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Introducing Feedback
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Control

Once upon a time...
 Electromechanical systems were controlled by
electromechanical compensators
— Mechanical flywheel governors, capacitors, inductors, resistors,
relays, valves, solenoids (fun!)
— But also complex and sensitive!

» Humans developed sophisticated tools for designing reliable

analog controllers
I
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Control

Once upon a time...

» Electromechanical systems were controlled by
electromechanical compensators
— Mechanical flywheel governors, capacitors, inductors, resistors,
relays, valves, solenoids (fun!)
— But also complex and sensitive!

=> |dea: Digital computers in real-time control

— Transform approach (classical control)
» Root-locus methods (pretty much the same as METR 3200)
» Bode’s frequency response methods (these change compared to METR 3200)

— State-space approach (modern control)

- Model Making: Control of frequency response as well as
Least Squares Parameter Estimation

Many advantages

+ Practical improvement over analog control:
— Flexible; reprogrammable to implement different control laws
for different systems

— Adaptable; control algorithms can be changed on-line, during
operation

— Insensitive to environmental conditions;
(heat, EMI, vibration, etc.)

— Compact; handful of components on a PCB

— Cheap




Feedback Control
(Simple) control systems have three parts:

\.

Ya

{ )H controller — plant Y

|— sensor

(s

» The plant is the system to be controlled (e.g. the robot).
» The sensor measures the output of the plant.

» The controller sends an input command to the plant based on
the difference from the actual output and the desired output.

Digital Control

ELEC 3004: Systems 2May2017- 12



Archetypical control system

« Consider a continuous control system:

| |
+ —_e(t) u(t)
rt) —E—>  C(s) > H(s) > Y(1)
: ) controller : plant
I I
| 1
b e e e e e e I

 The functions of the controller can be entirely
represented by a discretised computer system

Simple Controller Goes Digital

C+:)—- controller — plant iy

|— sensor

= |

T
- ; = desiredFront

(ff

» , = distanceFront

plant: y[n] =yln — 1] — Tu[n — 1]
sensor:  y[n| = u[n — 1]
controller:  y[n] = Ku[n]

Complex system behaviors, depending on K




Return to the discrete domain

« Recall that continuous signals can be represented by a
series of samples with period T

X T x(KT)

—

ST, T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Zero Order Hold

« An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t




Digitisation

 Continuous signals sampled with period T

« kth control value computed at t, = kT

re! e(kT) o u(kT hu(t) y(t)
+ S (KT) Difference ( )> DAC S H(s) 5
I r(kT) % equations |
: |
: |
I |
|
|
! XD I o 0 or
: sampler |
________ controller ~~ """~
Digitisation
« Continuous signals sampled with period T
« kth control value computed at t, = kT
. T TTTT- T T === ====" 1
r)! e(kT) o u(kT hu(t) y(t)
P NN @ (kT) Difference ( )> DAC 5 H(s) >
I r(kT) & equations -
| 1 |
| s |
|
|
|
| Y N
: y(KT) ADC K o o
: sampler,

controller




Difference equations

« How to represent differential equations in a computer?
Difference equations!

« The output of a difference equation system is a
function of current and previous values of the input
and output:

y(tk) = D(X'(tk), x(tk—l)' ) x(tk—n): }’(tk—l)' ey Y(tk—n))

— We can think of x and y as parameterised in k
Useful shorthand: x(t;,;) = x(k + 1)

=» Discrete-time transfer function

take Z-transform of system equations

r(t 4+ 1) = Ax(t) + Bu(t), y(t) = Ca(t) + Du(t)

yields

=X (2) —za(0) = AX(2) + BU(2), Y(2)=CX(2)+ DU(z)

solve for X (z) to get
X(2) = (2 — Ay '2(0) + (2] — A)"'BU(2)

(note extra z in first term!)

hence
Y(z)= H(z)U(z) + C(zI — A)7Lzz(0)
where H(z) = C'(z] — A)=YB + D is the discrete-time transfer function

note power series expansion of resolvent:

ST Ayl -1 =2 =3 A2
(”I ‘4) =2+ AL TAR Source: Boyd, Lecture Notes for EE263, 13-39
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Modelling
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(Digital) Feedback Control

r(t) ! + ek u(kT) () y(t)
—0 Mo Coliions [~ PAC | HO) [T

1 r(kT) r' g :
I A
. T ;
: LU |
|
I
|
I <
: YD) ADC € O :
: sampler,
________ Controller ~~~~77"
(C(s))

 Continuous signals sampled with period T
» kth control value computed at t, = kT
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C(s): PID = Control for the PID-dly minded

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional :‘j
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

Feedback Control: Tuning Nightmare!

£k 4+ 3) E(k -+ 2) Bk 1) E(k)
o |

t4

by

C S IR R D SR T

-d |+

‘L

=ity |4

~y |4—

Source: FPW, Fig. 2.8
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Signals and Systems: Modelling Tools!

System System

|
|
&
|

Signals Signals

L]

« Signals: Often came from a system
» Now we want feedback tools so as to understand the structure of
the systems and how they interact so as to get desired signals

Feedback Control + Models: Everywhere

Vo Ro 1
Vi R l( &)
1 1 1+A 1+R1
Vi i=~0 V.
e _VO
1 |t RiRo R
@ rer [ A >
1 e
Ry |
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Feedback Control + Models: Everywhere

Water flow
into cistern
Water
supply

Open/close

_Outflow from Open/close
water cistern

Water cistern
water cistern
Water level

in water cistern

Water level set
point

B Outlet valve open/close

Inlet

valve

—>
Outflow from

External Integrator System
inputr input u output y

Feedback
gainK>0
External System

inputr outputy
1+]K

* Integrator:

Water inlet ¢
y(@) =yo + | u(n)de
0
W:l Outlet valve ASiTl ((1) t)
outlet t = —_—
y(®) = ”
Feedback Control + Models: Everywhere
j k.:2
Pump ] Delay 2 k=1
TSpeed | h _?
r 1 h - Nyquist diagram/polar plot of G1
n i > B

14



Feedback as a Filter
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Time Response

14

1.2

Overshoot

o —
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Frequency Domain Analysis

Bode diagrams

g = N <<;;§. b Polar plot
g “\‘\ '
=
\\\~~~ 1

5: Bne ;> ° / < LI,
S -100 -0.5 / /i(/l»/) b
s 6l=1 /
2 7% S50 de 1
g - g “‘h 1571 -0.5 ()-Q-’O?éofmd/s 15

7300‘ o o w=2rad/s o o

* Bode * Nyquist Plot
(Magnitude + Phase Plots) (Polar)

In This Way Feedback May Be Seen as a Filter

* Ex: Lightly Damped Robot Arm

-40 dB/decade = double integrator

N

~
\\\5

o

Resonance \

Amplitude of
transfer function (db)
&
I
|
|
AN

Phase (deg)
0]
o

0.1 1 10 100
Pulsation ®
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How to Design?

Back to Analog !

ELEC 3004: Systems

2May 2017 - 34

Two cases for control design

The system...
— Isn’t fast enough
— Isn’t damped enough
— Overshoots too much
— Requires too much control action
(“Performance”)

— Attempts to spontaneously disassemble itself
(“Stability”)

17



Dynamic compensation

» We can do more than just apply gain!
— We can add dynamics into the controller that alter the open-loop
response

compensator plant

-y u 1 y Im
s+2 s(s+1)

gy Lo o
\_/

Increasing k
combined system
-y s+2 y
s(s+1)

S
>

But what dynamics to add?

* Recognise the following:
— A root locus starts at poles, terminates at zeros
“Holes eat poles”
— Closely matched pole and zero dynamics cancel
— The locus is on the real axis to the left of an odd number of poles
(treat zeros as ‘negative’ poles)

Img(s)

Re(s)

Lo
N

18



The Root Locus (Quickly)

 The transfer function for a closed-loop system can be easily
calculated:
y=CH(r—y)
y+ CHy = CHr
'y CH
“r 1+CH

v

T
v
<

r C

controller plant

The Root Locus (Quickly)

» We often care about the effect of increasing gain of a control
compensator design:

y  kCH
r  1+kCH
Multiplying by denominator: characteristic
y kCan polynomial

19



The Root Locus (Quickly)

 Pole positions change with increasing gain
— The trajectory of poles on the pole-zero plot with changing k is

called the “root locus”
— This is sometimes quite complex

Increasing k Img(s)

6 Re(S)

(In practice you’d plot these with computers)

Designing in the Purely Discrete...

Analyse/design a discrete controller D(z):

Te o~ Gk ~ “ki DAC | u(1) Lo Y1) [sample| 1Yk
—+’(J—' Diz) 7] +hold Gls) “leADc | ] T
- G(2)
by considering the purely discrete time system:
i e i ¥
- {Tj u D(z) i > G(2) -
. Y(z) G(z)D(z)
Closed loop system tranfer function: = -
R(z) 14+ G(z)D(=)
How do the closed loop poles relate to — stability?

— performance?

20



Now in discrete

types:
Leadlag: 2
ead/lag.
J 1-Bz~1
. 1 1
PID: k(1+ m+1'd(1—2 ))

But, where do we get the control design parameters from?
The s-domain?

 Naturally, there are discrete analogs for each of these controller

Sampling a continuous-time system

suppose & = Axr

sample = at times t; < to < ... define z(k) = =(y)
then z(k + 1) = elter1=t)A (L)

for uniform sampling t3.11 — t = h, so
2(k+ 1) =" (k),

a discrete-time LDS (called discretized version of continuous-time system)

Source: Boyd, Lecture Notes for EE263, 10-22
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Piecewise constant system

consider time-varying LDS & = A({)x, with

Ay 0<t <ty

44(f) Al 1 <t <y

where 0 << 1 << {3 < - -+ (sometimes called jump linear system)
for t € [ti,ti11] we have
z(t) = =t A E(tS_fZ)AZt-.(tQ_tl)Alt—_.tlAO‘E(U)

(matrix on righthand side is called state transition matrix for system, and
denoted (%))

Source: Boyd, Lecture Notes for EE263, 10-23

Qualitative behaviour of x(t)

suppose & = Ax, x(t) € R®
then x(t) = etx(0); X(s) = (s — A)~z(0)
ith component X;(s) has form

a;(s)

X(s)

Xi(s) =
where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other
way around)

Source: Boyd, Lecture Notes for EE263, 10-24

22



Qualitative behaviour of x(t) [2]

first assume eigenvalues A; are distinct, so X;(s) cannot have repeated

poles

then z;(t) has form
n
zi(t) = Z Bijet
=1

where 3;; depend on x(0) (linearly)
eigenvalues determine (possible) qualitative behavior of

e cigenvalues give exponents that can occur in exponentials

¢ real eigenvalue A corresponds to an exponentially decaying or growing

term e in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term ¢7% cos(wt + ¢) in solution
Source: Boyd, Lecture Notes for EE263, 10-25

Qualitative behaviour of x(t) [3]

first assume eigenvalues \; are distinct, so X,;(s) cannot have repeated
poles

then z;(t) has form
Ii(ﬂ = Z ,ﬁij(')\)f
j=1

where 3;; depend on x(0) (linearly)
eigenvalues determine (possible) qualitative behavior of x:

e eigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing

term ¢ in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term %! cos(wt + &) in solution
Source: Boyd, Lecture Notes for EE263, 10-26
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Qualitative behaviour of x(t) [4]

e R\, gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

e J)\; gives frequency of oscillatory term (if # 0)

. (&8
eigenvalues S8
\ .
Y
X
- Rs
X
X

Source: Boyd, Lecture Notes for EE263, 10-27

Qualitative behaviour of x(t) [5]

now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as Aq...., A, (distinct) with multiplicities ny, ..., n,,
respectively (ny +--- +n, =n)

then x;(t) has form

r

x(t) = Z}-’z’j(ﬂe/\jt

j=1
where p;;(t) is a polynomial of degree < n; (that depends linearly on x(0))

Source: Boyd, Lecture Notes for EE263, 10-28




Emulation vs Discrete Design

» Remember: polynomial algebra is the same, whatever symbol
you are manipulating:
eg. s2+2s+1=(s+1)?
24+ 2z+1=(z+1)>
Root loci behave the same on both planes!
» Therefore, we have two choices:
— Design in the s-domain and digitise (emulation)
— Design only in the z-domain (discrete design)

Emulation design process

Derive the dynamic system model ODE
Convert it to a continuous transfer function
Design a continuous controller

Convert the controller to the z-domain
Implement difference equations in software

o s e

Img(s) [ Img(s) A Img(@)

Re(s) @

25



Emulation design process

» Handy rules of thumb:
— Use a sampling period of 20 to 30 times faster than the closed-
loop system bandwidth
— Remember that the sampling ZOH induces an effective T/2 delay

— There are several approximation techniques:
* Euler’s method
* Tustin’s method
 Matched pole-zero
» Modified matched pole-zero

Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1)—x(k)
T

R

by

X(tk+1) /Z/

« AsT — 0, approximation (k) /
error approaches 0 g

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

26



Back to the future

A quick note on causality:

* Calculating the “(k+1)th” value of a signal using

y(k+1)=x(k+1)+ Ax(k) - By(k)

Y
future value current values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

* Real systems always run with a delay:
y(k) =x(k) + Ax(k — 1) — By(k — 1)

Back to the example!

T = 0.02; //period of 50 Hz,
A =

B = T-1;

while (1)

{
if (interrupt_flag)
{
x0 = x;
y0 = vy;
x = update_input();

y = x + A*x0 - B*y0;

update_output (y) ;

(The actual calculation)

a number pulled from thin air

2*T-1; //pre-calculated control constants

//this triggers every 20 ms
//save previous values
//get latest x value

//do the difference equations
//write out current value

27



Tustin’s method

 Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) = Z [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z71
T 1 .
z X(tk+1) ‘///
which can be substituted into continuous models
X(t)
(k=T kT

Matched pole-zero

 If z = 5T, why can’t we just make a direct substitution and go
home?

Y(s) _ s+a i> Y(z) z—e 9T
X(s)  s+b X(z)  z—e-bT
« Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.

28



Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)g> (z — e~T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,
multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

Modified matched pole-zero

» We’re prefer it if we didn’t require instant calculations to
produce timely outputs
* Modify step 2 to leave the dynamic order of the numerator one

less than the denominator
— Can work with slower sample times, and at higher frequencies

29



Discrete design process

1. Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

oW

4. Img(2) 4 Img(2) o Img(@)

Re(z)

Re(z) ,7_@_. Re(2)

Discrete design process

» Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
* but 5to 10x for “stability”
20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
« Employ actual velocity measurements when possible

30
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Some standard approaches

« Control engineers have developed time-tested strategies for
building compensators

» Three classical control structures:
— Lead
— Lag
— Proportional-Integral-Derivative (PID)
(and its variations: P, I, Pl, PD)

How do they work?

31



Lead/lag compensation

« Serve different purposes, but have a similar dynamic structure:

Ss+a

D(s)=s+b

Note:

Lead-lag compensators come from the days when control engineers
cared about constructing controllers from networks of op amps using
frequency-phase methods. These days pretty much everybody uses
PID, but you should at least know what the heck they are in case
someone asks.

Lead compensation: a < b

Faster than
system dynamics Img(s)
FSMN! ‘

[

-b

Re(s)

Slow open-loop
plant dynamics

o
A4
-a
s-plane (A-plane)

« Acts to decrease rise-time and overshoot
— Zero draws poles to the left; adds phase-lead
— Pole decreases noise

* Set a near desired w,,; set b at ~3 to 20x a




Lag compensation: a > b

Very slow Img(s)
Close to pole \\ ‘
@ \ Re(s)
plant -a -b
dynamics

s-plane (A-plane)

» Improves steady-state tracking
— Near pole-zero cancellation; adds phase-lag
— Doesn’t break dynamic response (too much)

» Set b near origin; setaat ~3to 10x b

PID — the Good Stuff

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional I, ]
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

33



PID — the Good Stuff

» PID control performance is driven by three parameters:
- k: system gain
- ;. integral time-constant
- 1, derivative time-constant

You’re already familiar with the effect of gain.
What about the other two?

Integral

« Integral applies control action based on accumulated output
error
— Almost always found with P control
* Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!

34



Integral: P Control only

 Consider a first order system with a constant load
disturbance, w; (recall as t - o, s —= 0)

=k -
y=k o =y +w
_ k N (s+a)
y_s+k+ar s+k+aW
Steady state gain = a/(k+a) |

+ - €

(never truly goes away) '
u 1
r k —> —> Y
s+a

Now with added integral action

1 1
=k(1+— -y)+
Y < Tl-s>s+a(r n+w

Same dynamics

k(s + 1) s(s +a)

= r I w
Must go to zero Y (s2+ (k+a)s+=~ k(s -|Jri-1)

for constant w!

w
+ - € 1 u 1
r k<1+—> —>Yy
TS s+a

A\ 4
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Derivative

 Derivative uses the rate of change of the error signal to
anticipate control action
— Increases system damping (when done right)
— Can be thought of as ‘leading’ the output error, applying
correction predictively
— Almost always found with P control*

*What kind of system do you have if you use D, but don t care
about position? Is it the same as P control in velocity space?

Derivative

« ltis easy to see that PD control simply adds a zero at s = —Tl

with expected results '
— Decreases dynamic order of the system by 1
— Absorbs a pole as k — oo

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

IC(w)l /
1

Bode plot of
a zero

w
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PID

 Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors
» Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

Break!: Fun Application: Linear Algebra & KVL!

We can write this as: 247
11 1\ /I 0 ﬁ'L—L
2 3 0f(L)=(2 < < <
0 -3 6/ \Us 0 <20 gra Zea
= = =
So we have: N T b
I S &

I 11 1\ /o
I | = 2 3 0 24
I3 0 3 6 0
Using a computer algebra system to perform the inverse and multiply by the constant matrix, we get:
I =-6A
Ip=4A

Is=2A

We observe that I; is negative, as expected from the circuit diagram.
Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.php
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Break!: Fun Application: Linear Algebra & KCL!

We solve this using a computer as follows. We just write the coefficient matrix on the left, find the inverse (raise the matrix to the

power -1) and multiply the result by the constant matrix.

You can use Matlab, Mathcad or similar math software to do this. Wolfram|Alpha is a free alternative.

72 o 17 -3 0 0 07 '[ 26
0 122 -3 0 0 0 87| |34

0 87 34 0 0 72 233 4 200 270
X=|-17 35 149 0o 28 35 34 13 —"‘—|| ——
0 0 28 43 105 34 0 27
0 0 -3 0 34 141 72 |2
3 0 0 105 43 0 0

0.46801
0.42932
5.193 x 103
= 0.22243
0.27848

0.21115
0.20914

Source: http://www.intmath.com/matrices-determinants/6-matrices-linear-equations.phi
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