If z = e5T, why can’t we just make a direct substitution and go
home?

Ho) _sta P ¥ _ et
X(s)  s+b X(z) z—e DT

+ Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.
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Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)[> (z —e™9T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,
multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

Modified matched pole-zero

* We’re prefer it if we didn’t require instant calculations to
produce timely outputs
« Modify step 2 to leave the dynamic order of the numerator one

less than the denominator
— Can work with slower sample times, and at higher frequencies
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Discrete design process

1. Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

AN A

4 Img(@) 4 Img@) 4 Img(@)

Re(z2)

Re(2) ,7_@_. Re(2)

Discrete design process

« Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
* but5to 10x for “stability”
20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
» Employ actual velocity measurements when possible
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Extension!

2"d Order Responses

ELEC 3004: Systems

4 May 2017 - 80

Review: Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e cos(bt) U(t) (U (t) = unit step)
+ sample:  y(kT) = r* cos(k#) U(kT) with r = =T & 6 = bT

1 z ¥ 1 z
T 2(z—rel?)  2(z—re i)

z(z — rcos#)

* transform: Y (z)

(z —rei?)(z — re—i%)

Im(z)4
* e.g. U is the pulse response of G(z): .
G(z) = z(z — rcosf) \ % ' .
z —relf)(z — re—i9) P .
‘ 4 — peit - P> Re(z)
oles: i /
P { z=re 1° !
x
zeros { 2=0
z=rcosf
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Response of 2nd order system [1/3]

Responses for varying 7:

r=0.7
s P ] st N
L r< 1 - 6=m/4
A4 ok . e
exponentially decaying T
envelope -05 5 7] g 0
sample k
Bor=1 = ' S
0.5t \
sinusoidal response = 0r
. r=1.0
with 27/8 samples —05h a1
. P f=m/4
per period 4 . S~ . .
0 2 4 6 8 10
sample k
& > 1 10
o
e 5k / ﬂ\\
exponentially increasing . / \\\
envelope of T ) r=1.3%4
[ 0=m/4
K 2 2 8 10
samplz K
Response of 2nd order system [2/3]
Responses for varying 8: 1
r=0.7
e #=0 = 05 S =0 |
decaying exponential 0 ‘ ‘ '+""‘f-*——+__+ ]
0 2 4 6 8 10
sample k
) _ i ‘ ‘ ‘ : N
> 0 ™/ 2 \ r=0.7
U ) o5t \\ 0=m/2]
27 /6 = 4 samples ol /\\‘L ]
per period -
03 2 2 6 8 10
sample k
B> f=m 1 0
051 * 1
. \ / .y o+
2 samples per period = o N/ e + ""'""‘6-‘“
v r=0.7
-05 Vi 1
¥ 0=m
o 2 2 3 8 10
sample k
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Response of 2nd order system [3/3]
Some special cases:

» for 8 =0, Y(z) simplifies to:

Y(z) = —

z—r
— exponentially decaying response

> whent# =0and r=1:

Viz) = 2
=) z—1
— unit step
> when r =0
Y{iz)=1
— unit pulse
> whenf#=0and -1 <r <0
samples of alternating signs

2" Order System Response

Response of a 2" order system to increasing levels of damping
2

-— . . .

‘ _—{=0

1.8F : S

0.2

1.6} / :
‘ \ 04

14+ /06—

12F ‘ N

=

0.8
=08
0.6 1
1.0

0.4+ .

0.2
- 1 L 1
00 2 8 10 12
w,t
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Damping and natural frequency

z=eTwheres = —{w, + jwy/1 — {2

Img(z) &

p 08 06 04 02 0 02 04 06 08 10
[Adapted from Franklin, Powell and Emami-Naeini]

Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle
unstable

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r
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2" Order System Specifications

Characterizing the step response:

>

1 / —\ __K————z——i__

0.9 \_1!————1':‘—_'___:-_—_{—::

0.1

* Risetime (10% -> 90%): i~ %8 + Steady state error to unit step: e
0 .
y - + Phase margin:
+ Overshoot: 7 V- dppr =~ 100¢
+ Settling time (to 1%0): ¢, = ﬂ Why 4.6? 1t’s -In(1%)
Cwo — e = 0.01— {wy = 46— t; = 2>

Swo

|

2" Order System Specifications

Characterizing the step response:

> 1%
e b
y ya \_ﬂ.{‘;-"‘:-_.-_—:—_‘:__.f__

0.1

* Rise time (10% -> 90%) & Overshoot:
t, M, = {, o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:|<co1r
» Steady state error to unit step:
e, > final value theorem e, = lim {(z = 1) F(2)}
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Ex: System Specifications = Control Design [ /4]

Design a controller for a system with:
« A continuous transfer function: G (s) =
» Addiscrete ZOH sampler
« Sampling time (T,): T,=1s
 Controller:

UL — —O.S’U,k_l —|— 13 (ek - O.88€k_1)

0.1
s(s+0.1)

The closed loop system is required to have:
« M, <16%
*+ t,<10s

eSS < 1

Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

v e | u(t , M) 5
O D) [ 200 O G [ ol
- : G(2) i

G(z)=(1- 271)2{@} =& 1)2{ _S.Q(HU:(M)}

e.g. look up Z{a/s*(s +a)} in tables:

(0.1—1+e ")zt (1—e 01— ().1(:’0'1))

vy 2=1) 2(
Gl=) = z 0.1(z —1)2(z — e~ 01)

_0.0484(z + 0.9672)
T (2 — 1)(z — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-088z"") (2 —0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13
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Ex: System Specifications = Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

ess = lim e, = lim (2 — 1)E(z)
k—o0 z—1

R E U Y Bz) 1
+7\T D) G(z) > R(z) 1+ D(2)G(z)
- Tz
R(z) =
RS
. . Tz 1 ) T
0 Cas = i‘ﬂ%{(” Voo D(z)(?(z)} = S nmen
li T 10g- - e
= l1mm
=51 . 0.0484(z + 0.9672) 5
z—1)— S 8-
( 1)(; — 1)(270,9045)17(” &
© 6
= L0905 96 |
0.0484(1 4+ 0.9672) D(1) S
£ 2
—> ess <1 (as required) ©
s,

5
Time (sec)

Ex: System Specifications = Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5
settling time ¢, < 10 = |z| < 0.01%* = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
z —0.88) 0.0484(z + 0.9672
le13( ),8)(04,4( +(7>¢):0
(z40.5) (z—1)(z — 0.9048)
— z =0.88, —0.050 £ ;j0.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
{ r=2031,0=1.73

2 = —0.050 £ j0.304 = re*7? 7
(=0.56

Output y and input u/10

all specs satisfied!

5
Time (sec)
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LTID Stability

i Unstable

Marginally stable

M _~y

|
Stable

~
o

Characteristic roots location
and the corresponding characteristic modes [ |/2]

]
Complex plane -
’ L]

[AI]ITJ_I{ ) ;I.““llﬁui = lJH]J]‘l’ | 11[1"“_

R =
||||. .[l'lj ‘“".l”l'lll,,l_,
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Characteristic roots location
and the corresponding characteristic modes [2/2]

o <=

RRRERIE ’nlh,q”w,UI

@? <=
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