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Random or Stochastic Variables

« A random variable is one described by its Expectation (E)

_ A i § T
‘zz Ex, 2

« The Variance is the Expectation of the difference between the
variable and its mean

* When x has zero mean, its variance is simply given by
=F 2
o, = Ex




Kalman Filter:

A Gaussian way
to beat the noise
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Along multiple dimensions




State Space

« We collect our set of uncertain variables into a vector ...
X = [Xqy Xopevy Xp]T

 The set of values that x might take on is termed the state space

» There is a single true value for X,
but it is unknown

State Space Dynamics

x = Ax 4+ Bu
vy = Cx + Du

H(s)=C(sI — A)'B




Measured versus True

» Measurement errors are inevitable

 So, add Noise to State...
— State Dynamics becomes:

x=Ax+Bu+t+w
yv=Cx+Du+v

* Can represent this as a “Normal” Distribution

r 1 . 7 2
N (_1:;'[¢: o) = (V?) - exp ( (ngéﬁ) )

Recovering The Truth

* Numerous methods

* Termed “Estimation” because we are trying to estimate the
truth from the signal

» A strategy discovered by Gauss

 Least Squares in Matrix Representation

][ E] (2]




Recovering the Truth: Terminology

x=Fx1+Guitw

z=Hx+v

x : the state vector
: the state of x at time A based on data taken up to time B

: estimate of the true state vector

: system dynamics matrix in continuous time (equivalent to A in Eq. 1)
G : system control matrix relating deterministic input, u, to the state (equivalent to B in Eq. 1)
H : measurement matrix in continuous time (equivalent to C in Eq. 2)

F, : system model in dis

te time at £ = f;

H,; : measurement model in discrete time at t = ¢;

P; : estimate covariance in discrete time at { = ¢,

w @ process uncertainty (noise) vector (of type N(0, s))
Q : process noise matrix, Q = E {u-u'T]

Q; : Q indiscrete time at ¢t = ¢;

v : measurement noise vectors (of type N'(0,c))

R; : the measurement variance matrix, R = F [m*r] in discrete time at { = {;

General Problem...

v

o
7]
[]
2
@
[=F
wn
< i
]
o+
o

! (Measurement)




Duals and Dual Terminology

Estimation

Control

Model: x = Fx (discrete: x = Fyx) — | x=Ax, A=F!
Regulates: P (covariance) — | M (performance matrix)
Minimized function: Q (or GQGT) — v

Optimal Gain: K — | G

Completeness law: Observability «— | Controllability

Estimation Process in Pictures

v~R,=N(0,r)

Measured:

Estimate: ékq




Kalman Filter Process

Initial state (x)
& covariance (P) Measurement (z)

Compute optimal observer
Project state & gain (“Kalman gain”)

covariance forward then update state

and covariance estimates

N~

KF Process in Equations

Prediction: )A(Mk,1 = kal)ﬁ(kfl\kfl- (statle prediction)
Pk\k—l = Qkfl + kalpk—uk—lFkals (covariance prediction)

Kalman Gain: K = P;L.‘;;_lHT[HPHk_lHT + Rk:_l._
Update: Pk\k = [I - K;\.H}Pk‘k_lz (covariance update)
)Ack‘k = )ACMk,l + K. (Z_z; — H)A(Mk,]) (state update)




KF Considerations

Xpe—1 = Fr—1 Xp—qp—1 + Gr—1 up—1
Nt S S~

nxl nxn nxj jxl

1
Prip—1= Q-1 +F1 P g1 Fli
[ — S -

X nxn

-1
K; =Py H [HP,_HT + R,
Sk Kk lv[ k|k—1 k)
nxm nxXm

M Im
Pip = [T — KeH[P iy
ik|k = )ﬁ(k“C,] + Kk( 2 — H kk|k71 - Hlel,l;_lj

mx1 mxn

Ex: Kinematic KF: Tracking

« Consider a System with Constant Acceleration

i=—g
y=gt+m

2
y=po+pit+ %

—_

0

0
0 Fk:(gm%w
é 0 OJ

X = Froixp—1 + Ki(zp — HF . _1x.1)
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In Summary

+ KF:
— The true state (x) is separate from the measured (z)
— Lets you combine prior controls knowledge with
measurements to filter signals and find the truth

— It regulates the covariance (P)
» As P is the scatter between z and x
* So, if P > 0, then z > x (measurements -> truth)

+ EKF:

— Takes a Taylor series approximation to get a local “F” (and

GGG” and ‘CH”)

Estimation:

“Bayesian Perspective”

P

Based on Material from Jur van den Berg, Introduction to Robtoics
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Kalman Filtering

» (Optimal) estimation of the (hidden) state of a
linear dynamic process of which we obtain noisy (partial)
measurements

» Example: radar tracking of an airplane.
What is the state of an airplane given noisy radar
measurements of the airplane’s position?

~
@

Model

Discrete time steps, continuous state-space
(Hidden) state: x;, measurement: y,

Airplane example:

Position, speed and acceleration




Dynamics and Observation model

 Linear dynamics model describes relation between the state
and the next state, and the observation:

« Airplane example (if process has time-step 3):

Xig = Axt+Wt’ Wt~Wt=N(OlQ)

Yy, = Cx,+v,, Vv,~V,=N(O,R)
1 6 L1s°

A=/0 1 &5 | C=(1 0 0)
00 1

Normal distributions

» Let X, be a normal distribution

of the initial state X, A\
Then, every X, is a normal distribution
of hidden state x,. Recursive definition:

And every Y, is a normal distribution of observation Yi-
Definition: —
efinitio X = AX +W,

Goal of filtering: compute conditional distribution
Y, =CX, +V,
(X 1Yo =YY =)

13



Normal distribution

« Because X,’s and Y,’s are normal i I 5 N
distributions, (X, Y, =¥,.....Y, =Y,) °
is also a normal distribution

* Normal distribution is fully
specified by mean and covariance

* We denote;

Xt|s = (thYOZyO!"”Ys:ys)‘
= N(E(Xt |Yo =Yoo Vs :ys),Var(Xt |Yo =Yoo Vs :ys))
= N()A(ﬂs’Pﬂs)

Problem reduces to computing X, and Py,

ht

Recursive update of state

+ Kalman filtering algorithm: repeat...
— Time update:
from Xy, compute a priori distribution X,
— Measurement update:
from X, (and given y,,,), compute
a posteriori distribution Xy,

Yl 2 Y3 4 5

14



Time update

« From X, compute a priori distribution X,

Xt+1|t = Axt|t +W,
- N (E(AxtIt +W, ), Var (AXm +W, ))
= N(AE(X, )+ EW,), AVar (X, JAT +Var (W, ))

_ N(A%,, AP, A" +Q)

)A(t+11t = A)A(qt
T
Pt+JJt = APtltA +Q

Measurement update

From X, (@nd given y,,;), compute X, yy;-

1. Compute a priori distribution of the observation
Y from X,

Yt+:ut = Cxt+ut +Via
- N(E(CX,,y +Vyu ) Var(CX,y +V,.,))
= N (C E(Xum )+ E(Vt+1 )’ C Var (xt+1|t kT + Var (Vt+1
= N(C%,.4,CP.,CT +R)

)

15



Measurement update (cont’d)

2. Look at joint distribution of Xy, and Yy,

(Koo Vo) = N(E<M>}[ Var (X, cw(xwvﬂm)ﬁ

E(Y'H—llt ) COV(YH—]J'( ' Xt+]4t ) Var (Yt+]Jt )
_ N §(I+JJ( Pt+1|t PH]JtCT
C)A(Hiut CPt+1|t CPH—]J'[CT + R
where

COV(YHl’ Xt+ut) = COV(CXHut +Vt+l' Xt+ut)

c COV(XH]JI ! Xt+]lt )+ COV(VI+1’ Xt+]4t)
C Var (Xt+m)

= CPt+l|t

Measurement update (cont’d)

« Recall that if
> )y
(21122): N((ﬂl}( 11 12}]
then My )\ 2 Ly
(Z1 | Zz = Zz): N (/ul + 212252(22 — )’ Z11 _21222221)
3. Compute X,y 41 = (Kpsapl Ve = Yesa):

Xt+11t+l = (an |Yt+]Jt =Y )
- -1 .
= N (XHllt + PMJtCT (CPH]JtCT + R) (yt+1 - CXHJJt )’

1
Pt+]4t - Pt+JJtCT (CPH]JtCT + R) CPt+]Jt

16



Measurement update (cont’d):

This can also (often) be written in terms of the
Kalman gain matrix:

T T -1
Kt+1 = Pt+JJtC (CPH]JtC + R)
)A(t+]Jt+l = )A(t+]Jt + Kt+1(yt+l - C)A(t+1\t)
I:?[+ZIJI+1 = Pt+l|t - Kt+lCPt+1|t

Initialization

+ Choose distribution of initial state by picking X, and P,
« Start with measurement update given measurement y,
 Choice for Q and R (identity)

— small Q: dynamics “trusted” more
— small R: measurements “trusted” more

17



(Bayesian) Kalman Filter Summary

- Model Xep = AX+W,, W, ~W,=N(0,Q)
Y, = Cx,+v,, V,~V,=N(OR)
I. Algorithm: Repeat...
— Time update:
Xop = ARy

Pt+]Jt = APtlt AT +Q

— Measurement update:

T T -1
Kt+l = Pt+JJtC (CPt+utC + R)
§(t+l|t+l = )A(t+l|t + Kt+1 (yt+1 - C)A(t+14t)
Pt+]1t+1 = I::;+J.lt - Kt+1CR+]Jt

(Bayesian) Kalman Filter Summary [ll]

Take Aways:

+ Kalman filter can be used in real time

* Use xy’s as optimal estimate of state at time t, and use Py, as a
measure of uncertainty.

Extensions:

» Dynamic process with known control input

» Non-linear dynamic process

« Kalman smoothing: compute optimal estimate of state x;
given all datay,, ..., y-,
with T > t (not real-time).

« Automatic parameter (Q and R) fitting using EM-algorithm

18



Viterbi Algorithm

Based on Material from S Salzberg CMSC 828N
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The Viterbi Algorithm

Question: What does it do?

Answer: It finds the most likely sequence of hidden states:

19



What Sequence?

» Remember QPSK Constellations?

Transmitted sequence

Received sequence
4 —_—

Eo
*
-2}
| .
-4 -2
Input of decision device
* »
Eo : :
* &
2 — - —
-2 -1 0 1
Re
e

Viterbi algorithm

0 : t=0ni=S,
Vi(t)= 1 @ t=0ni=S,
max V (t—-1a,b.(y) : t>0

Where V,(t) is the probability that the HMM is in state i after
generating the sequence y,,y,, ...,y; following the most
probable path in the HMM

20



Our sample HMM

0.6 0.9

Let S, be initial state, S, be final state

A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
S1
State
S2

Output: A C C

21



A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
S
State
S,
(0.9)(0.3)(0) (0.9)(0.7)(0.2)

Output: A C C

O

Learning in HMMs: the E-M algorithm

* In order to learn the parameters in an “empty” HMM, we need:

— The topology of the HMM
— Data - the more the better

* The learning algorithm is called “Estimate-Maximize” or E-M
— Also called the Forward-Backward algorithm
— Also called the Baum-Welch algorithm

o

22



An untrained HMM

Q) . -
‘\d_/
atb=1 A
c+d=1

Some HMM training data

+ CACAACAAAACCCCCCACAA

+ ACAACACACACACACACCAAAC

+ CAACACACAAACCCC

+ CAACCACCACACACACACCCCA

+ CCCAAAACCCCAAAAACCC

« ACACAAAAAACCCAACACACAACA
« ACACAACCCCAAAACCACCAAAAA

23



Step |: Guess all the probabilities

» We can start with random probabilities, the learning algorithm
will adjust them

* If we can make good guesses, the results will generally be
better

Step 2: the Forward algorithm

» Reminder: each box in the trellis contains a value ai(t)

* qi(t) is the probability that our HMM has generated the
sequence yl, y2, ..., yt and has ended up in state 1.

24



Reminder: notations

« sequence of length T: T

YT
all sequences of length T: 1

T+1

Path of length T+1 generates Y

All paths: )(1T *l

Step 3: the Backward algorithm

» Next we need to compute Bi(t) using a Backward computation

* Bi(t) is the probability that our HMM will generate the rest of
the sequence yt+1,yt+2, ..., yT beginning in state i

25



A trellis for the Backward Algorithm

t=0 t=1 t=2 t=3
(0.6)(0.2)(0.0)
Sy

(0.9)(0.7)(1.0)

Output: A C C

LGl

A trellis for the Backward Algorithm (2)

Time
t=0 t=1 t=2 t=3
Sl
State
82 (0.9)(0.7)(1.0)

Output: A C C

o

26



A trellis for the Backward Algorithm (3)

Time
t=0 t=1 t=2 t=3
S
State
S2 (0.9)(0.7)(0.63) (0.9)(0.7)(1.0)

Output: A C C

Step 4: Re-estimate the probabilities

» After running the Forward and Backward algorithms once, we
can re-estimate all the probabilities in the HMM

* og IS the prob. that the HMM generated the entire sequence

* Nice property of E-M: the value of ag: never decreases; it
converges to a local maximum

» We can read off o and 3 values from Forward and Backward
trellises

27



Compute new transition probabilities

* v is the probability of making transition i-j at time t,
given the observed output
— v is dependent on data, plus it only applies for one time
step; otherwise it is just like a;;(t)

}/ij(t):P(X’ :i’Xt+1 =] |y1T)
7, (1)= a,(t—Da,b,(y)B,(1)

ag

F

What is gamma?

« Sum vy over all time steps, then we get the expected
number of times that the transition i-j was made while
generating the sequence Y:

T
C, =2 7,(t)
=1

28



How many times did we leave i?

« Sum vy over all time steps and all states that can follow i,
then we get the expected number of times that the
transition i-x as made for any state x:

¢, :ZZ%k(t)

Recompute transition probability

In other words, probability of going from state i to j is
estimated by counting how often we took it for our data
(C1), and dividing that by how often we went from i to

other states (C2)

29



Recompute output probabilities

« Originally these were bj;(k) values

» We need:
— expected number of times that we made the transition i-j and
emitted the symbol k
— The expected number of times that we made the transition i-j

New estimate of bi;(k)

Z%-,-(t)

bl](k) _ t:);fzk

Z%-j(t)

30



Step 5: Go to step 2

 Step 2 is Forward Algorithm

» Repeat entire process until the probabilities converge
— Usually this is rapid, 10-15 iterations

» “Estimate-Maximize” because the algorithm first estimates
probabilities, then maximizes them based on the data

» “Forward-Backward” refers to the two computationally
intensive steps in the algorithm

Computing requirements

» Trellis has N nodes per column, where N is the number of
states
« Trellis has S columns, where S is the length of the sequence

» Between each pair of columns, we create E edges, one for each
transition in the HMM
» Total trellis size is approximately S(N+E)
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Next Time...

 State-Space & Digital Control!

— State-space filters add feedback and become a
“control filter”

Summary

» FT of sampled data is known as
— discrete-time Fourier transform (DTFT)
— discrete in time
— continuous & periodic in frequency

« DFT is sampled version of DTFT
— discrete in both time and frequency

— periodic in both time and frequency
* due to sampling in both time and frequency

» DFT is implemented using the FFT

 Leakage reduced (dynamic range increased)
— with non-rectangular window functions
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