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Fig. 8.3 Discrete-time impulse function. 

1. Discrete-Time Impulse Function 8[k] 

The discrete-time counterpart of the continuous-time impulse function 8(t) is 
8[kJ, defined by 

8[k] = g k=O 
kl-O 

(8.1) 

This function, also called the unit impulse sequence, is shown in Fig. 8.3a. The time
shifted impulse sequence 8[k-m] is depicted in Fig. 8.3b. Unlike its continuous-time 
counterpart c5(t), this is a very simple function without any mystery. 

Later, we shall express an arbitrary input f[k] in terms of impulse components. 
The (zero-state) system response to input f[k] can then be obtained as the sum of 
system responses to impulse components of f[k]. 

2. Discrete-Time Unit Step Function u[k] 

The discrete-time counterpart of the unit step function u(t) is u[k] (Fig. 8.4), 
defined by 

u[k] = {~ for k 2': 0 

for k < 0 
(8.2) 

If we want a signal to start at k = 0 (so that it has a zero value for all k < 0), 
we need only multiply the signal with u[k]. 

u [k] 

-2 o 2 4 6 k-

Fig. 8.4 A discrete-time unit step function u[k]. 
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(a) (b) 

Fig. 8.5 The A-plane, the -y-piane and their mapping. 

3. Discrete-Time Exponential -yk 

A continuous-time exponential eAt can be expressed in an alternate form as 

h=eA or A=ln-y) (8.3a) 

For example, e-O.3t = (0.7408)t because e-O.3 = 0.7408. Conversely, 4t = e1.386t 

because In 4 = 1.386, that is, e1.386 = 4. In the study of continuous-time signals 
and systems we prefer the form eAt rather than "(t. The discrete-time exponential 
can also be expressed in two forms as 

h=eA or A=ln-y) (8.3b) 

For example, e3k = (e3)k = (20.086)k. Similarly, 5k = e1.609k because 5 = e1.609. 

In the study of discrete-time signals and systems, unlike the continuous-time case, 
the form -yk proves more convenient than the form e Ak . Because of unfamiliarity 
with exponentials with bases other than e, exponentials of the form -yk may seem 
inconvenient and confusing at first. The reader is urged to plot some exponentials 
to acquire a sense of these functions. 

Nature of -yk: The signal e Ak grows exponentially with k if Re A > 0 ('x in 
RHP), and decays exponentially if Re ,x < 0 (,x in LHP). It is constant or oscillates 
with constant amplitude ifRe A = 0 (,x on the imaginary axis). Clearly, the location 
of ,x in the complex plane indicates whether the signal e>..k grows exponentially, 
decays exponentially, or oscillates with constant frequency (Fig. 8.5a). A constant 
signal (A = 0) is also an oscillation with zero frequency. We now find a similar 
criterion for determining the nature of -yk from the location of -y in the complex 
plane. 

Figure 8.5a shows a complex plane (A-plane). Consider a signal e jOk • In this 
case, ,x = jO lies on the imaginary axis (Fig. 8.5a), and therefore is a constant
amplitude oscillating signal. This signal ejOk can be expressed as -yk, where -y = ejo . 
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disturbed, will neither go back to the original state nor continue to move farther 
away from the original state. The cone in this case is said to be in a neutral 
equilibrium. 

Let us apply these observations to systems in general. If, in the absence of an 
external input, a system remains in a particular state (or condition) indefinitely, 
then that state is said to be an equilibrium state of the system. For an LTI 
system this equilibrium state is the zero state, in which all initial conditions are 
zero. Now suppose an LTI system is in equilibrium (zero state) and we change this 
state by creating some nonzero initial conditions. By analogy with the cone, if the 
system is stable it should eventually return to zero state. In other words, when left 
to itself, the system's output due to the nonzero initial conditions should approach 
o as t ~ 00. But the system output generated by initial conditions (zero-input 
response) is made up of its characteristic modes. For this reason we define stability 
as follows: a system is (asymptotically) stable if, and only if, all its characteristic 
modes ~ 0 as t ~ 00. If any of the modes grows without bound as t ~ 00, the 
system is unstable. There is also a borderline situation in which the zero-input 
response remains bounded (approaches neither zero nor infinity), approaching a 
constant or oscillating with a constant amplitude as t ---+ 00. For this borderline 
situation, the system is said to be marginally stable or just stable. 

If an LTIC system has n distinct characteristic roots AI, A2, ... , An, the zero
input response is given by 

n 

Yo(t) = 2:~>jeAJt 
j=1 

We have shown elsewhere [see Eq. (B.14)] 

lim eM = {O 
t-+oo 00 

Re A < 0 

Re A> 0 

(2.62) 

(2.63) 

It is helpful to study system stability in terms of the location of the system's charac
teristic roots in the complex plane. Let us first assume that the system has distinct 
roots only. If a characteristic root A is located in the left half of the complex plane 
(LHP), its real part is negative (Re A < 0). Similarly, if a root A is located in the 
right half of the complex plane (RHP), its real part is positive (Re A > 0). Along 
the imaginary axis, the real part is zero (Re A = 0). These regions are delineated in 
Fig. 2.15. Equation (2.63) clearly shows that the characteristic modes correspond
ing to roots in LHP vanish as t ~ 00, while the modes corresponding to roots in 
RHP grow without bound as t ~ 00. However, the modes corresponding to simple 
(unrepeated) roots on the imaginary axis are of the form ej (3tj these are bounded 
(neither vanish nor grow without limit) as t ~ 00. 

From this discussion it follows that a system is asymptotically stable if, and 
only if, all of its characteristic roots lie in the left half of the complex plane. If any 
of the roots-even one-lies in RHP, the system is unstable. If none of the roots lie 
in RHP, but if some unrepeated (simple) roots lie on the imaginary axis, then the 
system is marginally stable (Fig. 2.15). 

So far we have assumed all of the system's n roots to be distinct. The modes 
corresponding to a root A repeated r times are eM, teAt, t 2e At ,. ", tr-Ie M. But as 

2.6 System Stability 

ReA<O 

stable 

t 
Jmag 

marginally stable .... 
ReA=O 

Fig. 2.15 Characteristic roots location and system stability. 
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t ~ 00, tke At ---+ 0, if ReA < 0 (A in LHP). Therefore, repeated roots in LH~ 
do not cause instability. But when the repeated roots are on the imaginary aXIs 
(A = jw), the corresponding modes tke iwt ~ppro~~h infi?ity as t ---+ 00. Therefore, 
repeated roots on the imaginary axis cause instabIlity. ~Igure 2.1.6 sh.ows character
istic modes corresponding to characteristic roots at various locatIOn In the com?le.x 
plane. Observe the central role played by the characteristic roots or characteristIc 
modes in determining the system's stability. 

To summarize: 

1. An LTIC system is asymptotically stable if, and only if, all the characteristic 
roots are in the LHP. The roots may be simple (unrepeated) or repeated. 

2. An LTIC system is unstable if, and only if, either one or both of the following 
conditions exist: (i) at least one root is in the RHP, (ii) there are repeated 
roots on the imaginary axis. 

3. An LTIC system is marginally stable if, and only if, there are no roots in the 
RHP, and there are some unrepeated roots on the imaginary axis. 

• Example 2.12 
Investigate the stability of LTIC system described by the following equations: 

(a) (D + 1) (D2 + 4D + 8) y(t) = (D - 3)f(t) 

(b) (D - 1) (D2 + 4D + 8) y(t) = (D + 2)f(t) 

(c) (D + 2)(D2 + 4)y(t) = (D2 + D + 1) f(t) 

(d) (D + 1)(D2 + 4)2y(t) = (D2 + 2D + 8) f(t) 
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Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes. 

The characteristic polynomials of these systems are 

(a) (A + 1) (A2 + 4A + 8) = (A + 1)(A + 2 - j2)(A + 2 + j2) 

(b) (A - 1) (A2 +4A +8) = (A - 1)(A + 2 - j2)(A + 2 + j2) 

(c) (A + 2)(A2 + 4) = (A + 2)(A - j2)(A + j2) 

(d) (A + 1)(A2 + 4)2 = (A + 2)(A _ j2)2(A + j2)2 

2.6 System Stability 

Consequently, the characteristic roots of the systems above are (see Fig. 2.17): 

(a) -1, -2±j2 (b) 1, -2±j2 (c) -2, ±j2 (d) -1, ±j2, ±j2. 

151 

System (a) is asymptotically stable (all roots in LHP), (b) is unstable (one root in • 
RHP), (c) is marginally stable (unrepeated roots on imaginary axis) and no roots in RHP, 
and (d) is unstable (repeated roots on the imaginary axis). • 

x 

(a) (b) (c) (d) 

Fig. 2.11 Location of characteristic roots for systems in Example 2.12. 

l::. Exercise E2.16 
For each of the systems specified by the equations below, plot its characteristic roots in the 

complex plane and determine whether it is asymptotically stable, marginally stable, or unstable. 
(a) D(D + 2)y(t) = 3f(t) 
(b) D2(D + 3)y(t) = (D + 5)f(t) 
(c) (D + l)(D + 2)y(t) = (2D + 3)f(t) 

(d) (D2 + 1)(D2 +9)y(t) = (D2 +2D+4) f(t) 

(e) (D + 1) (D2 - 4D +9 )yet) = (D + 7)f(t) 

Answer: (a) marginally stable (b) unstable (c) stable (d) marginally stable (e) unstable. 'V 

2.6-1 System Response to Bounded Inputs 

From the example of the right circular cone, it appears that when a system is 
in stable equilibrium, application of a small force (input) produces a small response. 
In contrast, when the system is in unstable equilibrium, a small force (input) pro
duces an unbounded response. Intuitively we feel that every bounded input should 
produce a bounded response in a stable system, whereas in an unstable system this 
would not be the case. We shall now verify this hunch and show that it is indeed 
true. 

Recall that for an LTIC system 

yet) = h(t) * j(t) 

= i: h(r)j(t - r)dr (2.64) 

Therefore 

ly(t)1 :::; i: Ih(r)llj(t - r)1 dr 

Moreover, if j(t) is bounded, then Ij(t - r)1 < Kl < 00, and 
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I(t) h (t) 

£:, Exercise E2.5 

For an LTIC system with the impulse response h(t) = 6e-tu(t), determine the system re
sponse to the input; (a) 2u(t) and (b) 3e-3tu(t). 

Answer; (a) 12(1 - e-t)u(t) (b) 9(e- t - e-3t )u(t) 'V 

£:, Exercise E2.6 
Repeat Exercise E2.5 if the input Itt) = e-tu(t). 

Answer; 6te- t u(t) 'V 

The Convolution Table 

The task of convolution is considerably simplified by a ready-made convolution 
table (Table 2.1). This table, which lists several pairs of signals and their resulting 
convolution, can conveniently determine y(t), a system response to an input f(t), 
without performing the tedious job of integration. For instance, we could have 
readily found the convolution in Example 2.4 using pair 4 (with ), 1 = -1 and 
A2 = -2) to be (e- t -e-2t )u(t). The following example demonstrates the utility of 
this table. 

2.4 System Response to External Input: The Zero-State Response 

TABLE 2.1: Convolution Table 

11 

12 e-c>t cos ({3t + 9)u(t) eAtu(t) 

13 

14 

/1(t) * h(t) = h(t) * /1(t) 

f(t - T) 

1 . At 
~u(t) 

-), 

tu(t) 

n! e)'t n n! tn - j 

),n+l u(t) - 2: ),i+1(n _ j)! u(t) 
j=o 

min! tm+n+lu(t) 
(m+n+l)! 

eA,t - eA,t + (),l - )'2)teA,t u(t) 
(),l - ),2)2 

cos (9 - <I»eAt - e-c>t cos ({3t + 9 - <1» u(t) 

J(a + ),)2 + {32 

<I> = tan-1 [-{3/(a + )')l 

125 
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Fig. 9.6 Characteristic roots location and system stability. 

It is clear that a system is asymptotically stable if and only if 

i = 1,2,··· ,n 

These results can be grasped more effectively in terms of the location of charac
teristic roots in the complex plane. Figure 9.6 shows a circle of unit radius, centered 
at the origin in a complex plane. Our discussion clearly shows that if all charac
teristic roots of the system lie inside this circle (unit circle), hi I < 1 for all i and 
the system is asymptotically stable. On the other hand, even if one characteristic 
root lies outside the unit circle, the system is unstable. If none of the characteristic 
roots lie outside the unit circle, but some simple (unrepeated) roots lie on the circle 
itself, the system is marginally stable. If two or more characteristic roots coincide 
on the unit circle (repeated roots), the system is unstable. The reason is that for 
repeated roots, the zero-input response is of the form F-Lyk, and if h'l = 1, then 
Ikr-I-ykl = F-1 -+ 00 as k -+ oo.t Note, however, that repeated roots inside 
the unit circle do not cause instability. Figure 9.7 shows the characteristic modes 
corresponding to characteristic roots at various locations in the complex plane. To 
summarize: 

1. An LTID system is asymptotically stable if and only if all the characteristic 
roots are inside the unit circle. The roots may be simple or repeated. 

2. An LTID system is unstable if and only if either one or both of the following 
conditions exist: (i) at least one root is outside the unit circle; (ii) there are 
repeated roots on the unit circle. 

3. An LTID system is marginally stable if and only if there are no roots outside 
the unit circle and there are some unrepeated roots on the unit circle. 

tIf the development of discrete-time systems is parallel to that of continuous-time systems, we 
wonder why the parallel breaks down here. Why, for instance, aren't LHP and RHP the regions 
demarcating stability and instability? The reason lies in the form of the characteristic modes. In 
continuous-time systems we chose the form of characteristic mode as eA,t. In discrete-time systems 
we choose the form (for computational convenience) to be 'Yf. Had we chosen this form to be eA,k 

where 'Yi = eA" then LHP and RHP ~or the location of )..;) again would demarcate stability and 
instability. The reason is that if'Y = e , bl = 1 implies leAl = 1, and therefore)" = jw. This shows 
that the unit circle in 'Y plane maps into the imaginary axis in the).. plane. 

9.6 System Stability 605 

Fig. 9.7 Characteristic roots location and the corresponding characteristic modes. 
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Fig. 12.4 Various pole-zero configurations and the corresponding frequency response. 

LH [ejwTJ. The phase spectrum -wT is a linear function of frequency and there
fore represents a pure time-delay of T seconds (see Eq. (10.48) or Exercise EI2.2). 
Therefore, a pole (a zero) at the origin causes a time delay (time advance) of T 
seconds in the response. There is no change in the amplitude response. 

12.2 Frequency Response From Pole-Zero Location 725 

For a stable system, all the poles must be located inside the unit circle. The 
zeros may lie anywhere. Also, for a physically realizable system, H[zJ must be 
a proper fraction, that is, n 2: m. If, to achieve a certain amplitude response, 
we require m > n, we can still make the system realizable by placing a sufficient 
number of poles at the origin. This will not change the amplitude response but it 
will increase the time delay of the response. 

In general, a pole at a point has the opposite effect of a zero at that point. 
Placing a zero closer to a pole tends to cancel the effect of that pole on the frequency 
response. 

Lowpass Filters 

A lowpass filter has a maximum gain at w = 0, which corresponds to point 
ejOT = 1 on the unit circle. Clearly, placing a pole inside the unit circle near the 
point z = 1 (Fig. 12.4a) would result in a lowpass response. The corresponding 
amplitude and phase response appears in Fig. 12.4a. For smaller values of w, the 
point e jwT (a point on the unit circle at an angle wT) is closer to the pole, and con
sequently the gain is higher. As w increases, the distance of the point e jwT from the 
pole increases. Consequently the gain decreases, resulting in a lowpass characteris
tic. Placing a zero at the origin does not change the amplitude response but it does 
modify the phase response, as illustrated in Fig. 12.4b. Placing a zero at z = -1, 
however, changes both the amplitude and phase response (Fig. 12.4c). The point 
z = -1 corresponds to frequency w = 1f IT (z = e jwT = e j1r = -1). Consequently, 
the amplitude response now becomes more attenuated at higher frequencies, with 
a zero gain at wT = 1f. We can approach ideal lowpass characteristics by using 
more poles staggered near z = 1 (but within the unit circle). Figure 12.4d shows 
a third-order lowpass filter with three poles near z = 1 and a third-order zero at 
z = -1, with corresponding amplitude and phase response. For an ideal lowpass 
filter we need an enhanced gain at every frequency in the band (0, we). This can 
be achieved by placing a continuous wall of poles (requiring an infinite number of 
poles) opposite this band. 

Highpass Filters 

A high pass filter has a small gain at lower frequencies and a high gain at 
higher frequencies. Such a characteristic can be realized by placing a pole or poles 
near z = -1 because we want the gain at wT = 1f to be the highest. Placing a 
zero at z = 1 further enhances suppression of gain at lower frequencies. Figure 
12.4e shows a possible pole-zero configuration of the third-order highpass filter with 
corresponding amplitude and phase response. 

• Example 12.2: Bandpass Filter 
Using trial-and-error, design a tuned (bandpass) filter with zero transmission at 0 

Hz and also at 500 Hz. The resonant frequency is required to be 125 Hz. The highest 
frequency to be processed is Fh = 500 Hz. 

Because Fh = 500, we require T :0: lO~O [see Eq. (8.17)]. Let us select T = 10-3
. 

Since the amplitude response is zero at w = 0 and w = 10001f, we need to place zeros at 
eiwT corresponding to w = 0 and w = 10001f. For w = 0, z = ejwT = 1; for w = 10001f 
(with T = 10-3

), ejwT = -1. Hence, there must be zeros at z = ±l. Moreover, we need 
enhanced frequency response at w = 2501f. This frequency (with wT = 1f/4) corresponds 
to z = ejwT = ei1r / 4

. Therefore, to enhance the frequency response at this frequency, we 



00 .... 
Q) 

~ 

~ 
OJ 
~ 

'6'0 
i5 
"d 
Q 
oj 

Q) 
00 
Q 
0 
0. 
00 
Q) 

0:: ~ 

...... '" '" » h u 

NI~ 
+;:;-- h 

Q ~ NI~ '"" '"" Q) 

hl~ 
~ I '" '" ;:; ~ 'hI 

N 
C' :.:: N ~ h I '" I 
Q) ~ '" '" 

h 

It h h N ~ 

'" ...... 

.... h 
N ..., ... 
.... '"C ~ ~I'" 

h '"" ... '" ~ :.:: '" '"" '" r<l " h '" h 
~ ~ h h ..., h ..., 
I:Q 

~ 

..., 
~ ..., 
~ ~ ~ 

~ '"C ..., 
::< ::< 

:.:: ~ I", 
" '" ~ 

...... 11 ~ ...... I~ ~ 

~ :.:: ...... 1 '" ...... 1"'''' MI~ 

'" '" "" co 

co 
'" t-

<b'h 
~ I '" 

h 
I 

'" e + 
00 

::!.. 0 
u 

h h 
.c 

~ 

I 00 

'" 0 
u 

h 

"" 
~ 
I 

00 '" 0 
~ U 

~ I N '" l- N 
h 

"" + 
h ..., 
e 

00 
0 
u 

h ... 
~ 
I 

'" I-
h 

"" + ..., 
e 

00 
0 
u ..., 
I 

'" I-
h 

<.J 

~ + .., 
+ <l 

'" .., 
-..: + 

'" .., 

1 

,----. 

~~ I I 
~ u 

-.:-.: 
'--' 

I' 
Q 
oj 
~ 

"" 

~ 
.c 

if, N I 
~u 

u 

~ 

I-

12.5 Recursive Filter Design: The Impulse Invariance method 737 
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Fig. 12.10 Aliasing in digital filters, and a choice of the sampling interval T. 

h[kJ = lim Tha(kT) 
T .... O 

In Chapter 5 (Fig. 5.6), we showed that the Fourier transform of the samples of ha(t) 
consists of periodic repetition of Ha (jw) with period equal to the sampling frequency 
w. = 27r/T = 27rFs.t Also Ha(jw) is not generally bandlimited. Hence, aliasing 
among various repeating cycles cannot be prevented, as depicted in Fig. 12.10b. The 
resulting spectrum will be different from the desired spectrum, especially at higher 
frequencies. If Ha(jw) were to be bandlimited; that is, if Ha(jw) = 0 for Iwl > WO, 

then the overlap could be avoided if we select the period 27r/T > 2wo· However, ac
cording to the Paley-Wiener criterion [Eq. (4.61)], every practical system frequency 
response is nonbandlimited, and the cycle overlap is inevitable. However, for fre
quencies beyond some Wo, if IHa(jw)1 is a negligible fraction, say 1%, of Ha(jw)lma,,, 
then we can consider1 Ha(jw) to be essentially bandlimited to Wo, and we can select 

T=!!.... (12.46) 
Wo 

• Example 12.4 
Design a digital filter to realize the first-order analog lowpass Butterworth filter with 

the transfer function 

Ha(S)=~ 
s+wc 

(12.47) 

tHow can we apply the discussion in Chapter 5, which applies to impulse samples of continuous
time signals, to discrete-time signals? Recall our discussion in Sec. 10.4 (Fig. 10.8), where we 
showed that the spectrum of discrete-time signal is just a scaled version of the spectrum of the 
impulse samples of the corresponding continuous-time signal. 



2.3 THE DISCRETE TRANSFER FUNCTION 23 

'. I 

Figure 2.4 A block diagram of trapezoid integration as represented by (2.7). 

value of the integral estimate, Uk. The discrete integration occurs in the loop 
with one delay, z-l, and unity gain. 

2.3.3 Block Diagrams and State-Variable Descriptions 

Because (2.16) is a linear algebraic relationship, a system of such relations 
is described by a system of linear equations. These can be solved by the 
methods of linear algebra or by the graphical methods of block diagrams. 
To use block-diagram analysis to manipulate these discrete-transfer-function 
relationships, there are only four primitive cases: '.( '. 
1. The transfer function of paths in parallel is the sum qf the single-path 

transfer functions (Fig. 2.5). 

2. The transfer function of paths in series is the product of the path transfer 
functions (Fig. 2.6). 

3. The transfer function of a single loop of paths is the transfer function 
of the forward path divided by one minus the loop transfer function 
(Fig. 2.7). 

4. The transfer function of an arbitrary multipath diagram is given by 
combinations of these cases. Mason's rule6 can also be used. 

For the general difference equation of (2.2), we already have the transfer 
function in (2.15). It is interesting to connect this case with a block dia
gram using only simple delay forms for z in order to see several "canonical" 
block diagrams and to introduce the description of discrete systems using 
equations of state. 

There are many ways to reduce the difference equation (2.2) to a block 
diagram involving z only as the delay operator, Z-l. The first one we will 

6Mason (1956). See Franklin, Powell, and Emami-Naeini(1986) for a discussion. 
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~ r~ 
L &--J+ 

H(z) = HI (z) + H 2(z) 

Figure 2.5 Block diagram of parallel blocks. 

consider leads to the "control" canonical form. We begin with the transfer 
function as a ratio of polynomials 

where 

and thus 

b(z) 
U(z) = H(z)E(z) = a(z) E(z) = b(z)~, 

~ = E(z) 
a(z) 

a(z)~ = E(z). 

At this point we need to get specific; and rather than carry through with a 
system of arbitrary order, we will work out the details for the third-order 
case and leave it to the reader to extend the results in the obvious way to 
whatever order is desired. In the development that follows, we will consider 
the variables u, e, and ~ as time variables and z as an advance operator such 
that zu(k) = u(k + 1) or z-lu = u(k - 1). With this convention (which is 
simply using the property of z derived earlier), consider the equations 

(Z3 + alz2 + a2Z + a3)~ = e, 

(boz3 + b1z2 + b2z + b3)~ = U. 

~@----+& 
H(z) = HI (z)H2(z) 

Figure 2.6 Block diagram of cascade blocks . 

(2.18) 

(2.19) 
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u 

H
J 
(z) 

H(z) = \-H
J
(z)H

2
(z) 

Figure 2.1 Feedback transfer function. 

We can write (2.18) as 

Z3~ = e - alz2~ - a2z~ - a3~ 

~(k + 3) = e(k) - al~(k + 2) - a2~(k + 1) - a3~(k). (2.20) 

Now assume we have z3~, which is to say that we have ~(k + 3) because 
z3 is an advance operator of three steps. If we operate on this with z-l three 
times in a row, we will get back to ~(k), as shown in Fig. 2.8(a). From (2.20), 
we can now compute z3 ~ from e and the lower powers of z and '~ given in the 
block diagram; the picture is now as given in Fig. 2.8(b). To complete the 
representation of (2.18) and (2.19), we need only add the f6rmation of the 
output u as a weighted sum of the variables z3 ~, z2 ~, z~, and ~ according to 
(2 .19). The completed picture is shown in Fig. 2.8(c). ". 

In Fig 2.8(c), the internal variables have been named Xl, x2, and X3. 

These variables comprise the state of this dynamic system in this form. 
Having the block diagram shown in Fig. 2.8(c), we can write down, almost by 
inspection, the difference equations that describe the evolution of the state, 
again using the fact that the transfer function z-l corresponds to a one-unit 
delay. For example, we see that x3(k + 1) = x2(k) and x2(k + 1) = xI(k). 
Finally, expressing the sum at the far left of the figure, we have 

"f 

We collect these three equations together in proper order, and we have 

xl(k + 1) = -alxl(k) - a2x2(k) - a3x3(k)::I- e(k), 

x2(k + 1) = xl(k), 

x3(k + 1) = x2(k). (2.21) 
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W + 3) We) 

(a) 

Hk + I ) Hk) 
z" 1 

e + 

(el 

Figure 2.8 Block diagram development of control canonical form. (a) Solving for 
~(k); (b) solving for ~(k + 3) from e(k) and past ~\s; (c) solving for U(k) from ~'s. 
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Using vector-matrix notation,? we can write this in the compact form 

where 

TJ (2.22a) 

and 

(2.22b) 

The output equation is also immediate except that we must watch to 
catch all paths by which the state variables combine in the. output. The 
problem is caused by the bo term. If bo = 0, then u = bl x.1 + b2X2 + b3X3, 
and the corresponding matrix form is immediate. However, if boo is not 0, Xl 

for example not only reaches the output through bl but also by the parallel 
path with gain -boal. The complete equation is 

In vector/matrix notation, we have 

where 

Cc = [b l - albo b2 - a2bo b3 - a3bo] , 

Dc = [bolo 

(2.23a) 

(2.23b) 

7We assume the reader has some knowledge of matrices. The ;esults we require and 
references to study material are given in Appendix C. To distinguish vectors and 
matrices from scalar variables, we will use bold-face type. 
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2.5.1 The Unit Pulse 

We have already seen that the unit pulse is defined by21 

therefore we have 

00 

(k = 0) 

(k =F 0) 

E1(z) = l:>SkZ-k = zO = 1. 
-00 

(2.80) 

This result is much like the continuous case, wherein the Laplace transform 
of the unit impulse is the constant 1.0. 

The quantity E1(z) gives us an instantaneous method to relate signals 
to systems: To characterize the system H(z), consider the signal u(k), which 
is the unit pulse response; then U(z) ~ H(z). 

2.5.2 The Unit Step 

Consider the unit' step function defined by 

e2(k) = 1 (k ~ 0) 

= 0 (k < 0) 

lJ. 
= 1(k). 

In this case, the z-transform is 

00 00 

E2(z) ~ L e2(k)z-k = L z- k 
k=-oo k=O 

1 
(lz-11 < 1) = 1- z-l 

z 
(Izl > 1). - z-l 

~ 

\ 

(2.81) 
, 

21We have shifted notation here to use e(k) rather than ek' for the kth sample. We 
Use subscripts to identify different signals. 
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':(klj • • • • • • • 

• • k-+ 

(a) (b) 

Figure 2.22 (a) Pole and zero of E2(Z) in the z-plane. The unit circle is shown for 

reference. (b) Plot of e2 (k). 

Here the transform is characterized by a zero at z = 0 and a pole at z = l. 
The significance of the convergence being restricted to \z\ > 1 will be ex
plored later when we consider the inverse transform op ration. The Laplace 
transform of the unit step is 1/ s; we may thus k p in miud that a pole at 
s = 0 for a continuous signal corresponds in some way to a pole at z = 1 for 
discrete signals. We will explore this further later. In any event, we record 
that a pole at z = 1 with convergence outside the unit circle, \z\ = 1, will 
correspond to a constant for positive time and zero for negative time. 

To emphasize the connection between the time domain and the z-plane, 
we sketch in Fig. 2.22 the z-plane with the unit circle shown and the pole of 
E2(Z) marked x and the zero marked o. Beside the z-plane, we sketch the 

time plot of e2(k). 

2.5.3 Exponential 

The one-sided exponential in time is 

(k 2: 0) 

(k < 0), (2.82) 

which is the same as rk1(k), using the symbol1(k) for the unit step function. 
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• 
• 

• • • 

(a) (b) 

Figure 2.23 (a) Pole and zero of E3(Z) in the z-plane. (b) Plot of e3(k) . 

Now we get 

00 

E3(Z) = L rkz - k 

k=O 

1 \ 
1 - rz- J 

z (Izl > Irl). (2.83) 
z-r 

The pole of E3(Z) is at z = r. From (2.82) we know that e3(k) grows without 
bound if Irl > 1. From (2.83) we conclude that a z-transform that converges 
for large z and has a real pole outside the circle Izi = 1 corresponds to a 
growing signal. If such a signal were the unit-pulse response of our system, 
such as our digital control program, we would say the program was unstable 
as we saw in (2.37). We plot in Fig. 2.23 the z-plane and the corresponding 
time history of E3(Z) as e3(k) for the stable value, r = 0.6. 

2.5.4 General Sinusoid 

Our next example considers the modulated sinusoid e4(k) = [r k cos kO]l(k), 
where we assume r > O. Actually, we can decompose e4(k) into the sum of 
two complex exponentials as 

( 

jkfJ + -jkfJ) 
e4(k) = rk e 2 e l(k), ' 
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and because the z-transform is linear,22 we need only compute the transform 
of each single complex exponential and add the results later. We thus take 
first 

(2.84) 

and compute 

= 
E5(Z) = L rkdek z-k 

k=O 

= 
= L(reJ(}z-l)k 

1.-=0 

1 
=-----.,-:--

1-rejO z- 1 

z (Izl > r). (2.85) 
z - rej (} 

The signal e.5 (k) grows without bound as k gets large if and only if r > 1, 
and a system with this pulse response is BIBO stable if and only if 1 rl < 1. 
The boundary of stability is the unit circle. To complete the argument given 
above for e4(k) = rk cos k01(k), we see immediately that the other half is 
found by replacing e by -0 in (2.85), 

Z{rl.-e- j (}k1(k)} = z .. 
z - re-J (} 

(Izl > r), (2.86) 

and thus that 

1 {Z Z } E4(Z) = - . + . 
2 z - reJ (} z - re-JO 

z(z-rcosO) 

Z2 - 2r( cos e)z + r2 
(Izl > r). (2.87) 

The z-plane pole-zero pattern of E4(Z) and the time plot of e4(k) are shown 
in Fig. 2.24 for r = 0.7 and () = 45°, 

We note in passing that if () = 0, then ~4 reduces to e:3 and, with r = I, 
to e2, so that three of our signals are special cases of e4. By exploiting the 

12We have not shown this formally. The demonstration, using the definition of 
linearity given above, is simple and is given in Section 2.7. 
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k--+ 

igure 2.24 (a) Poles and zeros of E4(Z) for () = 45°, r = 0.7 in the z-plane. (b) 
lot of c4( k). 

atures of E4 (z), we can draw a number of conclusions about the relation 
)tween pole locations in the z-plane and the time-domain signals to which 
Ie poles correspond. We collect these for later reference. 

The settling time of a transient, defined as the tirnf~ required for the signal 
to decay to one percent of its maximum value, is set mainly by the value 
of the 'radi'us, 1', of ihe poles. 

a) l' > 1 corresponds to a growing signal that will not decay at all. 

b) l' = 1 corresponds to a signal with constant amplitude (which is not 
BIBO stable as a pulse response). 

c) For l' < 1, the closer l' is to 0 the shorter the settling time. The 
corresIJonding system is BIBO stable. We can compute the settling 
time in samples, N, in terms of the pole radius, T. 

pole radius, response duration, 

T N 

0.9 43 
0.8 21 
0.6 9 

0.4 5 

d) A pole at T = 0 corresponds to a transient of finite 'duration. 

The number of samples pel' oscillation of a sinusoidal signal is deteT
mined bye. If we require cosek = cos(e(k +N)), we find that a period 
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-1---

[I 1111 axis 

N 4 

I 
t-
I 

1 

I 

-0.4 -0 .2 0.0 0.2 0.4 0.6 

z = plane loci of roots of constant l' and w" 

s = -l'w" ± jw"VI - \2 
z = eTs 

T = sampling period 

Figure 2.25 Sketch of the unit circle with angle () marked in numbers of sampies 

per cycle. 

of 21l' rad contains N samples, where 

21l'\ 360\ N = e = T samples/cycle. 
rad deg 

For e = 45°, we have N = 8, and the plot of e4(k) given in Fig. 2.24(b) 
shows the eight samples in the first cycle very clearly. A sketch of thE 
unit circle with several points corresponding to various numbers of sam
ples per cycle marked is drawn in Fig. 2.25. The sampling frequency ir 
Hertz is l/T, and the signal frequency is f = l/NT so that N = fs/ J 
and l/N is a normalized signal frequency. Since e = (21l')/N, e is th{ 
normalized signal frequency in radians/sample. e /T is the frequency ir 

radians / second. 
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2.5.5 Correspondence with Continuous Signals 

From the calculation of these few z-transforms, we have established that the 
duration of a time signal is related to the radius of the pole locations and 
the number of samples per cycle is related to the angle, e. Another set of 
very useful relationships can be established by considering the signals to be 
samples from a continuous signal, e(t), with Laplace transform E(s). With 
this device we can exploit our knowledge of s-plane features by transferring 
them to equivalent z-plane properties. For the specific numbers represented 
in the illustration of e4, we take the continuous signal 

with 

yet) = e-at cos bt l(t) 

aT = 0.3567, 

bT = rr/4. 

And, taking samples one second apart (T = 1), we have 

y(kT) = (e-O.3567)kcos rrk 1(k) 
4 

k rrk 
= (0.7) cos 41(k) 

= e4(k). 

The poles of the Laplace transform of yet) (in the s-plane) are at 

SI,2 = -a + jb, -a - jb. 

From (2.87), the z-transform of E4(Z) has poles at 

Z12 = re j (} re- j (} , , , 

but because y(kT) equals e4(k), it follows that 

r = e-aT , () = bT, 

ZI,2 = eIl1T
,' e1l2T

. 

(2.88) 

If E(z) is a ratio of polynomials in z, which will be the case if e(k) is 
generated by a linear difference equation with constant coefficients, then by 
partial fraction expansion, E(z) can be expressed as a sum of elementary 



B.1 PROPERTIES OF z-TRANSFORMS 

Let Fi(S) be the Laplace transform of fi(t) and Fi(Z) be the z-transform of Ji(kT) . 

Table B.l 

Number Laplace Transform Samples z-Transform Comment 

Fi(S) fi(kT) Fi(Z) 
1 o:Fi(S) + (3F2(S) o:fr(kT)(3h(kT) o:Fl (z )(3F2(Z) The z-transform is linear 

00 t::Jj 
2 Fl(eTS )F2(S) L fr(iT)h(kT - iT) F1(z)F2(z) Discrete convolution .... 

£=-00 corresponds to product "'d 
of z-transforms ~ 

e+nTs F(s) 
"'d 

3 f(kT + nT) znF(z) Shift in time t:rJ 

4 F(s + a) e-akT f(kT) F(eaT z) Shift in frequency ~ .... 
If all poles of (z - l)F(z) are 

t:rJ 
5 lim f(kT) lim(z -- l)F(z) 00 

k--+oo z-+l 
inside the unit circle and F(z ) 0 

~ 

converges for 1 ::::; I z I N 
I 

6 F(s/wn ) f(wnkT) F(z;wnT) Time and frequency scaling t-3 
~ 

1 i d( > 
7 fr(kT)h(kT) ~ F1(()F2(Z/(), Time product Z 

00 7rJ C3 
~ 

8 F3(S) = Fl(S)F2(S) I: fr(r)h(kT - r)dr F3( Z) Continuous convolution does 0 
~ 

not correspond to product of s= 
z-transforms 00 

~ = .... 



B.2 TABLE OF z-TRANSFORMS 
F(s) is the Laplace transform of f(t) and F(z) is the z-transform of f(nT). Unless otherwise noted, f(t) = 
0, t < 0 and the region of convergence of F(z) is outside a circle r < \z\ such that all poles of F(z) are inside 

r. 

Table B.2 

Number F(s) l(nT) F(z) 

1 l,n=OjOn=l-0 1 

2 1, n = kj 0 n =I- k z-k 

3 
1 

l(nT) 
z 

s z-1 

4 
1 

nT 
Tz 

82 (z - 1)2 

5 
1 ~! (nT)2 

T Z z(z + 1) 

S3 2" (z -1)3 

1 1 T3 Z(Z2 + 4z + 1) 
6 S4 

~(nT)3 
6 (z - 1)4 3! 

7 
1 (_1)m-l om-l . (_I)m-l om-l · z 

lim __ e-anT lim . ----
8m a->O (m - I)! oam- 1 a->O (m - I)! oam~l z - e-aT 

8 
1 e-anT Z 

s+a z - e-aT 

9 
1 nTe-anT 

Tze-aT 

(8 + a)2 (z - e-aT )2 

1 1 T2 z(z + e-aT ) 
10 

(8 + a)3 
_ (nT)2e-anT _e-aT 
2 2 (z - e-aT )3 

1 (_I)m-l om-l (_I)m-l om-l Z 

11 
( -anT) 

(s + a)m (m - I)! oam-1 e (m - I)! oam- 1 Z - e-aT 

12 
a 1- e-anT 

z(l- e-aT) 

s(s + a) (z - l)(z - e- aT) 

Number F(s) l(nT) F(z) 

13 
a 1 z[(aT"": 1 + e-aT)z + (1 - e-aT - aTe-aT)] 

82(S + a) 
-(anT - 1 + e-anT ) 
a a(z - l)2(z - e-aT) 

14 
b-a (e-anT _ e-bnT ) 

(e-aT _ e-bT)z 

(s + a)(s + b) (z - e-aT)(z - e-bT ) 

15 
8 z[z - e-aT(I + aT)] 

(s + a)2 
(1 - anT)e-anT 

(z - e-aT )2 

lfl 
a2 

1 - p'-anT (1 + anT) 
z [z{l - e-aT - a~e-a~). + e-2aT - e-aT + aTe-aT] 

~ 
~ 
t.) 

> 
'tl 
'tl 
t"'.l 
Z 
t:I 
>-4 

>< 
t:xl 



v 
8+a 

9 
1 nTe-anT 

(8 + a)2 
1 1 

10 _ (nT)2 e-anT 
(8 + a)3 2 

1 (_I)m-l 8m- 1 

11 
( -anT) 

(8 + a)m (m - I)! 8am-1 e 

12 
a 1- e-anT 

8(8 + a) 

Number F(s) l(nT) 

a 1 
13 

82(8 + a) 
-(anT - 1 + e-anT ) 
a 

14 
b-a 

(8+a)(8+b) 
(e-anT _ e-bnT ) 

15 
8 

(1 - anT)e-anT 
(8 + a)2 

16 
a2 

1 - e-anT (1 + anT) 
S(8 + a)2 

17 
(b - a)8 be-bnT _ ae-anT 

(8 + a)(8 + b) 

18 
a 

sin anT 
82 +a2 

19 
8 

cos anT 
82 +a2 

20 
8+a 

e-anT cos bnT 
(s + a)2 + b2 

21 
b 

e-anT sin bnT 
(8 + a)2 + b2 

22 
a2 + b2 

1 - e-anT (cos bnT + ~ sin bnT) 
8«S + a)2 + b2) 

z - e-a~ 

Tze-aT 

(Z - e-aT )2 
T2 z(z + e-aT ) -aT -e 
2 (z - e-aT )3 
(_1)m-l 8m- 1 Z 

(m - I)! 8am- 1 z - e-aT 

z(l- e-aT) 

(z - 1)(z - e-aT ) 

F(z) 

z[(aT - 1 + e-aT)z + (1 - e-aT - aTe-aT)] 

a(z - 1)2(z - e-aT ) 
(e-aT _ e-bT)z 

(z - e-aT)(z - e-bT ) 
z[z - e-aT (1 + aT)] 

(z - e-aT )2 
z[z(1 - e-aT - aTe"-aT) + e-2aT - e-aT + aTe-aT] 

(z - 1)(z - e-aT )2 
z[z(b - a) - (be-aT - ae-bT )] 

(z - e-aT)(z - e-bT ) 
zsinaT 

z2 - (2cosaT)z + 1 
z(z - cos aT) 

z2 - (2 cos aT)z + 1 
z(z - e-aT cos bT) 

Z2 - 2e-aT(cosbT)z + e-2aT 

ze-aTsinbT 

Z2 - 2e-aT(cos bT)z + e-2aT 

z(Az + B) 
(z -1)(z2 - 2e-aT(cosbT)z + e-2aT ) 

A = 1- e-aTcosbT - ~ e-aTsinbT 
b a 

B = e-2aT + - e-aT sin bT - e-aT cos bT 
b . 

t:C 
b) 

~ 
t:C 
~ 
l"j 

o 
"'.j 

~ 
~ 
::t' 
> 
Z 
00 
"'.j 
o 
::t' 
~ 
00 

-'f = ~ 

j 



APPENDIXC 

A Few Results from Matrix Analysis 

Although we assume the reader has some acquaintance with linear equations 
and determinants, there are a few results of a more advanced character that 
even elementary control-system theory requires, and these are collected here 
for reference in the text. For further study, a good choice is Strang (1976). 

C.l DETERMINANTS AND THE MATRIX 
INVERSE 

The determinant of a product of two square matrices is the product of their 
determinants: 

det AB = det A det B. (C.1) 

If a matrix is diagonal, then the determinant is the product of the ele
ments on the diagonaL 

If the matrix is partitioned with square elements on the main diagonal, 
then an extension of this result applies, namely, 

det [~ ~] = det A det C if A and C are square matrices. (C. 2) 

Suppose A is a matrix of dimensions m x nand B is of dimension n x m. 
Let 1m and In be the identity matrices of size m x m and n x n, respectively. 
Then 

det [In + BA] = det [1m + AB] . (C.3) 

796 

-
C.l DE 

To show this result , , 
det [1m 0] [I 

B In _ 

But this is also equal 

and therefore these t, 
If the determinan 

matrix A-I, called " 

According to propert 

or 

It can be shown that 
elements composed ( 
the property that 

Thus, if the determil 

A famous and usefu 
has come to be calle 
It arises in the devel, 

llf Aij is the n - 1 x · 
from A, then the entr~ 
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linear equations 
d character that 
.re collected here 
; Strang (1976). 

product of their 

(C.1) 

)duct of the ele-

~ main diagonal, 

Ltrices. (C.2) 

limension n x m. 
< n, respectively. 

(C.3) 
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To show this result, we consider the determinant of the matrix product 

det 
[B
Im InO] [I_mB A] d [1m A] d [I BAl In = et ° In + BA = et n + . 

But this is also equal to 

and therefore these two determinants are equal to each other, which is (C.3). 
If the determinant of a matrix A is not zero, then we can define a related 

matrix A -1, called "A inverse," which has the property that 

AA-1 = A-1A = I. (C.4) 

According to property (C.1) we have 

det AA -1 = det A . det A-I = 1, 

or 

-1 1 
detA = detA' 

It can be shown that there is an n x n matrix called the adjugate of A with 
elements composed of sums of products of the elements of A l and having 
the property that 

A . adj A = det A . I. 

Thus, if the determinant of A is not zero, the inverse of A is given by 

A-I = adjA. 
detA 

(C.5) 

A famous and useful formula for the inverse of a combination of matrices 
has come to be called the matrix inversion lemma in the control literature. 
It arises in the development of recursive algorithms for estimation, as found 

lIf Aij is the n - 1 x n -1 matrix (minor) found by deleting row i and column j 
from A, then the entry in row i and column j of the adj A is (-1 )i+j det Aji. 
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in Chapter 8. The formula is as follows: If det A, det C, and det (A+BCD) 
are different from zero, then we have the matrix inversion lemma: 

(A + BCD)-1 = A-I - A -IB(C-1 + DA -IB)-IDA -1. (C.6) 

The truth of (C.6) is readily confirmed ifv:re multiply both sides by A+BCD 
to obtain 

I = I + BCDA -1 - B(C-1 + DA -IB)-IDA-1 

- BCDA -IB(C-1 + DA -IB)-IDA-1 

= 1+ BCDA -1 - [B + BCDA -IB][C-1 + DA -IB)-IDA -1. 

If we subtract I from both sides and factor BC from the left on the third 
term, we find 

0= BCDA -1 - BC[C-1 + DA -IB][C-1 + DA -IBtIDA -1, 

which is 

0=0 which was to be demonstrated. 

C.2 EIGENVALUES AND EIGENVECTORS 

We consider the discrete dy~amic system 

(C.7) 

where, for purposes of illustration, we will let 

~ = [i 
1 

-~] o . (C.8) 

If we assume that it is possible for this system to have a motion given by a 
geometric series such as zk, we can assume that there is a vector v so that 
Xk can be written 

(C.g) 

Substituting (C.g) into (C.7), we must find the vector v and the number z 
such that 

• 
C 

or, multiplying by z-k yi, 

If we collect both the ter 

These linear equations h 
determinant of the coeff 
nomial of degree n in z 
polynomial of ~, and va] 
zero are roots of the char 
For example, for the mat 

d 

Adding the two matrices 

which can be evaluated 1 

z( 

Thus the characteristic J 

characteristic roots are ~ 

teristic or eigenvectors. ] 

{[! 
Adding the matrices, WE 

Equations (C.14) are sa' 
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or, multiplying by z-k yields 

vz = ~v. (C.10) 

If we collect both the terms of (C.10) on the left, we find 

(zI - t»)v = o. (C.11) 

These linear equations have a solution for a nontrivial v if and only if the 
determinant of the coefficient matrix is zero. This determinant is a poly
nomial of degree n in z (t» is an n x n matrix) called the characteristic 
polynomial of ~, and values of z for which the characteristic polynomial is. 
zero are roots of the characteristic equation and are called eigenvalues of t». 
For example, for the matrix given in (C.8) the characteristic polynomial is 

{[
z 0] [Q _l]} 

det 0 z - i 06 
. 

Adding the two matrices, we find 

det { z -=-1 ~ +1} 
z ' 

which can be evaluated to give 

z(z - ~) + 1 = (z - ~)(z - i)· (C.12) 

Thus the characteristic roots of this ~ are ~ and i. Associated with these 
characteristic roots are solutions to (C.11) for vectors v , called the charac
teristic or eigenvectors. If we let z = ~, then (C.11) requires 

(C.13) 

Adding the matrices, we find that these equations become 

[-l 
-1 

1] [vu] = [0] 
~ V21 0 

(C.14) 

Equations (C.14) are satisfied by any Vu and V21 such that 
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from which we conclude that the eigenvector corresponding to ZI = ! is 
given by 

(C.15) 

We can arbitrarily select the scale factor a in (C.15). Some prefer to make the 
length2 of eigenvectors equal to one. Here we make the largest component 
of v have unit magnitude. Thus the scaled VI is 

(C.16) 

In similar fashion, the eigenvector v 2 associated with Z2 = i can be com
puted to be 

Note that even if all elements of ~ are real, it is possible for characteristic 
values and characteristic vectors to be complex. 

C.3 SIMILARITY TRANSFORMATIONS 

If we make a change of variables in (C.7) according to x = T{, where T is 
an n x n matrix, then we start with the equations 

and, substituting for x, we have 

Then, if we multiply on the left by T-1 , we get the equation in {, 

(C.17) 

2Usually we define the length of a vector as the square root of the sum of squares 
of its components or, if IIvll is the symbol for length, then IIvll2 = vTv. If v is 
complex, as will happen if Zi is complex, then we must take a conjugate, and we 
define IIvll 2 = (v*)Tv, where v· is the complex conjugate of v. 

• 

If we define the new s 
equations ' 

where 

If we now seek the cha 

d 

Because T-1T = I, w( 

and the T-l and T Cc 

Now, using property ( 

which, by the equatio 

From (C.19) we SE 

mials. Tne matrices a 
is a similarity transfoJ 

A case of a simil 
which the resulting I 

matrix, suppose we al 

T in terms of its colu 
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and the covariance matrix, 

Like the scalar normal density, the multivariable law is described entirely 
by the two parameters p and R, the difference being that the multivariable 
case is described by matrix parameters rather than scalar parameters. In 
(D.19) we require the inverse of Rx and have thus implicitly assumed that 
this covariance matrix is nonsingular. [See Parzen (1962) for a discussion of 
the case when Rx is singular.] 

D.4 STOCHASTIC PROCESSES 

In a study of dynamic systems, it is natural to have random variables that 
evolve in time much as the states and control inputs evolve. However, with 
random time variables it is not possible to compute z-transforms in the 
usual way; and furthermore, because specific values of the variables have 
little value, we need formulas to describe how the means and covariances 
evolve in time. A random variable that evolves in time is called a stochastic 
process, and here we consider only discrete time. 

Suppose we deal first with a stochastic process w(n), where w is a scalar 
distributed according to the density fw(~; N). Note that the density function 
depends on the time of occurrence of the random variable. If a variable has 
statistical properties (such as jw) that are independent of the origin of time, 
then we say the process is stationary. Considering values of the process 
at distinct times, we have separate random variables, and we define the 
covariance of the process w as 

Rw(j, k) = e(w(j) - w(j))(w(k) - w(k)). (D.20) 

If the process is stationary, then the covariance in (D.20) depends only on the 
magnitude of the difference in observation times, k- j, and we often will write 
Rw(j, k) = Rw(k - j) and drop the second argument. Because a stochastic 
process is both random and time dependent, we can imagine averages that 
are computed over the time variable as well as by the expectation. For 
example, for a stationary process w(n) we can define the mean as 

iiJ(k) = lim 
N-too 

1 N 

2N + 1 L w(n + k), 
n=-N 

(D.21) 

--------------------------.. ~ 
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and the second-order mean or autocorrelation 

(w(j) - w)(w(k) - w(k)) 
. N 

= lim 1 L {(w(n + j) - w(j))(w(n + k - w(k)))}. 
N-+oo 2N + 1 n=-N (D.22) 

For a stationary process, the time average in (D.21) is usually equal to the 
distribution average, and likewise the second-order average in (D.22) is the 
same as the covariance in (D.20). Processes for which time averages give the 
same limits as distribution averages are called ergodic. 

A very useful aid to understanding the properties of stationary stochastic 
processes is found by considering the response of a linear stationary system 
to a stationary input process. Suppose we let the input be w, a stationary 
scalar process with zero mean and covariance Rw(j), and suppose we take 
the output to be y(k). We let the unit-pulse response from w to y be h(j). 
Thus from standard analysis (see Chapter 2), we have 

00 

y(j) = L h(k)w(j - k), (D.23) 
k=-oo 

and the covariance of y(j) with y(j + f.) is 

Ry(f.) = ey(j + f.)y(j) 

=e{ f: h(k)W(j+f.-k)} { f: h(n)W(j-n)}. 
k=-oo n=-oo (D.24) 

Because the system unit-pulse response, h(k), is not random, both h(k) and 
h( n) can be removed from the integral implied by the e operation, with the 
result 

00 00 

Ry(f.) = L h(k) L h(n)ew(j + f. - k)w(j - n). (D.25) 
k=-oo n=-oo 

The expectation in (D.25) is now recognized as Rw(f. - k + n), and substi-
tuting this expression in (D.25), we find . 

00 00 

Ry(f.) = L h(k) L h(n)Rw(f. - k + n). (D.26) 
k=-oo n=-oo 
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7
System Time Response
Characteristics

In this chapter we investigate the time response of a sampled data system and compare it with
the response of a similar continuous system. In addition, the mapping between the s-domain and
the z-domain is examined, the important time response characteristics of continuous systems
are revised and their equivalents in the discrete domain are discussed.

7.1 TIME RESPONSE COMPARISON

An example closed-loop discrete-time system with a zero-order hold is shown in Figure 7.1(a).
The continuous-time equivalent of this system is also shown in Figure 7.1(b), where the
sampler (A/D converter) and the zero-order hold (D/A converter) have been removed. We
shall now derive equations for the step responses of both systems and then plot and compare
them.

As described in Chapter 6, the transfer function of the above discrete-time system is given
by

y(z)

r (z)
= G(z)

1 + G(z)
, (7.1)

where

r (z) = z

z − 1
(7.2)

and the z-transform of the plant is given by

G(s) = 1 − e−sT

s2(s + 1)
.

Expanding by means of partial fractions, we obtain

G(s) = (1 − e−sT )

(
1

s2
− 1

s
+ 1

s + 1

)

Microcontroller Based Applied Digital Control D. Ibrahim
C© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-86335-8
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1

s (s + 1)
+ −

y(s)r(s)

(b)

1

s (s + 1)+ −
y(s)r(s) ZOH

(a)

Figure 7.1 (a) Discrete system and (b) its continuous-time equivalent

and the z-transform is

G(z) = (1 − z−1)Z

{
1

s2
− 1

s
+ 1

s + 1

}
.

From z-transform tables we obtain

G(z) = (1 − z−1)

[
T z

(z − 1)2
− z

z − 1
+ z

z − e−T

]
.

Setting T = 1s and simplifying gives

G(z) = 0.368z + 0.264

z2 − 1.368z + 0.368
.

Substituting into (7.1), we obtain the transfer function

y(z)

r (z)
= G(z)

1 + G(z)
= 0.368z + 0.264

z2 − z + 0.632
,

and then using (7.2) gives the output

y(z) = z(0.368z + 0.264)

(z − 1)(z2 − z + 0.632)
.

The inverse z-transform can be found by long division: the first several terms are

y(z) = 0.368z−1 + z−2 + 1.4z−3 + 1.4z−4 + 1.15z−5 + 0.9z−6 + 0.8z−7 + 0.87z−8

+0.99z−9 + . . .

and the time response is given by

y(nT ) = 0.368δ(t − 1) + δ(t − 2) + 1.4δ(t − 3) + 1.4δ(t − 4) + 1.15δ(t − 5)

+0.9δ(t − 6) + 0.8δ(t − 7) + 0.87δ(t − 8) + . . . .
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From Figure 7.1(b), the equivalent continuous-time system transfer function is

y(s)

r (s)
= G(s)

1 + G(s)
= 1/(s(s + 1))

1 + (1/s(s + 1))
= 1

s2 + s + 1
.

Since r (s) = 1/s, the output becomes

y(s) = 1

s(s2 + s + 1)
.

To find the inverse Laplace transform we can write

y(s) = 1

s
− s + 1

s2 + s + 1
= 1

s
− s + 0.5

(s + 0.5)2 − 0.52
− 0.5

(s + 0.5)2 − 0.52
.

From inverse Laplace transform tables we find that the time response is

y(t) = 1 − e−0.5t (cos 0.5t + 0.577 sin 0.5t) .

Figure 7.2 shows the time responses of both the discrete-time system and its continuous-time
equivalent. The response of the discrete-time system is accurate only at the sampling instants.
As shown in the figure, the sampling process has a destabilizing effect on the system.

Figure 7.2 Step response of the system shown in Figure 7.1
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7.2 TIME DOMAIN SPECIFICATIONS

The performance of a control system is usually measured in terms of its response to a step
input. The step input is used because it is easy to generate and gives the system a nonzero
steady-state condition, which can be measured.

Most commonly used time domain performance measures refer to a second-order system
with the transfer function:

y(s)

r (s)
= ω2

n

s2 + 2ζωns + ω2
n

,

where ωn is the undamped natural frequency of the system and ζ is the damping ratio of the
system.

When a second-order system is excited with a unit step input, the typical output response
is as shown in Figure 7.3. Based on this figure, the following performance parameters are
usually defined: maximum overshoot; peak time; rise time; settling time; and steady-state
error.

The maximum overshoot, Mp, is the peak value of the response curve measured from unity.
This parameter is usually quoted as a percentage. The amount of overshoot depends on the
damping ratio and directly indicates the relative stability of the system.

The peak time, Tp, is defined as the time required for the response to reach the first peak of
the overshoot. The system is more responsive when the peak time is smaller, but this gives rise
to a higher overshoot.

The rise time, Tr , is the time required for the response to go from 0 % to 100 % of its final
value. It is a measure of the responsiveness of a system, and smaller rise times make the system
more responsive.

The settling time, Ts , is the time required for the response curve to reach and stay within a
range about the final value. A value of 2–5 % is usually used in performance specifications.

The steady-state error, Ess , is the error between the system response and the reference input
value (unity) when the system reaches its steady-state value. A small steady-tate error is a
requirement in most control systems. In some control systems, such as position control, it is
one of the requirements to have no steady-state error.

Mp

Tr Tp Ts

t

1

y(t)

0

Figure 7.3 Second-order system unit step response
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Having introduced the parameters, we are now in a position to give formulae for them
(readers who are interested in the derivation of these formulae should refer to books on control
theory). The maximum overshoot occurs at at peak time (t = Tp) and is given by

Mp = e−(ζπ/
√

1−ζ 2),

i.e. overshoot is directly related to the system damping ratio – the lower the damping ratio,
the higher the overshoot. Figure 7.4 shows the variation of the overshoot (expressed as a
percentage) with the damping ratio.

The peak time is obtained by differentiating the output response with respect to time, letting
this equal zero. It is given by

Tp = π

ωd
,

where

ωd = ω2
n

√
1 − ζ 2

is the damped natural frequency.
The rise time is obtained by setting the output response to 1 and finding the time. It is given

by

Tr = π − β

ωd
,

where

β = tan−1 wd

ζωn
.

The settling time is usually specified for a 2 % or 5 % tolerance band, and is given by

Ts = 4

ζωn
(for 2% settling time),

Ts = 3

ζωn
(for 5% settling time).

The steady-state error can be found by using the final value theorem, i.e. if the Laplace transform
of the output response is y(s), then the final value (steady-state value) is given by

lim
s→0

sy(s),

0

20

40

60
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Damping ratio

O
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%
)

Figure 7.4 Variation of overshoot with damping ratio
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and the steady-state error when a unit step input is applied can be found from

Ess = 1 − lim
s→0

s y(s).

Example 7.1

Determine the performance parameters of the system given in Section 7.1 with closed-loop
transfer function

y(s)

r (s)
= 1

s2 + s + 1
.

Solution

Comparing this system with the standard second-order system transfer function

y(s)

r (s)
= ω2

n

s2 + 2ζωns + ω2
n

,

we find that ζ = 0.5 and ωn = 1 rad/s. Thus, the damped natural frequency is

ωd = ω2
n

√
1 − ζ 2 = 0.866rad/s.

The peak overshoot is

Mp = e−(ζπ/
√

1−ζ 2) = 0.16

or 16 %. The peak time is

Tp = π

ωd
= 3.627 s

The rise time is

Tr = π − β

ωn
;

since

β = tan−1 ωd

ζωn
= 1.047,

we have

Tr = π − β

ωn
= π − 1.047

1
= 2.094 s

The settling time (2 %) is

Ts = 4

ζωn
= 8 s,

and the settling time (5 %) is

Ts = 3

ζωn
= 6 s.

Finally, the steady state error is

Ess = 1 − lim
s→0

s y(s) = 1 − lim
s→0

s
1

s(s2 + s + 1)
= 0.



JWBK063-07 JWBK063-Ibrahim December 22, 2005 15:27 Char Count= 0

MAPPING THE s-PLANE INTO THE z-PLANE 177

7.3 MAPPING THE s-PLANE INTO THE z-PLANE

The pole locations of a closed-loop continuous-time system in the s-plane determine the
behaviour and stability of the system, and we can shape the response of a system by positioning
its poles in the s-plane. It is desirable to do the same for the sampled data systems. This section
describes the relationship between the s-plane and the z-plane and analyses the behaviour of
a system when the closed-loop poles are placed in the z-plane.

First of all, consider the mapping of the left-hand side of the s-plane into the z-plane. Let
s = σ + jω describe a point in the s-plane. Then, along the jω axis,

z = esT = eσ T e jωT .

But σ = 0 so we have

z = e jωT = cos ωT + j sin ωT = 1� ωT .

Hence, the pole locations on the imaginary axis in the s-plane are mapped onto the unit circle
in the z-plane. As ω changes along the imaginary axis in the s-plane, the angle of the poles on
the unit circle in the z-plane changes.

If ω is kept constant and σ is increased in the left-hand s-plane, the pole locations in the
z-plane move towards the origin, away from the unit circle. Similarly, if σ is decreased in
the left-hand s-plane, the pole locations in the z-plane move away from the origin in the
z-plane. Hence, the entire left-hand s-plane is mapped into the interior of the unit circle in
the z-plane. Similarly, the right-hand s-plane is mapped into the exterior of the unit circle in
the z-plane. As far as the system stability is concerned, a sampled data system will be stable
if the closed-loop poles (or the zeros of the characteristic equation) lie within the unit circle.
Figure 7.5 shows the mapping of the left-hand s-plane into the z-plane.

As shown in Figure 7.6, lines of constant σ in the s-plane are mapped into circles in the
z-plane with radius eσ T . If the line is on the left-hand side of the s-plane then the radius of
the circle in the z-plane is less than 1. If on the other hand the line is on the right-hand side of
the s-plane then the radius of the circle in the z-plane is greater than 1. Figure 7.7 shows the
corresponding pole locations between the s-plane and the z-plane.

σ

jω

s-plane

z-plane

Figure 7.5 Mapping the left-hand s-plane into the z-plane
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σ

jω

s-plane

1 

z-plane

Figure 7.6 Mapping the lines of constant σ
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5  6     0

z-plane

   9

Figure 7.7 Poles in the s-plane and their corresponding z-plane locations

The time responses of a sampled data system based on its pole positions in the z-plane are
shown in Figure 7.8. It is clear from this figure that the system is stable if all the closed-loop
poles are within the unit circle.

7.4 DAMPING RATIO AND UNDAMPED NATURAL FREQUENCY
IN THE z-PLANE

7.4.1 Damping Ratio

As shown in Figure 7.9(a), lines of constant damping ratio in the s-plane are lines where
ζ = cos α for a given damping ratio. The locus in the z-plane can then be obtained by the
substitution z = esT . Remembering that we are working in the third and fourth quadrants in
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X

X

X

X

X

X

X

  X X 

z-plane

X

Figure 7.8 Time response of z-plane pole locations

the s-plane where s is negative, we get

z = e−σωT e jωT . (7.3)

Since, from Figure 7.9(a),

σ = tan
(π

2
− cos−1 ζ

)
, (7.4)

substituting in (7.3) we have

z = exp
[
−ωT tan

(π

2
− cos−1 ζ

)]
e jωT . (7.5)

Equation (7.5) describes a logarithmic spiral in the z-plane as shown in Figure 7.9(b). The
spiral starts from z = 1 when ω = 0. Figure 7.10 shows the lines of constant damping ratio in
the z-plane for various values of ζ .

7.4.2 Undamped Natural Frequency

As shown in Figure 7.11, the locus of constant undamped natural frequency in the s-plane is
a circle with radius ωn . From this figure, we can write

ω2 + σ 2 = ω2
n or σ =

√
ω2

n − ω2. (7.6)
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σ

jω

−ζω

1 − ζ2jωn
const ζ

(a)

1.0

const ζ

s-plane

z-plane

(b)

β

Figure 7.9 (a) Line of constant damping ratio in the s-plane, and (b) the corresponding locus in
the z-plane

Figure 7.10 Lines of constant damping ratio for different ζ . The vertical lines are the lines of
constant ωn
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Line of constant ωn

Line of
constant ζ

ωn

Figure 7.11 Locus of constant ωn in the s-plane

Thus, remembering that s is negative, we have

z = e−sT = e−σ T e− jωT = exp

[
−T (

√
ω2

n − ω2)

]
e− jωT (7.7)

The locus of constant ωn in the z-plane is given by (7.7) and is shown in Figure 7.10 as the
vertical lines. Notice that the curves are given for values of ωn ranging from ωn = π/10T to
ωn = π/T .

Notice that the loci of constant damping ratio and the loci of undamped natural frequency
are usually shown on the same graph.

7.5 DAMPING RATIO AND UNDAMPED NATURAL FREQUENCY
USING FORMULAE

In Section 7.4 above we saw how to find the damping ratio and the undamped natural frequency
of a system using a graphical technique. Here, we will derive equations for calculating the
damping ratio and the undamped natural frequency.

The damping ratio and the natural frequency of a system in the z-plane can be determined
if we first of all consider a second-order system in the s-plane:

G(s) = ω2
n

s2 + 2ζωns + ω2
n

. (7.8)

The poles of this system are at

s1,2 = −ζωn ± jωn

√
1 − ζ 2. (7.9)

We can now find the equivalent z-plane poles by making the substitution z = esT , i.e.

z = esT = e−ζωn T � ± ωnT
√

1 − ζ 2, (7.10)
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which we can write as

z = r � ± θ, (7.11)

where

r = e−ζωn T or ζωnT = − ln r (7.12)

and

θ = ωnT
√

1 − ζ 2. (7.13)

From (7.12) and (7.13) we obtain

ζ√
1 − ζ 2

= − ln r

θ

or

ζ = − ln r√
(ln r )2 + θ2

, (7.14)

and from (7.12) and (7.14) we obtain

ωn = 1

T

√
(ln r )2 + θ2. (7.15)

Example 7.2

Consider the system described in Section 7.1 with closed-loop transfer function

y(z)

r (z)
= G(z)

1 + G(z)
= 0.368z + 0.264

z2 − z + 0.632
.

Find the damping ratio and the undamped natural frequency. Assume that T = 1 s.

Solution

We need to find the poles of the closed-loop transfer function. The system characteristic
equation is 1 + G(z) = 0,
i.e.

z2 − z + 0.632 = (z − 0.5 − j0.618)(z − 0.5 + j0.618) = 0,

which can be written in polar form as

z1,2 = 0.5 ± j0.618 = 0.795� ± 0.890 = r � ± θ

(see (7.11)). The damping ratio is then calculated using (7.14) as

ζ = − ln r√
(ln r )2 + θ2

= − ln 0.795√
(ln 0.795)2 + 0.8902

= 0.25,

and from (7.15) the undamped natural frequency is, taking T = 1,

ωn = 1

T

√
(ln r )2 + θ2 =

√
(ln 0.795)2 + 0.8902 = 0.92.
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Figure 7.12 Finding ζ and ωn graphically

Example 7.3

Find the damping ratio and the undamped natural frequency for Example 7.2 using the graphical
method.

Solution

The characteristic equation of the system is found to be

z2 − z + 0.632 = (z − 0.5 − j0.618)(z − 0.5 + j0.618) = 0

and the poles of the closed-loop system are at

z1,2 = 0.5 ± j0.618.

Figure 7.12 shows the loci of the constant damping ratio and the loci of the undamped natural
frequency with the poles of the closed-loop system marked with an × on the graph. From the
graph we can read the damping ratio as 0.25 and the undamped natural frequency as

ωn = 0.29π

T
= 0.91.

7.6 EXERCISES

1. Find the damping ratio and the undamped natural frequency of the sampled data systems
whose characteristic equations are given below
(a) z2 − z + 2 = 0
(b) z2 − 1 = 0
(c) z2 − z + 1 = 0
(d) z2 − 0.81 = 0
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1

s + 1
s

1 − e−Ts
r(s) y(s)

G(s)

e(s)

Figure 7.13 System for Exercise 2

2. Consider the closed-loop system of Figure 7.13. Assume that T = 1 s.
(a) Calculate the transfer function of the system.
(b) Calculate and plot the unit step response at the sampling instants.
(c) Calculate the damping factor and the undamped natural frequency of the system.

3. Consider the closed-loop system of Figure 7.13. Do not assume a value for T .
(a) Calculate the transfer function of the system.
(b) Calculate the damping factor and the undamped natural frequency of the system.
(c) What will be the steady state error if a unit step input is applied?

4. A unit step input is applied to the system in Figure 7.13. Calculate:
(a) the percentage overshoot;
(b) the peak time;
(c) the rise time;
(d) settling time to 5 %.

5. The closed-loop transfer functions of four sampled data systems are given below. Calculate
the percentage overshoots and peak times.

(a) G(z) = 1

z2 + z + 2

(b) G(z) = 1

z2 + 2z + 1

(c) G(z) = 1

z2 − z + 1

(d) G(z) = 2

z2 + z + 4

6. The s-plane poles of a continuous-time system are at s = −1 and s = −2. Assuming T = 1
s, calculate the pole locations in the z-plane.

7. The s-plane poles of a continuous-time system are at s1,2 = −0.5 ± j0.9. Assuming T = 1
s, calculate the pole locations in the z-plane. Calculate the damping ratio and the undamped
natural frequency of the system using a graphical technique.

FURTHER READING

[D’Azzo and Houpis, 1966] D’Azzo, J.J. and Houpis, C.H. Feedback Control System Analysis and Synthesis, 2nd
edn., McGraw-Hill, New York, 1966.

[Dorf, 1992] Dorf, R.C. Modern Control Systems, 6th edn. Addison-Wesley, Reading, MA, 1992.



222 CHAPTER 5 DESIGN USING TRANSFORM TECHNIQUES 

in the fact that the control response is determined from 

U(z) D 
R(z) = 1 + DG 

which for this example is 

H(z) 
G(z) , 

U(z) 13.06 z - 0.0793 (z - 1)(z - 0.9048) 
R(z) z2 - 0.7859z + 0.3679 z + 0.9672 

There is a root at z = -0.9672!. This is the source of the oscillation in the 
control response, but it did not show up in the output response because it 
was exactly canceled by a zero. The control oscillation causes the "intersam
pIe ripple" in the output response, and the designer should be alert to this 
if poorly behaved roots arise in the control response. An actual prediction 
of the output intersample ripple based on linear analysis was not possible 
with the z-transform method described so far; rather, one would need to 
apply the "modified z-transform," which is beyond the scope of this text. 
Alternatively, one can use a CAD simulation to find such oscillations quite 
easily, as was done here. To avoid this oscillation, we could introduce another 
term in H(z), b3Z-3, and require that H(z) be zero at z = -0.9672, so this 
zero of G(z) is not canceled by D(z). The result will be a simpler D(z) with 
a slightly more complicated H (z). However, rather than pursue this method 
further, we will wait until the more powerful method of pole assignment 
by state-variable analysis is developed in the next chapter, where computer 
algorithms are more readily provided. 

5.8 PID CONTROL 

Just as in continuous systems, there are three basic types of control: Propor
tional, Integral, and Derivative, hence the name, PID. In the design exam
ples so far, we have been using the discrete equivalent of lead compensation, 
which is essentially a combination of proportional and derivative control. Let 
us now review these three controls as they pertain to a discrete implementa
tion. The term PID is widely used because there are commercially available 
modules that have knobs for the user to turn that set the values of each of 
the three control types. 
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5.8.1 Proportional Control 

A discrete implementation of proportional control is identical to continuous; 
that is, where the continuous is 

u(t) = Kpe(t) => D(s) = Kp, 

the discrete is 

where e(t) is the error signal as shown in Fig 5.2. 

5.8.2 Derivative Control 

For continuous systems, derivative or rate control has the form 

where TD is called the derivative time. Differentiation can be approximated 
in the discrete domain as the first difference, that is, 

u(k) = KpTD (e(k) - e(k - 1)) 
T 

In many designs, the compensation is a sum of proportional and deriva
tive control (or PD control). In this case, we have 

or, equivalently, 

ID(Z)=K~I 
which is similar to the lead compensations that have been used in the designs 
in the previous sections. The difference is that the pole is at z = 0, whereas 
the pole has been placed at various locations along the ,z-plane real axis 
for the previous designs. In the continuous case, pure derivative control 
represents the ideal situation in that there is no destabilizing phase lag from 
the differentiation, or, equi,valently, the pole is at s = -00. This s-plane 
pole maps into z = 0 for discrete rate control; however, the z . 0 pole does 
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add some phase lag because of the necessity to wait for one cycle in order 
to compute the first difference. Any other stable pole location, whether on 
the positive or negative real axis, would also have some delay or phase lag 
associated with it for the same reason. 

5.8.3 Integral Control 

For continuous systems, we integrate the error to arrive at the control, 

u(t) = Kp it e(t)dt ::::} D(s) = Kp , 
T[ to T[s 

where T[ is called the integral, or reset time. The discrete equivalent is to 
sum all previous errors, yielding 

KT 
u(k) = u(k-1)+ ;[ e(k) ::::} 

Just as for continuous systems, the primary reason for integral control is to 
reduce or eliminate steady-state errors, but this typically occurs at the cost 
of reduced stability. 

5.8.4 PID Control 

Combining all the above yields the PID controller 

D(z) = Kp (1 + Tz + TD(Z - 1)) . 
T[(z - 1)Tz 

(5.61) 

This form of control law is able satisfactorily to meet the specifications for 
a large portion of control problems and is therefore packaged commercially 
and sold for general use. The user simply has to determine the best values 
of K p , TD, and T[. 

5.8.5 Ziegler-Nichols PID Tuning 

The parameters in the PID controller could be selected by any of the design 
methods previously discussed. However, these methods require a dynamic 
model of the process which is not always readily available. Ziegler-Nichols 
tuning is a method for picking the parameters based on fairly simple exper
iments on the process and thus bypasses the need to determine a complete 
dynamic model. 
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Figure 5.30 Process open-loop step response. 

There are two methods. The first, called the transient-response method, 
requires that a step response of the open-loop system is obtain~d which looks 
~ome~hing like that in Fig. 5.30. The response is reduced to two parameters, 
the time delay, L, and the steepest slope, R, which are defined in the figure. 
In order to achieve a damping of about ( . 0.2, the parameters are selected 
according to those in Table 5.2. 

The second method is called the stability-limit method. The system is 
first controlled using proportional control only. The gain, K p , is slowly in
creased until continuous oscillations result, at which point the gain and 
oscillation period are recorded and called Ku and Pu' The PID gains are 
then determlmid from Table 5.3. 

The rules are based on continuous systems and will apply to the discrete 
case for very fast sampling (more than 20 times the bandwidth) provided 
the designer uses the value of T in (5.61) that reflects the actual sample 
period being \.!.sed by the controller. For slower sampling, a response degra
dation similar to that in Example 5'.3 should be expected, and additional 
rate control (higher TD) would likely be required to make up for the sampling 
lag. 

Table 5.2 Ziegler-Nichols tuning 
parameters using transient response. 

P 
PI 
PID 

l/RL. 
0.9/RL 
1.2/RL 

Tr 

3L 
2L 

TD 

0.5L 
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Figure 9.21 Root locus of the compensated system

Figure 9.21 shows the root locus of the compensated system. Clearly the locus passes through
the required point. The d.c. gain at this point is K = 123.9.

The time response of the compensated system is shown in Figure 9.22.

9.2 PID CONTROLLER

The proportional–integral–derivative (PID) controller is often referred to as a ‘three-term’
controller. It is currently one of the most frequently used controllers in the process industry. In
a PID controller the control variable is generated from a term proportional to the error, a term
which is the integral of the error, and a term which is the derivative of the error.

� Proportional: the error is multiplied by a gain K p. A very high gain may cause instability,
and a very low gain may cause the system to drift away.

� Integral: the integral of the error is taken and multiplied by a gain Ki . The gain can be adjusted
to drive the error to zero in the required time. A too high gain may cause oscillations and a
too low gain may result in a sluggish response.

� Derivative: The derivative of the error is multiplied by a gain Kd . Again, if the gain is too
high the system may oscillate and if the gain is too low the response may be sluggish.

Figure 9.23 shows the block diagram of the classical continuous-time PID controller. Tuning
the controller involves adjusting the parameters K p, Kd and Ki in order to obtain a satisfactory
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Figure 9.22 Time response of the system
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Figure 9.23 Continuous-time system PID controller

response. The characteristics of PID controllers are well known and well established, and most
modern controllers are based on some form of PID.

The input–output relationship of a PID controller can be expressed as

u(t) = K p


e(t) + 1

Ti

t∫
0

e(t)dt + Td
de(t)

dt


 , (9.14)

where u(t) is the output from the controller and e(t) = r (t) − y(t), in which r (t) is the desired
set-point (reference input) and y(t) is the plant output. Ti and Td are known as the integral and
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derivative action time, respectively. Notice that (9.14) is sometimes written as

u(t) = K pe(t) + Ki

t∫
0

e(t)dt + Kd
de(t)

dt
+ u0, (9.15)

where

Ki = K p

Ti
and Kd = K pTd . (9.16)

Taking the Laplace transform of (9.14), we can write the transfer function of a continuous-time
PID as

U (s)

E(s)
= K p + K p

Ti s
+ K pTds. (9.17)

To implement the PID controller using a digital computer we have to convert (9.14) from
a continuous to a discrete representation. There are several methods for doing this and the
simplest is to use the trapezoidal approximation for the integral and the backward difference
approximation for the derivative:

de(t)

dt
≈ e(kT ) − e(kT − T )

T
and

∫ t

0
e(t)dt ≈

n∑
k=1

T e(kT ).

Equation (9.14) thus becomes

u(kT ) = K p

[
e(kT ) + Td

e(kT ) − e(kT − T )

T
+ T

Ti

n∑
k=1

e(kT )

]
+ u0. (9.18)

The PID given by (9.18) is now in a suitable form which can be implemented on a digital
computer. This form of the PID controller is also known as the positional PID controller.
Notice that a new control action is implemented at every sample time.

The discrete form of the PID controller can also be derived by finding the z-transform of
(9.17):

U (z)

E(z)
= K p

[
1 + T

Ti (1 − z−1)
+ Td

(1 − z−1)

T

]
. (9.19)

Expanding (9.19) gives

u(kT ) = u(kT − T ) + K p[e(kT ) − e(kT − T )] + K pT

Ti
e(kT )

+ K pTd

T
[e(kT ) − 2e(kT − T ) − e(kT − 2T )]. (9.20)

This form of the PID controller is known as the velocity PID controller. Here the current control
action uses the previous control value as a reference. Because only a change in the control
action is used, this form of the PID controller provides a smoother bumpless control when the
error is small. If a large error exists, the response of the velocity PID controller may be slow,
especially if the integral action time Ti is large.

The two forms of the PID algorithm, (9.18) and (9.20), may look quite different, but they
are in fact similar to each other. Consider the positional controller (9.18). Shifting back one
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sampling interval, we obtain

u(kT − T ) = K p

[
e(kT − T ) + Td

e(kT − T ) − e(kT − 2T )

T
+ T

Ti

n−1∑
k=1

e(kT )

]
+ u0.

Subtracting from (9.18), we obtain the velocity form of the controller, as given by (9.20).

9.2.1 Saturation and Integral Wind-Up

In practical applications the output value of a control action is limited by physical constraints.
For example, the maximum voltage output from a device is limited. Similarly, the maximum
flow rate that a pump can supply is limited by the physical capacity of the pump. As a result
of this physical limitation, the error signal does not return to zero and the integral term keeps
adding up continuously. This effect is called integral wind-up (or integral saturation), and as a
result of it long periods of overshoot can occur in the plant response. A simple example of what
happens is the following. Suppose we wish to control the position of a motor and a large set-
point change occurs, resulting in a large error signal. The controller will then try to reduce the
error between the set-point and the output. The integral term will grow by summing the error
signals at each sample and a large control action will be applied to the motor. But because of
the physical limitation of the motor electronics the motor will not be able to respond linearly to
the applied control signal. If the set-point now changes in the other direction, then the integral
term is still large and will not respond immediately to the set-point request. Consequently, the
system will have a poor response when it comes out of this condition.

The integral wind-up problem affects positional PID controllers. With velocity PID con-
trollers, the error signals are not summed up and as a result integral wind-up will not occur,
even though the control signal is physically constrained.

Many techniques have been developed to eliminate integral wind-up from the PID con-
trollers, and some of the popular ones are as follows:

� Stop the integral summation when saturation occurs. This is also called conditional integra-
tion. The idea is to set the integrator input to zero if the controller output is saturated and the
input and output are of the same sign.

� Fix the limits of the integral term between a minimum and a maximum.

� Reduce the integrator input by some constant if the controller output is saturated. Usually
the integral value is decreased by an amount proportional to the difference between the
unsaturated and saturated (i.e maximum) controller output.

� Use the velocity form of the PID controller.

9.2.2 Derivative Kick

Another possible problem when using PID controllers is caused by the derivative action of
the controller. This may happen when the set-point changes sharply, causing the error signal
to change suddenly. Under such a condition, the derivative term can give the output a kick,
known as a derivative kick. This is usually avoided in practice by moving the derivative term
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to the feedback loop. The proportional term may also cause a sudden kick in the output and it
is common to move the proportional term to the feedback loop.

9.2.3 PID Tuning

When a PID controller is used in a system it is important to tune the controller to give the
required response. Tuning a PID controller involves selecting values for the controller param-
eters K p, Ti and Td . There are many techniques for tuning a controller, ranging from the first
techniques described by J.G. Ziegler and N.B. Nichols (known as the Ziegler–Nichols tuning
algorithm) in 1942 and 1943, to recent auto-tuning controllers. In this section we shall look at
the tuning of PID controllers using the Ziegler–Nichols tuning algorithm.

Ziegler and Nichols suggested values for the PID parameters of a plant based on open-loop
or closed-loop tests of the plant. According to Ziegler and Nichols, the open-loop transfer
function of a system can be approximated with a time delay and a single-order system, i.e.

G(s) = K e−sTD

1 + sT1
, (9.21)

where TD is the system time delay (i.e. transportation delay), and T1 is the time constant of the
system.

9.2.3.1 Open-Loop Tuning

For open-loop tuning, we first find the plant parameters by applying a step input to the open-
loop system. The plant parameters K , TD and T1 are then found from the result of the step test
as shown in Figure 9.24.

Ziegler and Nichols then suggest using the PID controller settings given in Table 9.1 when
the loop is closed. These parameters are based on the concept of minimizing the integral of
the absolute error after applying a step change to the set-point.

An example is given below to illustrate the method used.

t 

K

TD 

 T1

Unit step
response  

Figure 9.24 Finding plant parameters K , TDand T1
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Table 9.1 Open-loop Ziegler–Nichols settings

Controller K p Ti Td

Proportional T1
K TD

PI 0.9T1
K TD

3.3TD

PID 1.2T1
K TD

2TD 0.5TD

Example 9.7

The open-loop unit step response of a thermal system is shown in Figure 9.25. Obtain the
transfer function of this system and use the Ziegler–Nichols tuning algorithm to design (a)
a proportional controller, (b) to design a proportional plus integral (PI) controller, and (c) to
design a PID controller. Draw the block diagram of the system in each case.

Solution

From Figure 9.25, the system parameters are obtained as K = 40◦C, TD = 5 s and T1 = 20 s,
and the transfer function of the plant is

G(s) = 40e−5s

1 + 20s
.

Proportional controller. According to Table 9.1, the Ziegler–Nichols settings for a proportional
controller are:

K p = T1

K TD
.

Thus,

K p = 20

40 × 5
= 0.1,

t 

5 

 20 

50  C °−

10  C °−

40  C °−

Figure 9.25 Unit step response of the system for Example 9.7
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)201(

40e−5s

s+
U(s)E(s)

+ 

_
0.1

Figure 9.26 Block diagram of the system with proportional controller

The transfer function of the controller is then
U (s)

E(s)
= 0.1,

and the block diagram of the closed-loop system with the controller is shown in Figure 9.26.

PI controller. According to Table 9.1, the Ziegler–Nichols settings for a PI controller are

K p = 0.9T1

K TD
and Ti = 3.3TD.

Thus,

K p = 0.9 × 20

40 × 5
= 0.09 and Ti = 3.3 × 5 = 16.5.

The transfer function of the controller is then

U (s)

E(s)
= 0.09

[
1 + 1

16.5s

]
= 0.09(16.5s + 1)

16.5s

and the block diagram of the closed-loop system with the controller is shown in Figure 9.27.

PID controller. According to Table 9.1, the Ziegler–Nichols settings for a PID controller are

K p = 1.2T1

K TD
, Ti = 2TD, Td = 0.5TD.

Thus,

K p = 1.2 × 20

40 × 5
= 0.12, Ti = 2 × 5 = 10, Td = 0.5 × 5 = 2.5.

The transfer function of the required PID controller is

U (s)

E(s)
= K p

[
1 + 1

Ti s
+ T ds

]
= 0.12

[
1 + 1

10s
+ 2.5s

]

or

U (s)

E(s)
= 3s2 + 1.2s + 0.12

10s
.

The block diagram of the system, together with the controller, is shown in Figure 9.28.

)201(

40e−5s

s+
U(s)E(s)

+ 

_ s

s

5.16
)15.16(09.0 +

Figure 9.27 Block diagram of the system with PI controller
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)201(

40e−5s

s+
U(s)E(s)

+ 

_ s10

3s2 + 1.2s + 0.12
 

Figure 9.28 Block diagram of the system with PID controller

9.2.3.2 Closed-Loop Tuning

The Ziegler–Nichols closed-loop tuning algorithm is based on plant closed-loop tests. The
procedure is as follows:

� Disable any derivative and integral action in the controller and leave only the proportional
action.

� Carry out a set-point step test and observe the system response.

� Repeat the set-point test with increased (or decreased) controller gain until a stable oscillation
is achieved (see Figure 9.29). This gain is called the ultimate gain, Ku .

� Read the period of the steady oscillation and let this be Pu .

� Calculate the controller parameters according to the following formulae: K p = 0.45Ku ,
Ti = Pu /1.2 in the case of the PI controller; and K p = 0.6Ku , Ti = Pu /2, Td = Tu /8 in the
case of the PID controller.

9.3 EXERCISES

1. The open-loop transfer function of a plant is given by:

G(s) = e−4s

1 + 2s
.

(a) Design a dead-beat digital controller for the system. Assume that T = 1 s.
(b) Draw the block diagram of the system together with the controller.
(c) Plot the time response of the system.

Set-point 
 Pu 

Steady
oscillation

Figure 9.29 Ziegler–Nichols closed-loop test




