
The Discrete Fourier Transform. 
 

Recap: a bit of linear algebra, and a discussion on the basis.  
 

A basis is any set of linearly independent vectors. It is useful because for a basis of Rn space, any n-

dimensional vector can be exactly reproduced by a linear combination of the basis. 

 

Are the following vector sets a basis? 

 

{
1
1
0

} , {
1

−1
0

} , {
0
0
1

} 

 

{
0
1
0

} , {
1
0
0

} , {
0
0
1

} 

 

{
1
0
0

} , {
1
0
1

} , {
0
0
1

} 

{
3
2
1

} , {
0
3
0

} , {
0
0
4

} 

 

Useful basis traits: 
 



Orthogonal basis : every vector in the basis is orthogonal to every other vector. IE < �̅�𝑖, �̅�𝑗 > =

 0  ;  ∀ 𝑖 ≠ 𝑗 

 

 

we like this property because the inverse of the matrix formed by an orthogonal basis is of the form 

𝐵𝑇𝐵 = 𝐷 where D is a diagonal matrix. So 𝐵𝑇/𝐷 =  𝐵−1 

 

Orthonormal basis: an orthogonal basis where each vector is of unit length, IE ||�̅�|| = 1. In this case 

𝐵𝑇𝐵 = 𝐼, IE 𝐵𝑇 =  𝐵−1 

 

For the bases given above, which are orthogonal? Which orthonormal? 

 

Why is an orthonormal basis useful?  

 
For transformation between two orthonormal bases, length and angles are maintained.  

 



From a signal processing perspective, length is equivalent to signal energy, so for an orthonormal basis, 

signal energy is maintained. This is the basis of Parsevals theorem, which will be covered soon in 

lectures. 

 

Estimation of vectors. 

 Let’s consider the first basis vector, which I will call �̅� here, that we saw today : 

�̅� =  {
1
1
0

 } 

We want to try and approximate another vector, �̅� , by linearly scaling �̅� by some constant. Formally we 

aim to optimize the following  

min𝑘∈𝑅 (||�̅� − 𝑘�̅�||) 

 

 

Solving for k is straight forward, we have seen it briefly in lecture 3. Refer to lecture 3 pages 15 and 16. 

 

 

 

 

 

 

What is the vector, kv̅ , that best approximates  x̅ =  
4
5
1

 ?  

4.5 

4.5 

0 

 

 

what is the value of k? 

 

4.5 

 



What is the mean squared error (note this is 
||x̅−kv̅||

N
)?  

0.5  

 

 

 

The key point to this is that for an orthogonal basis our new coefficients are found by solving this 

problem for each basis vector. If we expand the equation  

�̅� =
𝐵𝑇

𝐷
 �̅� 

We find that 𝑘 =
 <�̅�,�̅�>

||�̅�||
  will fall out, and that the elements of 𝐷𝑖,𝑖 are the energy of each basis vector 

||�̅�𝑖||. 

 

 For the orthonormal case, the energy ||�̅�|| = 1, and so the result simplifies to 𝑘 = < �̅�, �̅� >  . Fourier 

referred to this process as decomposing our vector �̅� into a sum of linearly scaled basis vectors. 

 

 

This is not the case for a basis that is not orthogonal. Because the basis vectors are non-orthogonal, the 

solutions for 𝑘𝑖 are dependent on all the vectors in the set. 

 

 

Clearly, there are an infinite number of choices for an orthonormal basis, and by extension for an 

arbitrary basis too. However there are choices of basis which help solve some important problems. 

Today, we will discuss the Fourier basis, which is useful for the case where our signals are periodic. 

 

 

 

The Discrete Fourier transform:  
 Fourier provided the underlying math for decomposing a function into a set of sine waves, or more 

commonly a set of complex exponential functions.  

 

In the discrete fourier transform we decompose a vector signal into a set of sampled complex 

exponential functions. 

 



What do these basis vectors look like? 
 

In the continuous case we have 𝑓(𝑡) = cos(𝜔𝑡) + 𝑗 sin (𝜔𝑡) which alternatively is equal to the complex 

exponential 𝑓(𝑡) = 𝑒−2𝜋𝑗𝜔𝑡.  To understand the FFT, we have to look at the problem in terms of the 

complex exponential, so we will continue with this from here on in. 

 

When we sample f(t), we form a the following vector. 

 

𝑓̅[𝑛] = { 𝑓(0) 𝑓(𝑇) 𝑓(2𝑇)    ⋯ 𝑓((𝑛 − 1) 𝑇 ) }   

 

Assume that one of our fourier basis functions is f(t) = ej0.5πt (IE ω =
1

4
 ). Find the first 4 terms of the 

corresponding fourier basis vector f[̅n] where t = [0, 1, 2, 3]. 

 

{

1
𝑖

−1
−𝑖

} 

 

Find the first 4 terms of the fourier basis vector f(t) = ej0t, IE for ω = 0 . What would we call this basis 

function? 

 

 

 

Are these vectors unit length  (ie would a set of these vectors form an orthonormal basis)? 

 

 

 

Sine functions are orthogonal, but what about when they are sampled? 
 



 

While we won’t prove this today, Sine functions of different frequencies are orthogonal functions, which 

as we showed earlier is very useful. However, when we sample them, we find that they aren’t always 

orthogonal, they are only orthogonal if the sampling covers a whole unit period. 

 

 

are the fourier basis vectors given above orthogonal? (use the inner product) 

: < v̅1, v̅2 > = 0 

 

 

This is because for a bounded DFT, we have to assume a periodic extension. For that extension to not 

have a discontinuity, it has to have a whole number of periods captured. 

 

Also we don’t need to define our basis vectors in terms of 𝜔, as the basis vector values will be invariant 

with changes in sampling period. Consider a sampling period of 0.01s, if we halve the samping period 

(doubling the frequency), we also halve the time required to capture N samples, and the basis vectors 

will remain the same (however the frequency they represent doubles) 

 

so we find that we can describe the DFT basis functions for a vector of dimension N as follows 

 

𝑓𝑛(𝑡) = 𝑒−2𝜋𝑗𝑡𝑛/𝑁  𝑓𝑜𝑟 𝑛 = 0: 𝑁 − 1 

 

 

A Discrete basis 
 

By now you have calculated the first two basis vectors for the 4 point DFT. The other two vectors, 

correspond to n = 2, 3 . the following are the 4 basis functions 

 

 

{

1
1
1
1

} , {

1
𝑖

−1
−𝑖

} , {

1
−1
1

−1

} , {

1
−𝑖
−1

𝑖

} 

 



 

 

 

 

Find the DFT of 𝑓̅[𝑛] = { 0 1 0 −1 } IE a sampled vector of sin (0.5𝜋𝑡) by whatever means you feel 

like. 

0, -2i, 0, +2i 

 

You should find only two terms are significant, why is this?  

You should also find that the terms are complex, why is this? If we consider this complex number in polar 

form, what does it correspond to? 

𝑓(𝑡) = cos(𝜔𝑡) + 𝑗 sin(𝜔𝑡)

 

 

 

The FFT 
 

The Fast Fourier Transform is an efficient way to obtain the Discrete Fourier Transform. It gives an 

identical result to the DFT you found above, but does so more efficiently. 

 

How much more efficient? Well unless you were using a scheme akin to the FFT, when you calculated 

the DFT you probably used the following 

 



𝑓𝑓𝑡̅̅ ̅̅̅ = 𝐵�̅� 

  

𝑓𝑓𝑡̅̅ ̅̅̅ = [

1
1
1
1

1
𝑖

−1
−𝑖

1
−1
1

−1

1
−𝑖
−1

𝑖

] [

0
1
0

−1

] 

 

 

This maxtrix multiplication will involve 42 multiplications, in computing we would say it is an 𝑂(𝑛2) 

algorithm. Scale this up to a million coefficents, and your looking at 1 trillion multiplications. That will 

take ~250 seconds to compute on a quadcore at 1ghz assuming theres little overhead. 

 

The FFT reduces the cost to 𝑂(𝑛 ln(𝑛)), here your looking at something closer to 20 million operations, 

and a execution time of ~5ms quadcore at 1ghz (this analysis is a little basic, as there is some overhead 

to the FFT-remember we have to scale AFTER the fact, and there is also an accumulate in the dot 

product) 

 

The Plan 
 

If we look at the basis, we can see that there are a number of redundant multiplications 

 

[

1
1
1
1

1
𝑖

−1
−𝑖

1
−1
1

−1

1
−𝑖
−1

𝑖

] [

0
1
0

−1

] 

 

The values for the terms calculated by the coloured squares will be exactly the same. They also appear 

on a regular spacing. Lets see how they appear 

 

Polar form, and why the FFT is done on an non-orthonormal basis 
 

Recall that for a complex multiplication, if we do the multiplication in polar form the magnitudes 

multiply, and the angles add. If the two complex numbers are unit length, then the magnitude of the 

result is unit length as well. 

 



This leads to the trick of the FFT. In the DFT, we talked about our basis vectors being regularly sampled 

points of a complex exponential: 

 

𝑓̅[𝑛] = { 𝑓(0) 𝑓(𝑇) 𝑓(2𝑇)    ⋯ 𝑓((𝑛 − 1) 𝑇 ) }   

𝑓̅[𝑛] =   { 𝑒0 𝑒−𝑗𝑘1 𝑒−𝑗𝑘2
    ⋯ 𝑒−𝑗𝑘(𝑛−1) } 

 

Where 𝑘 =  2𝜋𝑛/𝑁, and is fixed for a given DFT we intend to take. What’s interesting is that ||𝑒−𝑗𝑥|| =

1  for any given value of x. We also find that the samples are evenly spaced around the unit circle. You 

should have seen this last Thursday in the discussion of the Z-Transform 

 

 

Lets define a new function, 𝑤 =  𝑒−𝑗𝑘1, which is the value of our basis vector at sample 2. We can find 

the basis vector at sample 1 as follows: 

 𝑤0 = 𝑒−𝑗𝑘1×0 = 𝑒0 = 1   

 

And sample 3: 

𝑤2 = 𝑒−𝑗𝑘1×2 = 𝑒−𝑗𝑘2 

 

And so on. Now lets rewrite the basis matrix in terms of this new function, w 

 

[

𝑤0

𝑤0

𝑤0

𝑤0

𝑤0

𝑤1

𝑤2

𝑤3

𝑤0

𝑤2

𝑤4

𝑤6

𝑤0

𝑤3

𝑤6

𝑤9

] = [

1
1
1
1

1
𝑤1

𝑤2

𝑤3

1
𝑤2

𝑤4

𝑤6

1
𝑤3

𝑤6

𝑤9

] 

 If we prescaled the basis functions, the magnitude of we would have  𝑤 =  𝑘𝑛𝑜𝑟𝑚𝑒−𝑗𝑘1 . If we look at 

the next coefficient 𝑤2 we see the following: 



𝑤2 =  𝑘𝑛𝑜𝑟𝑚
2 𝑒−𝑗𝑘2 ≠   𝑘𝑛𝑜𝑟𝑚𝑒−𝑗𝑘2  

Hopefully its clear that this unit circle expansion will only work if the terms are unit length, and that if 

we are going to factorize that matrix in terms of these 𝑤𝑛 functions (as the FFT does), we will have to 

apply the scaling later. 

 

Factorising the DFT matrix 

 

 


