

Adaptive Filters & Estimation

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 14

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

April 27, 2017

(00)) BY-NO-SA

2017 School of Information Technology and Electrical Engineering at The University of Queensland

Lecture Schedule:

Week	Date	Lecture Title		
1	28-Feb	Introduction		
	2-Mar	Systems Overview		
2	7-Mar	Systems as Maps & Signals as Vectors		
	9-Mar	Systems: Linear Differential Systems		
3	14-Mar	Sampling Theory & Data Acquisition		
	16-Mar	Aliasing & Antialiasing		
4	21-Mar	Discrete Time Analysis & Z-Transform		
	23-Mar	Second Order LTID (& Convolution Review)		
5	28-Mar	Frequency Response		
	30-Mar	Filter Analysis		
6	4-Apr	Digital Filters (IIR) & Filter Analysis		
	6-Apr	Digital Filter (FIR)		
7		Digital Windows		
/	13-Apr	FFT		
	18-Apr			
	20-Apr	Holiday		
	25-Apr			
8	27-Apr	Active Filters & Estimation		
9	2-May	Introduction to Feedback Control		
9	4-May	Servoregulation/PID		
10	9-May	Introduction to (Digital) Control		
		Digitial Control		
11		Digital Control Design		
		Stability		
12		Digital Control Systems: Shaping the Dynamic Response		
		Applications in Industry		
13	30-May	System Identification & Information Theory		
13		Summary and Course Review		

ELEC 3004: Systems

Follow Along Reading: B. P. Lathi Signal processing and linear systems 1998

Chapter 12
Frequency Response & Digital Filters

G. Franklin, J. Powell, M. Workman Digital Control of Dynamic Systems 1990

TK5102.9.L38 1998

TJ216.F72 1990 [Available as UQ Ebook] • Lathi: Chapter 13

State-Space Analysis

• FPW: Chapter 2

Chapter 2: Linear, Discrete,
 Dynamic-Systems Analysis

Next Time

27 April 2017

Random or Stochastic Variables

• A random variable is one described by its **Expectation** (E)

$$\bar{x} \stackrel{\triangle}{=} \mathsf{E} x, \qquad \sigma_x^2 \stackrel{\triangle}{=} \mathsf{E} (x - \bar{x})^2 = \mathsf{E} x^2 - \bar{x}^2$$

- The Variance is the Expectation of the difference between the variable and its mean
- When x has zero mean, its variance is simply given by

 $\sigma_{x} = Ex^{2}$

ELEC 3004: Systems

Kalman Filter: A Gaussian way to beat the noise

ELEC 3004: Systems

27 April 2017 **7**

Along multiple dimensions

ELEC 3004: Systems

State Space

- The set of values that \mathbf{x} might take on is termed the *state space*
- There is a *single* true value for **x**, but it is unknown

27 April 2017

State Space Dynamics

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

$$H(s) = C(sI - A)^{-1}B$$

ELEC 3004: Systems

Measured versus True

- Measurement errors are inevitable
- So, add Noise to State...
 - State Dynamics becomes:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + w$$
$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u} + v$$

• Can represent this as a "Normal" Distribution

$$\mathcal{N}(x; \mu, \sigma) = \frac{1}{(\sqrt{2\pi}) \sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

ELEC 3004: Systems

27 April 2017 11

Recovering The Truth

- Numerous methods
- Termed "Estimation" because we are trying to estimate the truth from the signal
- A strategy discovered by Gauss
- Least Squares in Matrix Representation

$$\left[\begin{array}{c}p_0\\p_1\end{array}\right]=\left[\begin{array}{cc}n&\sum_1^nt_i\\\sum_1^nt_i&\sum_1^nt_i^2\end{array}\right]^{-1}\left[\begin{array}{c}\sum_1^nz_i\\\sum_1^nt_iz_i\end{array}\right]$$

ELEC 3004: Systems

Recovering the Truth: Terminology

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{u} + \mathbf{w}$$

$$z = Hx + v$$

x : the state vector

 $\mathbf{x}_{A|B}\,$: the state of \mathbf{x} at time A based on data taken up to time B

 $\hat{\mathbf{x}}$: estimate of the true state vector

F: system dynamics matrix in continuous time (equivalent to A in Eq. 1)

 ${\bf G}\,$: system control matrix relating deterministic input, ${\bf u},$ to the state (equivalent to ${\bf B}$ in Eq. 1)

 $\mathbf{H}\,:\,$ measurement matrix in continuous time (equivalent to \mathbf{C} in Eq. 2)

 \mathbf{F}_i : system model in **discrete** time at $t=t_i$

 \mathbf{H}_i : measurement model in discrete time at $t=t_i$

 \mathbf{P}_i : estimate covariance in **discrete** time at $t=t_i$

 $\mathbf{w}\,:\, \text{process uncertainty (noise) vector (of type } \mathcal{N}(0,s))$

 \mathbf{Q} : process noise matrix, $\mathbf{Q} = E \left[w w^{\mathsf{T}} \right]$

 $\mathbf{Q}_i\,:\,\mathbf{Q}$ in discrete time at $t=t_i$

 ${f v}\,:\,$ measurement noise vectors (of type $\mathcal{N}(0,\sigma)$)

 \mathbf{R}_i : the measurement variance matrix, $\mathbf{R} = E\left[vv^{\mathsf{T}}\right]$, in discrete time at $t = t_i$

27 April 2017 13

General Problem...

Duals and Dual Terminology

	Estimation		Control
Model:	$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} \text{ (discrete: } \mathbf{x} = \mathbf{F}_k \mathbf{x})$	\leftrightarrow	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \mathbf{A} = \mathbf{F}^{T}$
Regulates:	P (covariance)	\longleftrightarrow	M (performance matrix)
Minimized function:	$Q ext{ (or } GQG^{T})$	\leftrightarrow	V
Optimal Gain:	K	\leftrightarrow	G
Completeness law:	Observability	\leftrightarrow	Controllability

27 April 2017 15

Estimation Process in Pictures

KF Process in Equations

Prediction:
$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1|k-1},$$
 (state prediction)
$$\mathbf{P}_{k|k-1} = \mathbf{Q}_{k-1} + \mathbf{F}_{k-1}\mathbf{P}_{k-1|k-1}\mathbf{F}^\mathsf{T}_{k-1},$$
 (covariance prediction)
$$\mathsf{Kalman\ Gain:}\ \mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}^\mathsf{T}[\mathbf{H}\mathbf{P}_{k|k-1}\mathbf{H}^\mathsf{T} + \mathbf{R}_k]^{-1},$$
 (covariance update)
$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}\hat{\mathbf{x}}_{k|k-1})$$
 (state update)
$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}\hat{\mathbf{x}}_{k|k-1})$$

KF Considerations

$$\begin{split} & \underbrace{\hat{\mathbf{x}}_{k|k-1}}_{n \times 1} = \underbrace{\mathbf{F}_{k-1}}_{n \times n} \hat{\mathbf{x}}_{k-1|k-1} + \underbrace{\mathbf{G}_{k-1}}_{n \times j} \underbrace{\mathbf{u}_{k-1}}_{j \times 1} \\ & \underbrace{\mathbf{P}_{k|k-1}}_{n \times n} = \underbrace{\mathbf{Q}_{k-1}}_{n \times n} + \mathbf{F}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{F}^{\mathsf{T}}_{k-1} \\ & \underbrace{\mathbf{K}_{k}}_{n \times m} = \mathbf{P}_{k|k-1} \underbrace{\mathbf{H}^{\mathsf{T}}}_{n \times m} \underbrace{\left[\mathbf{H} \mathbf{P}_{k|k-1} \mathbf{H}^{\mathsf{T}} + \mathbf{R}_{k}\right]^{-1}}_{m \times m} \\ & \mathbf{P}_{k|k} = [\mathbf{I} - \mathbf{K}_{k} \mathbf{H}] \mathbf{P}_{k|k-1} \\ & \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_{k} \underbrace{\mathbf{z}_{k}}_{m \times 1} - \underbrace{\mathbf{H}^{\mathsf{T}}}_{m \times n} \hat{\mathbf{x}}_{k|k-1} - \mathbf{H} \mathbf{G}_{k} \mathbf{u}_{k-1}) \end{split}$$

ELEC 3004: Systems

27 April 2017 19

Ex: Kinematic KF: Tracking

• Consider a System with Constant Acceleration

$$\ddot{y} = -g$$

$$\dot{y} = gt + p_1$$

$$y = p_0 + p_1 t + \frac{gt^2}{2}$$

$$\left[\begin{array}{c} \dot{y} \\ \ddot{y} \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} y \\ \dot{y} \end{array}\right] + \left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} 0 \\ g \end{array}\right]$$

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{F_k} = \begin{bmatrix} 0 & t_s & \frac{t_s^2}{2} \\ 0 & 0 & t_s \\ 0 & 0 & 0 \end{bmatrix}$$

$$\hat{\mathbf{x}}_k = \mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1} + \mathbf{K}_k(\mathbf{z}_k - \mathbf{H}\mathbf{F}_{k-1}\hat{\mathbf{x}}_{k-1})$$

ELEC 3004: Systems

In Summary

- KF:
 - The true state (x) is separate from the measured (z)
 - Lets you combine prior controls knowledge with measurements to filter signals and find the <u>truth</u>
 - It **regulates** the covariance (P)
 - As P is the scatter between z and x
 - So, if P \rightarrow 0, then $z \rightarrow x$ (measurements \rightarrow truth)
- EKF:
 - Takes a Taylor series approximation to get a local "F" (and "G" and "H")

Kalman Filtering

- (Optimal) estimation of the (hidden) state of a linear dynamic process of which we obtain noisy (partial) measurements
- Example: radar tracking of an airplane. What is the state of an airplane given noisy radar measurements of the airplane's position?

Model

- Discrete time steps, continuous state-space
- (Hidden) state: \mathbf{x}_{t} , measurement: \mathbf{y}_{t}
- Airplane example:
- Position, speed and acceleration

$$\mathbf{x}_{t} = \begin{pmatrix} x_{t} \\ \dot{x}_{t} \\ \vdots \\ \dot{x}_{t} \end{pmatrix}, \quad \mathbf{y}_{t} = (\widetilde{x}_{t})$$

ELEC 3004: Systems

Dynamics and Observation model

- Linear dynamics **model** describes relation between the state and the next state, and the observation:
- Airplane example (if process has time-step δ):

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

$$A = \begin{pmatrix} 1 & \delta & \frac{1}{2}\delta^2 \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

ELEC 3004: Systems

27 April 2017 **25**

Normal distributions

- Let X₀ be a normal distribution of the initial state x₀
- Then, every X_t is a normal distribution of hidden state \mathbf{x}_t . Recursive definition:

- And every Y_t is a normal distribution of observation y_t . Definition: $X_{t+1} = AX_t + W_t$
- Goal of filtering: compute conditional distribution

$$Y_{t} = CX_{t} + V_{t}$$

$$(X_{t} | Y_{0} = \mathbf{y}_{0}, \dots, Y_{t} = \mathbf{y}_{t})$$

ELEC 3004: Systems

Normal distribution

- Because X_t 's and Y_t 's are normal distributions, $(X_t \mid Y_0 = \mathbf{y}_0, ..., Y_t = \mathbf{y}_t)$ is also a normal distribution
- Normal distribution is fully specified by mean and covariance
- We denote:

$$X_{t|s} = (X_t | Y_0 = \mathbf{y}_0, ..., Y_s = \mathbf{y}_s)$$

$$= N(\mathbf{E}(X_t | Y_0 = \mathbf{y}_0, ..., Y_s = \mathbf{y}_s), Var(X_t | Y_0 = \mathbf{y}_0, ..., Y_s = \mathbf{y}_s))$$

$$= N(\hat{\mathbf{x}}_{t|s}, P_{t|s})$$
Problem reduces to computing $\mathbf{x}_{t|s}$ and $P_{t|s}$

Problem reduces to computing $\underline{\mathbf{x}}_{tlt}$ and P_{tlt}

Recursive update of state

- Kalman filtering algorithm: repeat...
 - Time update: from $X_{t|t}$, compute a **priori** distribution $X_{t+1|t}$
 - Measurement update: from $X_{t+1|t}$ (and given y_{t+1}), compute a posteriori distribution $X_{t+1|t+1}$

ELEC 3004: Systems

Time update

• From $X_{t|t}$, compute a **priori** distribution $X_{t+1|t}$:

$$X_{t+1|t} = AX_{t|t} + W_{t}$$

$$= N(E(AX_{t|t} + W_{t}), Var(AX_{t|t} + W_{t}))$$

$$= N(AE(X_{t|t}) + E(W_{t}), AVar(X_{t|t})A^{T} + Var(W_{t}))$$

$$= N(A\hat{\mathbf{x}}_{t|t}, AP_{t|t}A^{T} + Q)$$

• So:

$$\hat{\mathbf{x}}_{t+1|t} = A\hat{\mathbf{x}}_{t|t}$$

$$P_{t+1|t} = AP_{t|t}A^{T} + Q$$

ELEC 3004: Systems

27 April 2017 **29**

Measurement update

From $X_{t+1|t}$ (and given \mathbf{y}_{t+1}), compute $X_{t+1|t+1}$.

1. Compute **a priori** distribution of the observation $Y_{t+1|t}$ from $X_{t+1|t}$:

$$\begin{array}{lcl} Y_{t+1|t} & = & CX_{t+1|t} + V_{t+1} \\ & = & N \big(\mathrm{E} \big(CX_{t+1|t} + V_{t+1} \big), \mathrm{Var} \big(CX_{t+1|t} + V_{t+1} \big) \big) \\ & = & N \big(C \, \mathrm{E} \big(X_{t+1|t} \big) + \mathrm{E} \big(V_{t+1} \big), C \, \mathrm{Var} \big(X_{t+1|t} \big) C^T + \mathrm{Var} \big(V_{t+1} \big) \big) \\ & = & N \big(C \hat{\mathbf{x}}_{t+1|t}, CP_{t+1|t} C^T + R \big) \end{array}$$

ELEC 3004: Systems

Measurement update (cont'd)

2. Look at joint distribution of $X_{t+1|t}$ and $Y_{t+1|t}$:

$$\begin{split} \left(\boldsymbol{X}_{t+1|t}, \boldsymbol{Y}_{t+1|t}\right) &= N \Biggl(\left(\frac{\mathrm{E} \left(\boldsymbol{X}_{t+1|t}\right)}{\mathrm{E} \left(\boldsymbol{Y}_{t+1|t}\right)} \right), \left(\frac{\mathrm{Var} \left(\boldsymbol{X}_{t+1|t}\right)}{\mathrm{Cov} \left(\boldsymbol{Y}_{t+1|t}, \boldsymbol{X}_{t+1|t}\right)} \frac{\mathrm{Cov} \left(\boldsymbol{X}_{t+1|t}, \boldsymbol{Y}_{t+1|t}\right)}{\mathrm{Var} \left(\boldsymbol{Y}_{t+1|t}\right)} \right) \Biggr) \\ &= N \Biggl(\left(\frac{\hat{\mathbf{x}}}{\mathbf{x}}_{t+1|t}\right), \left(\frac{\boldsymbol{P}_{t+1|t}}{\boldsymbol{CP}_{t+1|t}} \cdot \frac{\boldsymbol{P}_{t+1|t}}{\boldsymbol{CP}_{t+1|t}} \boldsymbol{C}^T + \boldsymbol{R} \right) \Biggr) \end{aligned}$$

where

$$\begin{array}{lcl} \mathrm{Cov}\big(Y_{t+1}, X_{t+1|t}\big) & = & \mathrm{Cov}\big(CX_{t+1|t} + V_{t+1}, X_{t+1|t}\big) \\ & = & C\,\mathrm{Cov}\big(X_{t+1|t}, X_{t+1|t}\big) + \mathrm{Cov}\big(V_{t+1}, X_{t+1|t}\big) \\ & = & C\,\mathrm{Var}\big(X_{t+1|t}\big) \\ & = & CP_{t+1|t} \end{array}$$

27 April 2017 **3**

Measurement update (cont'd)

· Recall that if

$$\begin{split} & (Z_1, Z_2) = N \! \left(\! \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \! , \! \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \! \right) \\ & (Z_1 \mid Z_2 = \mathbf{z}_2) = N \! \left(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} \! \left(\mathbf{z}_2 - \mu_2 \right) \! , \! \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \right) \end{split}$$

3. Compute $X_{t+1|t+1} = (X_{t+1|t}|Y_{t+1|t} = \mathbf{y}_{t+1})$:

$$\begin{split} X_{t+1|t+1} &= & \left(X_{t+1|t} \mid Y_{t+1|t} = \mathbf{y}_{t+1} \right) \\ &= & N \Big(\hat{\mathbf{x}}_{t+1|t} + P_{t+1|t} C^T \Big(C P_{t+1|t} C^T + R \Big)^{-1} \Big(\mathbf{y}_{t+1} - C \hat{\mathbf{x}}_{t+1|t} \Big), \\ &P_{t+1|t} - P_{t+1|t} C^T \Big(C P_{t+1|t} C^T + R \Big)^{-1} C P_{t+1|t} \Big), \end{split}$$

ELEC 3004: Systems

Measurement update (cont'd):

This can also (often) be written in terms of the **Kalman gain** matrix:

$$\begin{array}{lcl} K_{t+1} & = & P_{t+1|t}C^T \left(C P_{t+1|t}C^T + R \right)^{-1} \\ \hat{\mathbf{x}}_{t+1|t+1} & = & \hat{\mathbf{x}}_{t+1|t} + K_{t+1} \left(\mathbf{y}_{t+1} - C \hat{\mathbf{x}}_{t+1|t} \right) \\ P_{t+1|t+1} & = & P_{t+1|t} - K_{t+1} C P_{t+1|t} \end{array}$$

27 April 2017 33

Initialization

- Choose distribution of initial state by picking $\underline{\boldsymbol{x}}_0$ and P_0
- Start with measurement update given measurement \mathbf{y}_0
- Choice for Q and R (identity)
 - small Q: dynamics "trusted" more
 - small R: measurements "trusted" more

ELEC 3004: Systems

(Bayesian) Kalman Filter Summary

I. Model:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

- II. Algorithm: Repeat...
 - Time update:

$$\hat{\mathbf{x}}_{t+1|t} = A\hat{\mathbf{x}}_{t|t}$$

$$P_{t+1|t} = AP_{t|t}A^{T} + Q$$

- Measurement update:

$$\begin{array}{lcl} K_{t+1} & = & P_{t+1|t}C^T \Big(C P_{t+1|t}C^T + R \Big)^{-1} \\ \hat{\mathbf{x}}_{t+1|t+1} & = & \hat{\mathbf{x}}_{t+1|t} + K_{t+1} \Big(\mathbf{y}_{t+1} - C \hat{\mathbf{x}}_{t+1|t} \Big) \\ P_{t+1|t+1} & = & P_{t+1|t} - K_{t+1} C P_{t+1|t} \end{array}$$

ELEC 3004: Systems

27 April 2017 35

(Bayesian) Kalman Filter Summary [II]

Take Aways:

- Kalman filter can be used in real time
- Use $\underline{\mathbf{x}}_{t|t}$'s as optimal estimate of state at time t, and use $P_{t|t}$ as a measure of uncertainty.

Extensions:

- Dynamic process with known control input
- Non-linear dynamic process
- Kalman smoothing: compute optimal estimate of state x_t given all data y₁, ..., y_T, with T > t (not real-time).
- Automatic parameter (Q and R) fitting using EM-algorithm

ELEC 3004: Systems

Viterbi Algorithm Based on Material from S Salzberg CMSC 828N ELEC 3004: Systems 27 April 2017 37

Viterbi algorithm

$$V_{i}(t) = \begin{cases} 0 : t = 0 \land i \neq S_{I} \\ 1 : t = 0 \land i = S_{I} \\ \max V_{j}(t-1)a_{ji}b_{ji}(y) : t > 0 \end{cases}$$

Where $V_i(t)$ is the probability that the HMM is in state i after generating the sequence $y_1, y_2, ..., y_t$, following the *most probable path* in the HMM

ELEC 3004: Systems

Learning in HMMs: the E-M algorithm

- In order to learn the parameters in an "empty" HMM, we need:
 - The topology of the HMM
 - Data the more the better
- The learning algorithm is called "Estimate-Maximize" or E-M
 - Also called the Forward-Backward algorithm
 - Also called the Baum-Welch algorithm

ELEC 3004: Systems

Some HMM training data

- CACAACAAAACCCCCCACAA
- ACAACACACACACACACAAAC
- CAACACACAAACCCC
- CAACCACACACACACCCCA
- CCCAAAACCCCAAAAACCC
- ACACAAAAAACCCAACACACACA
- ACACAACCCCAAAAACCACCAAAAA

ELEC 3004: Systems

Step 1: Guess all the probabilities

- We can start with random probabilities, the learning algorithm will adjust them
- If we can make good guesses, the results will generally be better

27 April 2017 47

Step 2: the Forward algorithm

- Reminder: each box in the trellis contains a value $\alpha i(t)$
- αi(t) is the probability that our HMM has generated the sequence y1, y2, ..., yt and has ended up in state i.

ELEC 3004: Systems

Reminder: notations

- sequence of length T: V
- all sequences of length T: Y_1^T
- Path of length T+1 generates Y: X_1^{T+1}
- All paths: X_1^{T+1}
- ELEC 3004: Systems

27 April 2017 **4**9

Step 3: the Backward algorithm

- Next we need to compute $\beta i(t)$ using a Backward computation
- βi(t) is the probability that our HMM will generate the rest of the sequence yt+1,yt+2, ..., yT beginning in state i

ELEC 3004: Systems

Step 4: Re-estimate the probabilities

- After running the Forward and Backward algorithms once, we can re-estimate all the probabilities in the HMM
- α_{SF} is the prob. that the HMM generated the entire sequence
- Nice property of E-M: the value of α_{SF} never decreases; it converges to a local maximum
- We can read off α and β values from Forward and Backward trellises

ELEC 3004: Systems

Compute new transition probabilities

- γ is the probability of making transition i-j at time t, given the observed output
 - γ is dependent on data, plus it only applies for one time step; otherwise it is just like $a_{ii}(t)$

$$\gamma_{ij}(t) = P(X_t = i, X_{t+1} = j \mid y_1^T)$$

$$\gamma_{ij}(t) = \frac{\alpha_i(t-1)a_{ij}b_{ij}(y_t)\beta_j(t)}{\alpha_{S_F}}$$

ELEC 3004: Systems

27 April 2017 55

What is gamma?

• Sum γ over all time steps, then we get the expected number of times that the transition i-j was made while generating the sequence Y:

$$C_1 = \sum_{t=1}^{T} \gamma_{ij}(t)$$

ELEC 3004: Systems

How many times did we leave i?

 Sum γ over all time steps and all states that can follow i, then we get the expected number of times that the transition i-x as made for any state x:

$$C_2 = \sum_{t=1}^{T} \sum_{k} \gamma_{ik}(t)$$

ELEC 3004: Systems

27 April 2017 57

Recompute transition probability

$$a_{ij} = \frac{C_1}{C_2}$$

In other words, probability of going from state i to j is estimated by counting how often we took it for our data (C1), and dividing that by how often we went from i to other states (C2)

ELEC 3004: Systems

Recompute output probabilities

- Originally these were b_{ii}(k) values
- We need:
 - expected number of times that we made the transition i-j and emitted the symbol k
 - The expected number of times that we made the transition i-j

27 April 2017 **59**

New estimate of $b_{ij}(k)$

$$b_{ij}(k) = \frac{\sum_{t:y_t=k} \gamma_{ij}(t)}{\sum_{t=1}^{T} \gamma_{ij}(t)}$$

ELEC 3004: Systems

Step 5: Go to step 2

- Step 2 is Forward Algorithm
- Repeat entire process until the probabilities converge

 Usually this is rapid, 10-15 iterations
- "Estimate-Maximize" because the algorithm first estimates probabilities, then maximizes them based on the data
- "Forward-Backward" refers to the two computationally intensive steps in the algorithm

27 April 2017 **6**

Computing requirements

- Trellis has N nodes per column, where N is the number of states
- Trellis has S columns, where S is the length of the sequence
- Between each pair of columns, we create E edges, one for each transition in the HMM
- Total trellis size is approximately S(N+E)

Next Time...

- State-Space & Digital Control!
 - State-space filters add feedback and become a "control filter"

27 April 2017 6

Summary

- FT of sampled data is known as
 - discrete-time Fourier transform (DTFT)
 - discrete in time
 - continuous & periodic in frequency
- DFT is sampled version of DTFT
 - discrete in both time and frequency
 - periodic in both time and frequency
 - due to sampling in both time and frequency
- DFT is implemented using the FFT
- Leakage reduced (dynamic range increased)
 - with non-rectangular window functions

