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2-MarSystems Overview
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9-Mar|Systems: Linear Differential Systems
14-Mar|Sampling Theory & Data Acquisition
16-MarjAliasing & Antialiasing
21-MarDiscrete Time Analysis & Z-Transform
23-MarSecond Order LTID (& Convolution Review)
28-MarFrequency Response
30-MarfFilter Analysis
4-AprDigital Filters (IIR) & Filter Analysis
6 | 6-AprDigital Filter (FIR)
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16-May|Digital Control Design
18-May|Stabilit
23-May|Digital Control Systems: Shaping the Dynamic Response
25-May|Applications in Industry
30-May|System Identification & Information Theory
1-Jur and Course Review
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Follow Along Reading:

B. P. Lathi .
Signal processing
and linear systems

1998
TK5102.9.L.38 1998

p— Today

Chapter 10

(Discrete-Time System Analysis
Using the z-Transform)

— §10.3 Properties of DTFT

— 8§ 10.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

Chapter 12 L
(Frequency Response and Digital Filters)

§ 12.1 Frequency Response of Discrete-Time Systems

§ 12.3 Digital Filters :

§ 12.4 Filter Design Criteria

& 12.7 Nonrecursive Filters :
Next Time ~ ssssssssssssssssssssssnsssssnnssssnnsnnnnnnnsn ,

Announcements

» Lab next week

T TeOK A PICTURE OF MY COMPUTER
SCREEN—LJHY IS THE PHOTO COVERED
IN THESE LJEIRD RAINBOW PATTERNS?

R LHEN AGRDS 1y
FISALIGNED LIITH
Amme Baw;

YHHT'S A f@iﬁ’f

&

— Only on Thursday
(April 14)

— No lab sessions on the
other days of the week

— Thanks!



http://library.uq.edu.au/record=b2013253~S7

Follow Along Reading:

Today
"ﬁ‘ B. P. Lathi « Chapter 10
Picar Signal processing i -Ti i
R - lncar sysiems (Dl_screte Time System Analysis
o 1998 Using the z-Transform)

TK5102.9.L.38 1998

— §10.3 Properties of DTFT

— 8§ 10.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

Chapter 12
(Frequency Response and Digital Filters)

§ 12.1 Frequency Response of Discrete-Time Systems
§ 12.3 Digital Filters :
8§ 12.4 Filter Design Criteria

i+ 8127 Nonrecursive Filters

HY Next Time ~ ssssssssssssssssssssssnsssssnnssssnnsnnnnnnnsn ,
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** FIR Filter Design **

» How to get all these coefficients?
H(w) =| ho+he ™ - 4 h,_jeiin=be ,\—[,,].........
FIR Design Methods: =@
1. Impulse Response Truncation

+ Simplest

— Undesirable frequency domain-characteristics, not very useful
2. Windowing Design Method

+ Simple

— Not optimal (not minimum order for a given performance level)
3. Optimal filter design methods

+ “More optimal”

— Less simple...

FIR Filter Design & Operation
Ex: Lowpass FIR filter

 Set Impulse response (order n = 21)

* “Determine” h(t)
— h(t) is a 20 element vector that we’ll use to as a weighted sum

50

h(t)

L L L
0 2 4 8 8 10 12 14 16 18 20

* FFT (“Magic”) gives F%equency Response & Phase

|H (w)]
H




Why is this "hard”! Looking at the Low-Fass
Example

B lLif |w| <w.
Ha(w) = { 0if we <|w| <7

« Why is this hard?
— Shouldn’t it be “easy” ??
... just hit it with some FFT “magic” and then keep the bands we
want and then hit it with some Inverse-FFT “supermagic”???

— Remember we need a “system” that does this
“rectangle function” in frequency

— Let’s consider what that means...
« It basically suggests we need an Inverse FFT of a “rectangle function”

Flashback: Fourier Series & Rectangular Functions

§. Fourier Tranform

71 {v'ect (g)} _ sinc(t) §{rect (1)} = sinc (%)

m

- - xit) = reclit, ) ")
. ; ¥ X6
x(=f) (1) o
i . “ -
I
f14
o !
. VA v g w
/ |
| ¥ —t—
— f P —
Ref: http://cnx.org/content/m26719/1.1/ w2 w2 on 4m 2m 0 2% Jam 6m
http:/A com/input/?i=IFFT%28sinc%28f%29%29 T o1 T T T

Ref: http://cnx.org/content/m32899/1.8/
http://wwuw.thefouriertransform.com/pairs/box.php

See:

» Table 7.1 (p. 702) Entry 17
& Table 9.1 (p. 852) Entry 7
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FlashbackK: Fourier Series &« Rectangular Functions

[2]

» The sinc function might look familiar
— This is the frequency content of a square wave (box)

N — 2 Ref: hitp 1a.com/input/ 2i=FFT%28rect%28t%29%29
fn AR dm o0 25 m B http://cnx.org/content/m32899/1.8/

« This also applies to signal reconstruction!
=» Whittaker—Shannon interpolation formula

— This says that the “better way” to go from Discrete to Continuous
(i.e. D to A) is not ZOH, but rather via the sinc!

z(t) = 30 z[n] - sinc (t—;ﬂ’)

n=—

~. FIR and Low Pass Filters...

« However!!
a sinc is non-causal and
infinite in duration

§ 1if |w| < w,
Hy(w) = { 0if w. <|w| <7

Has impulse response:

We SIN Wen
ha(n) = ———
T Wen

o
N
o]
)
|
o
|
gL oIt
s

Thus, to filter an impulse train

with an ideal low-pass filter use: | And, this cannot be
implemented in practice ®

) = (3o -8 (t —nT)) *sinc (&
(1) (Z"——XI[”] o(t—n ))*S'nc(T) ~* we need to know all samples of the

input, both in the past and in the futurg
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Plan O: Impulse Response Truncation

Maybe we saw this coming...
=~ Clip off the sinc at some large n

~ sin (nw )
hln)= M for |n| <M and 0 otherwise

M 15 IAI 30 I
1.2 1
ff *\ A~~NS

* Ripples in both passband/stopband
and the transition not abrupt (i.e., a transition band).
* As M-, transition band-> 0 (as expected!)

=» FIR Filters: Window Function Design Method

« Windowing: a generalization of the truncation idea

* There many, many “window” functions:
— Rectangular
— Triangular
— Hanning
— Hamming
— Blackman
— Kaiser
— Lanczos
— Many More ... (see: http://en.wikipedia.org/wiki/Window_function)



http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function

=» Digital Filters Types

FIR
From H(z2):
D HW) = ho+hie ™ 4ot hy_geile
n—1 n—1
= thﬂ)ar;—iz.'q:-.ini‘_u
t=0

i=0

-> Filter becomes a “multiply,
accumulate, and delay” system:

n—1
ylt) = Zh,—u(r‘ —7)

yln] = bo‘x[”] +biz[n — 1]+ - - + bya[n — N]

IR

Impulse response function
that is non-zero over an
infinite length of time.

FIR Properties

* Require no feedback.
« Are inherently stable.

» They can easily be designed to be linear phase by making the

coefficient sequence symmetric

* Flexibility in shaping their magnitude response
« Very Fast Implementation (based around FFTS)

» The main disadvantage of FIR filters is that considerably more
computation power in a general purpose processor is required
compared to an IIR filter with similar sharpness or selectivity,
especially when low frequency (relative to the sample rate)

cutoffs are needed.



http://en.wikipedia.org/wiki/Impulse_response
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http://en.wikipedia.org/wiki/Impulse_response
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FIR as a class of LTI Filters

« Transfer function of the filter is

Y(2) _ Saobezh
X(z) 1+ ij,\rzl apz~k

« Finite Impulse Response (FIR) Filters: (N =0, no feedback)
= From H(z):

H(w) = hn+"?|f7i&*"'+hu Lfﬁi n—lew

n—1 n—1
= E hycostw —i g hy sintw
i=0 t=0

H(z) =

 H(w) is periodic and conjugate
= Consider o € [0, n]

FIR Filters

 Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
» Order = number of delays

M-1 M-1

y(n) = Z brx (n —k) = Z h(k)x(n—k)

k=0 k=0

T[h,_»‘:b [] = unit delay
®--®

¥

I




FIR Impulse Response

Obtain the impulse response immediately with x(n)= 6(n):

M—-1

hn)=uy(n)= Z b0 (n —k) =b,
k=0

The impulse response is of finite length M (good!)

FIR filters have only zeros (no poles) (as they must, N=0 I!)
— Hence known also as all-zero filters

FIR filters also known as feedforward or non-recursive, or
transversal filters

FIR & Linear Phase

» The phase response of the
filter is a linear

a) FIR Filter (Type ) having Linear Phase b) FIR Filter (Type IV) having Linear Phase

function of frequency e e

« Linear phase has o f
constant group delay, all B e wr er e+ er e as wn
freq uency Com ponents have ) IR Filter having MNeon-Linear Phase o) FIR Filter having Mon-Linear Phase
equal delay times. .= No w NI T af T

1 0.7

distortion due to different time ":
delays of different frequencies < 1

045 I 1 I 1 a 1 1 I
0 02 04 05 08 1 0 02z 04 06 08

b
TT T T T T 17T

Ref: Wikipedia (Linear Phase

* FIR Filters with:
n=—oo h[n] - sin(w-(n—a)+B) =0



http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Group_delay
http://en.wikipedia.org/wiki/Linear_phase

FIR & Linear Phase = Four Types

2) FIR Filter (Type Il having Linear Phase 1) FIR Fiter (Type V) having Linear Phase
1 2
T T T T T T T T
15
05 - g IR
0 - 05 |-
05 | B DE C
Al 4 RS
15
15 ey
25
2| i s
25 ! L L L 35 ! L L L
0 0z 04 06 08 1 0 0z 04 06 08 1

Ref: Wikipedia (Linear Phase

Impulse response # coefs | H (w)

Type

hin)=h(M —1—-n) | Odd e je(M=1)/2 (h (A=t 42 I (ML ) o (_“;A-)) 1

hin)=h(M—-1-n) Even e dwM=1)/29 SN2 g (A ) cos (w (k — 1))

(n)
hin)=—h(M—1-n) | 0dd e—ile(M-1)/2-7/2] (2 TN (ML ) sin [-W-A-))
hin)=—-h(M—1—-mn) | Even e—ile(M-1)/2-7/23 zg“il)"j h (‘—,[ — k) sin (w (k — %)J

n =1

= W

» Type 1: most versatile

» Type 2: frequency response is always 0 at o=n
(not suitable as a high-pass)

* Type 3 and 4: introduce a /2 phase shift, 0 at ®=0
(not suitable as a high-pass)

Digital Windows!

(Preview Edition)

ELEC 3004: Systems
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Some Window Functions [1]

1. Rectangular

w(n) =1

Rectangular window Fourier transform
0 S —(— ——
-10 |- | — 4 -

. decibels

-130
0 N-1 -40-30-20-10 0 10 20 30 40

samples bins

LGl

Windowing and its effects/terminology

":'gg';)l Mainlobe

~10 4+ Sidelobes

~133 bt
-20
~-..__Rolloff rate
7o s ~20 dB/decade
0 2 10m 20m w -~
r T T
Lathi, Fig. 7.45

L




Some More Window Functions ...

2. Triangular window

n_N-1

w(n) =1— |—xyz1-
2

Triangular window Fourier transform

T T

. decibels

-130
-40-30-20-10 0 10 20 30 40
samples bins

» And Bartlett Windows
— A slightly narrower variant with zero weight at both ends:

o N=1
w(n) =1— |—x—%—
2

LGl

Some More Window Functions...

3. Generalized Hamming Windows
w(n) = o — B cos (ﬁ,’;ﬂl)

- Hanning Window
— w(n) =0.5 (1 — COs (277—”))

Hann window Fourier transform

T TT T3 ofF T T [ T 1T

-130
o - -40-30-20-10 0 10 20 30 40
samples bins

Hamming window (o = 0.53836) Fourier transform

- Hamming’s Window i 1 .

T—T T

w
=
T

- a=054, A=1—-—a=0.46

o
=
T

. decibels
5 2 o &
S

samples bins

L

-130
-40-30-20-10 0 10 20 30 40

13



Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
Adds more shifted sinc functions for less side-lobe levels

w(n) = ag—aj COS (]%Tl)—kag cos (ﬁ'ﬂ”‘l)—ag cos (%)

Blackman-Harris window Fourier transform

1E T T | I R —

30
-40-30-20-10 0 10 20 30 40
bins

samples

O

Some More Window Functions...

5. Kaiser window
— A DPSS (discrete prolate spheroidal sequence)
Maximize the energy concentration in the main lobe

— w(n) = fo (Wa\/;o—(iﬁ—lﬁ)

Where: |, is the zero-th order modified Bessel function of the
first kind, and usually a = 3.

Kaiser window (a = 3)

Fourier transform
S —— ———

T 1T

. decibels

-130
-40-30-20-10 0 10 20 30 40

samples bins

o

14



Comparison of Alternative Windows —Time Domain

Window functions M=16

AT N Hanning
: Hamming
— Blackman H
™,
oz : ‘ -
o 5 10 15 Punskaya, Slide 90

Sample number

Comparison of Alternative VVindows
Frequency Domain

Fourier transforms of windows M=16
T T

: —— Hanning
20k .. : . — — Hamming
: — - Blackman

—20

dB

—40

—80

-100
o] 3.5

Punskaya, Slide 91




Adding Order

+ Transition and Smoothness
— Increased Size

B AE— e

Punskaya, Slide 94

Summary Characteristics of Common VVindow
Functions

Rolloff Peak

Mainlobe Rate Sidelobe Peak 20log o6

No. Window w(f) Width (dB/oct) level (dB)

. 1 4

1 Rectangular: rect < - -6 -13.3 -21dB
87

5 Bartlett: A [ — o8 12 —26.5

& 2T T

2; 87
3 Hanning: 0.5 [1 +cos (IL')] ,; —18 -31.5 -44dB
!
4 Hamming: 0.54 + 0.46 cos (:;E) STY -6 —42.7 _53(“3
2nt 4t 12m
5 Blackman: 0.42 +0.5¢cos | — | +0.08cos [ — — —18 —58.1
d ( 1 ) ( 1 ) T -74dB

Iy {a \‘,",T(%):}

Kaiser: —— — 0=a<10 —_— —6 —59.9 (o = 8:168
6 aiser: @ <a <l ¥ (ax )

Lathi, Table 7.3
Punskaya, Slide 92
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Filter Design Using Windows

‘We shall design an ideal lowpass filter of bandwidth W rad/s. For this filter,
the impulse response h(t) = %sinc (Wt) (Fig. 4.48c) is noncausal and, therefore,
unrealizable. Truncation of h(t) by a suitable window (Fig. 4.48a) makes it real-
izable, although the resulting filter is now an approximation to the desired ideal
filter.} We shall use a rectangular window wg(t) and a triangular (Bartlett) win-
dow wr(t) to truncate h{f), and then examine the resulting filters. The truncated
impulse responses h g(t) and hp(t) for the two cases are depicted in Fig. (4.48d).

he(ty = h(ther(t)  and  ho(d) = h(t)wr(t)

Hence, the windowed filter transfer function is the convolution of H{(w) with the
Fourier transform of the window, as illustrated in Fig. 4.48e and f. We make the
following observations.

1. The windowed filter spectra show spectral spreading at the edges, and in-
stead of a sudden switch there is a gradual transition from the passband to
the stopband of the filter. The transition band is smaller (2n/T rad/s) for the
rectangular case compared to the triangular case (4n/T rad/s).

2. Although H (w) is bandlimited, the windowed filters are not. But the stopband
behavier of the triangular case is superior to that of the rectangular case.
For the rectangular window, the leakage in the stopband decreases slowly (as
1/w) compared to that of the triangular window (as 1/w?). Moreover, the
rectangular case has a higher peak sidelobe amplitude compared to that of the
triangular window,

Filter Design Using Windows

Wity

1 )

(@)

"
I~
i

~ \/
o Hy()
©
- W g 5 R e
-
7
Hiw) Hy(@)
T 0 W 0w

Fig. 448 Filter design using windows.
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FIR: Rectangular & Hanning Windows

» Rectangular « Hanning
.M=1‘6 =
M=16

=>» Hanning: Less ripples, but wider transition band

\

Punskaya, Slide 93

Windowed FIR Property I:
Equal transition bandwidth

]
— H(e?v)
1+ o+ /
A et Ha(ed®)
ke _— Ha
([ — <
1
|
Aw
S [l ' + |
o~ \' |

vw
we
'
' i
—1 = AW,
Ll I
' ' W (eile—0))
/\ -
0
' )
VRV

Punskaya, Slide 96

 Equal transition bandwidth on both sides
of the ideal cutoff frequency

19



Windowed FIR Froperty Z:
Peak Errors same in Passband & Stopband

Punskaya, Slide 96

» Peak approximation error in the passband (1+6 - 1-6)
is equal to that in the stopband (6 = -0)

Windowed FIR Property 3:

Mainlobe Width
— H(e?*)
14 o =
\/ Sy = Ha(e??)
| ol
| N
1 ! ' ‘
B G~
i , O ]
— i
n=s
[VEREVAR "

Punskaya, Slide 99

» The distance between approximation error peaks is
approximately equal to the width of the mainlobe Aw,,

20



Windowed FIR Froperty 4:
Mainlobe Width [2]

— H(e?¥)
1+ o —
e A _— Ha(e?¥)
1 _—
' .
! )
1 A
' . |
! | |
' T
o+ . ]
3 S G ——0 w
O T
[N J
]
Awpy,
4 ) Wi )
1 | /
0
' ]

Punskaya, Slide 96

« The width of the mainlobe is wider than
the transition bandwidth

Windowed FIR Property 5:
Peak AJ is determined by the window shape

I

' N T
' . +
+ - T
B VW, C
'
1 |
—>1 = Awy,
| |
' ] W (ei(w-0))
/\ -
0
' )
VRV

Punskaya, Slide 96

 peak approximation error is determined by
the window shape, independent of the filter order

21



Window Design Method Design Terminology

—;—| o H{ed®)
1+ & —
\_\'_/ """" 1- i‘ _— Ha(e?v)
- . f”
] _ A
! ! Where:
| ' | * o, cutoff frequency
—— I 1
o+ we | '/\/\/ JW. + & maximum
! . passband ripple
—_— = Ay,
: ! Wieio-oy Aw: transition bandwidth
AL N e , -
W/ N/ = * Aoy width of the

window mainlobe
Punskaya, Slide 96

Passband / stopband ripples

o, and w,: Corner Frequencies

Passband / stopband ripples are often expressed in dB:
» passband ripple = 20 log,, (1+5,) dB

* peak-to-peak passband ripple = 20 log,, (1+23,) dB

« minimum stopband attenuation = -20 log,, (5,) dB

22



Passband / stopband ripples

o, and o, Corner Frequencies

Passband / stopband ripples are often expressed in dB:

* passhand ripple =26tog; (6,8 = 20 log,, (5,) dB

« peak-to-peak passhand ripple = 26-tegrrti-+25;)tB
= 20 log, (28,) dB

« minimum stopband attenuation =—=20-legm-(ég-dB—
=20 log,, () dB

Summary of Design Procedure

1. Select a suitable window function
2. Specify an ideal response Hy()
3. Compute the coefficients of the ideal filter hy(n)

4. Multiply the ideal coefficients by the window function to
give the filter coefficients

5. Evaluate the frequency response of the resulting filter and
iterate if necessary (e.g. by increasing M if the specified
constraints have not been satisfied).

Punskaya, Slide 105
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Windowed Filter Design Example

» Design a type | low-pass filter with:

— Mp =0.2n
— 0s=0.3n \
- 6=0.01 | = - H{e®)
4 e )
\_/\/1 — Ha(e)
1 — & 1 5(""
]
]
X Aw
| I
| I
| T
i | T |
+ w/\//\_/ w
O T
Ll |

Vindowed Filter Design Example:
Step |: Select a suitable Window Function

Rolloff ak
Mainlob ate Sidelobe Peak 20logyq0
NG Width (Bloct)  level (dB)
) 4
| 133 -21dB
L. 1 -265
1 -44dB
! .
7 -53dB
-18 —58.1
-74dB

a 0.5¢cos | = +0.08 cos —
: 0,080 (7 =
I |ay/1 4('):
o |ayfl—4\ =
V T 1135

» LP with: wp=0.2n, ®s=0.3n, 6=0.01

» 6=0.01: The required peak error spec: . .
20l0g10 (5) :jlo 4B P P } Hanning Window

» Main-lobe width:

0y ©,=0.31-0.21 =0.1r > 0.1n =8n /M

- Filter length M >80 & Filter order N > 79

» BUT, Type-I filters have even order so N = 80

24



Windowed Filter Design Example:
Step 2: Specify the Ideal Response

» From Property 1 (Midpoint rule)
) o, = (o + ®p)/2 = (0.27+0.37)/2 = 0.25x

An ideal response will be:

1 if |o/<0.25%

H;(w) = .
1 (w) {0 if  0.257 < |m|<

Vindowed Filter Design Example:
Step 3: Compute the coefficients of the ideal filter

 The ideal filter coefficients hy are given by the
Inverse Discrete time Fourier transform of Hy()

1 " r L 1 Yoo '
r(n) = — X (w)e?"dw = — el dw

2 ), 2w J .

We SN wen

™

wen

+ Delayed impulse response (to make it causal)

m=m) Coefficients of the ideal filter (via equation or IFFT):

sin (0.257 (n — 40))

hin) = 7w (n — 40)

25



Windowed Filter Design Example:
Step 4: Multiply to obtain the filter coefficients

= 1, (1) = sin (OWQ(iW_(ZO—) 40))

« Multiply by a Hamming window function for the passband:

w(n) = 0.54 — 0.46 cos (Q’TW”)

Vindowed Filter Design Example:
Step 5: Evaluate the Frequency Response and Iterate

The frequency response is computed as the DFT
of the filter coefficient vector

I the resulting filter does not meet the specifications, then:
— Adjust the ideal filter frequency response
(for example, move the band edge) and repeat (step 2)
— Adjust the filter length and repeat (step 4)
— change the window (& filter length) (step 4)

* And/Or consult with Matlab:
- FIR1 and FIR2

- B=FIR2 (N,F,M) : Designs a Nth order FIR digital filter with

26



Windowed Filter Design Example:
Consulting Matlab:

« FIR1 and FIR2
- B=FIR2 (N, F,M) : Designs a Nth order FIR digital filter

- F and M specify frequency and magnitude breakpoints for the
filter such that plot(N,F,M) shows a plot of desired frequency

— Frequencies F must be in increasing order between 0 and Fs/2,
with Fs corresponding to the sample rate.

— B is the vector of length N+1,
it is real, has linear phase and symmetric coefficients

— Default window is Hamming — others can be specified

Frequency Response of Discrete-Time Systems

For (asymptotically stable) continuous-time systems we showed that the system
response to an input e’ is H (jw)e’t, and that the response o an input cos wt is
|H (jw)|cos [wt + LH (jw)]. Similar results hold for discrete-time systems. We now
show that for an (asymptotically stable) LTID system, the system response to an
input ¥ is H[e?e/ and the response to an input cos Qk is |H [e??]] cos (Qk +
LH 7)),

The proof is similar to the one used in continuous-time systems. In Sec. 9.4-2
we showed that an LTID system response to an (everlasting) exponential z* is also
an (everlasting) exponential H [z]z¥. It is helpful to represent this relationship by
a directed arrow notation as

2k = H[z]e* (12.1)

Setting z = e*7% in this relationship yields
M — | (IS (12.2a}
eI — p[p 01 {12.2b)

Addition of these two equations yields
2c08 Ok == He/MeI™ + Hle ™73 = 2Re (.H [ei“ief‘”‘) (12.3)
Expressing H [/ in the polar form
H[e!®) = |H [/ I (12.4)

Eq. (12.3) can be expressed as
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Frequency Response of Discrete-Time Systems

cos Ok = [H[e?Y)| cos (ﬂk + lH[njn}) (12.5)

In other words, the system response y[k] to a sinusoidal input cos Qk is given by

oK) = | i)l cos (m + uz[e:‘ﬂ]) (12.68)
Following the same argument, the system response to a sinuseid cos (k + 0) is
ylk] = |H (Y| cos (m +o+ [H[e’“]) (12.6b)

This result applies only to asymptotically stable systems because Eq. (12.1) is valid
only for values of = lying in the region of convergence of Hl[z]. For z = &/, = lies
on the unit circle (|z] = 1). The region of convergence for unstable and marginally
stable systems does not include the unit circle.

This important result shows that the response of an asymptotically stable LTID
system to a discrete-time sinusoidal input. of frequency {1 is also a discrete-time sinu-
soid of the same frequency. The amplitude of the output sinusoid is |H [e/9] times
the input amplitude, and the phase of the output sinusoid is shifted by ZH [e7%] with
respect to the input phase. Clearly [H {e#7] is the amplitude gain, and a plot of
|H [ej“]l versus §2 is the amplitude response of the discrete-time system. Similarly,
£H[e*? is the phase response of the system, and a plot of /H[&'"] vs O shows
how the system modifies or shifts the phase of the input sinusoid. Note that H [e/}]
incorporates the information of both amplitude and phase response and therefore
is called the frequency response of the system.

These results, although parallel to those for continuous-time systems, differ
from them in one significant aspect. In the continuous-time case, the {requency re-
sponse is H (jw). A parallel result for the discrete-time case would lead to frequency
response H [j€)]. Instead, we found the frequency response to be H {e#"]. This devi-
ation causes some interesting differences between the behavior of continuous-time
and discrete-time systems.

Frequency Response of Discrete-Time Systems

B Example 12.1
For a system specified by the equation
wlk+1] - 0.8y[K] = flk +1]
find the system response to the input (a) 1¥ = 1 (b) cos[fk 03]
() a sampled sinusoid cos 1500t with ssmpling interval 7' = 0.001
The system equation can be expressed as

(B = 0.8)ylk] = Ef|k]
Therefore, the transfer function of the system is

E 1
HlE = 255 = T- o8
The frequency response is
m_ L
H'M TToEeA 127
—l —
= T 08(cos 1— j5in 1)
[
" [1-03 j
Tueretere {1~ 08 cos )+ j0Bsin 1
i) = ——— S S—
Vi 7 + (0.85in §2)7
- 12 4]
Goos [ ¢ )
and
LT st [ 0B8N & ] ,
HP) = -t [ (1285)
The amplitude response |H [¢?7]] can also be obtained by observing that |[H|* = HH*
“Therefore
[T = T
= HI|H [ (12.9)

From Eq. (12.7) it follows that

I = (gaem) (7=amam
e < (=) )

R S
- Lo
which yields the result found earlier in Eq. (12.83)

28



Frequency Response of Discrete-Time Systems

[

_/J J
(VY4

Fig. 121 Frequoncy respanse of an LTID system in Example 12.1

st

Figure 121 sheows plots of amplitude and phase response a3 functions of 0. We pow
oo pwluaml wie and the phase response for the various inputs:

(&M" with } = 0, the amplitude response i H|e"|. From Bxq. (12 8a)

1 1
M L = —— = 5= 540

HE = — — -

L V18- L6oos(0) VOB

‘Therefore

@) =5  an " =0
“These values also can be read direstly from Fi i ar
ing to 1 = 0. Therefore, the system respoase to input 1 s

ulkl = 50%) =5 (1210)

(b) fI4] = con[§h - 0.2
Here © = §. According to Eas. (128)

[T —
v

These values also can be rend divectly from Figs. 12.1a and 12.1b, respectivaly, correspond-
ing to {1 = §. Therefore

Next Time...

 Digital Windows

* Review:
— Chapter 12 of Lathi

« A signal has many signals ©
[Unless it’s bandlimited. Then there is the one o]

o
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In Conclusion

* FIR Filters are digital (can not be implemented in analog) and
exploit the difference and delay operators

« A window based design builds on the notion of a truncation of
the “ideal” box-car or rectangular low-pass filter in the
Frequency domain (which is a sinc function in the time domain)

» Other Design Methods exist:
— Least-Square Design
— Equiripple Design
— Remez method
— The Parks-McClellan Remez algorithm
— Optimisation routines ...
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