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Fig. 8.3 Discrete-time impulse function.

1. Discrete-Time impulse Function 5{k]

The discrete-time counterpart of the continuous-time impulse function 6(t) is

8]k], defined by
1 k=0
6lk] = (8.1)
0 k#0
This function, also called the unit impulse sequence, is shown in Fig. 8.3a. The time-
shifted impulse sequence §[k—m] is depicted in Fig. 8.3b. Unlike its continuous-time
counterpart &(t), this is a very simple function without any mystery.
Later, we shall express an arbitrary input f[k] in terms of impulse components.
The (zero-state) system response to input f[k] can then be obtained as the sum of
system responses to impulse components of f 38

2. Discrete-Time Unit Step Function (k]
The discrete-time counterpart of the unit step function w(t) is u[k} (Fig. 8.4),
defined by
1 for k>0
= - 8.2
vl {0 for k < 0 (82)

If we want a signal to start at k = 0 (so that it has a zero value for all & < 0),
we need only multiply the signal with u[k].
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Fig. 8.4 A discrete-time unit step function ufk].
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Fig. 8.5 The A-plane, the y-plane and their mapping.

3. Discrete-Time Exponential v*

A continuous-time exponential e can be expressed in an alternate form as
= (y=e* or A=Inv) (8.3a)

For example, e~03 = (0.7408) because e~ = 0.7408. Conversely, 4! = 1386
because In4 = 1.386, that is, '3 = 4. In the study of continuous-time signals
and systems we prefer the form et rather than v¢. The discrete-time exponential
can also be expressed in two forms as

e/\k k A

= (y=¢€" or A=1n¥) (8.3b)
For example, 3% = (e%)F = (20.086)*. Similarly, 5% = ¢!69% because 5 = 1-6%°.
In the study of discrete-time signals and systems, unlike the continuous-time case,
the form y* proves more convenient than the form e**. Because of unfamiliarity
with exponentials with bases other than e, exponentials of the form v* may seem
inconvenient and confusing at first. The reader is urged to plot some exponentials
to acquire a sense of these functions.

Nature of v*: The signal e** grows exponentially with k if Re A > 0 (X in
RHP), and decays exponentially if Re A < 0 (A in LHP). It is constant or oscillates
with constant amplitude if Re A = 0 () on the imaginary axis). Clearly, the location
of X in the complex plane indicates whether the signal e** grows exponentially,
decays exponentially, or oscillates with constant frequency (Fig. 8.5a). A constant
signal (A = 0) is also an oscillation with zero frequency. We now find a similar
criterion for determining the nature of v* from the location of ~ in the complex
plane.

Figure 8.5a shows a complex plane (A-plane). Consider a signal e/, In this
case, A = j§ lies on the imaginary axis (Fig. 8.5a), and therefore is a constant-
amplitude oscillating signal. This signal e7* can be expressed as v*, where v = /%,
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disturbed, will neither go back to the original state nor continue to move farther
away from the original state. The cone in this case is said to be in a neutral
equilibrium.

Let us apply these observations to systems in general. If, in the absence of an
external input, a system remains in a particular state (or condition) indefinitely,
then that state is said to be an equilibrium state of the system. For an LTI
system this equilibrium state is the zero state, in which all initial conditions are
zero. Now suppose an LTT system is in equilibrium (zero state) and we change this
state by creating some nonzero initial conditions. By analogy with the cone, if the
system is stable it should eventually return to zero state. In other words, when left
to itself, the system’s output due to the nonzero initial conditions should approach
0 as £ — co. But the system output generated by initial conditions (zero-input
response) is made up of its characteristic modes. For this reason we define stability
as follows: a system is (asymptotically) stable if, and only if, all its characteristic
modes — 0 as t — oo. If any of the modes grows without bound as t — oo, the
system is unstable. There is also a borderline situation in which the zero-input
response remains bounded (approaches neither zero nor infinity), approaching a
constant or oscillating with a constant amplitude as ¢ — oo. For this borderline
situation, the system is said to be marginally stable or just stable.

If an LTIC system has n distinct characteristic roots A1, Az, ..., An, the zero-
input response is given by

n

vo(t) = Y _cjett (2.62)

=1
We have shown elsewhere {see Eq. (B.14)]

A _ 0 Re A <0
oo Re A >0

lim e

(2.63)
—00

It is helpful to study system stability in terms of the location of the system’s charac-
teristic roots in the complex plane. Let us first assume that the system has distinct
roots only. If a characteristic root X is located in the left half of the complex plane
(LHP), its real part is negative (Re XA < 0). Similarly, if a root A is located in the
right half of the complex plane (RHP), its real part is positive (Re A > 0). Along
the imaginary axis, the real part is zero (Re A = 0). These regions are delineated in
Fig. 2.15. Equation (2.63) clearly shows that the characteristic modes correspond-
ing to roots in LHP vanish as t — oo, while the modes corresponding to roots in
RHP grow without bound as ¢t — co. However, the modes corresponding to simple
(unrepeated) roots on the imaginary axis are of the form e/?*; these are bounded
(neither vanish nor grow without limit) as ¢t — oo.

From this discussion it follows that a system is asymptotically stable if, and
only if, all of its characteristic roots lie in the left half of the complex plane. If any
of the roots—even one—lies in RHP, the system is unstable. If none of the roots lie
in RHP, but if some unrepeated (simple) roots lie on the imaginary axis, then the
system is marginally stable (Fig. 2.15).

So far we have assumed all of the system’s n roots to be distinct. The modes
corresponding to a root A repeated r times are e*t, te?t, t2e™, ... t""le . But as
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Fig. 2.15 Characteristic roots location and system stability.

t — o0, the* — 0, if ReA < 0 (A in LHP). Therefore, repeated roots in LH?
do not cause instability. But when the repeated roots are on the imaginary axis
(A = jw), the corresponding modes tkeiwt approach infinity as t — oo. Therefore,
repeated roots on the imaginary axis cause instability. Figure 2.16 shows character-
istic modes corresponding to characteristic roots at various location in the comPle.x
plane. Observe the central role played by the characteristic roots or characteristic
modes in determining the system’s stability.

To summarize:

1. An LTIC system is asymptotically stable if, and only if, all the characteristic
roots are in the LHP. The roots may be simple (unrepeated) or repeated.

2. An LTIC system is unstable if, and only if, either one or both of the following
conditions exist: (i) at least one root is in the RHP, (ii) there are repeated
roots on the imaginary axis.

3. An LTIC system is marginally stable if, and only if, there are no roots in the
RHP, and there are some unrepeated roots on the imaginary axis.

B Example 2.12 .
Investigate the stability of LTIC system described by the following equations:

(@) (D+1)(D*+4D+8)y(t) = (D -3)f()
(b) (D-1)(D*+4D +8)y(t) = (D +2)f(t)
(€) (D+2)(D*+4)y(t) = (D*+D+1)f(t)
(d) (D +1)(D?+4)%y(t) = (D* +2D +8) f(t)
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Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.

The characteristic polynomials of these systems are

(@) O+ DA+ +8) = A+ 1A +2-52)(A+2+52)
() A—=D(A+4r+8) =(A—1)(A+2- (A +2+32)
() (A+2)AW+4) =2+ - 32X +32)

(d) A+ +49)%= (2 +2)(0-j2)2(A +42)2
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Consequently, the characteristic roots of the systems above are (see Fig. 2.17):
(a) -1, ~2+52 (b) 1, =2 £ j2 (c) -2, £52 (d) —1, %52, £j2.
System (a) is asymptotically stable (all roots in LHP), (b) is unstable (one root in *

RHP), (c) is marginally stable (unrepeated roots on imaginary axis) and no roots in RHP,
and (d) is unstable (repeated roots on the imaginary axis). n

@ () (©) (d)

Fig. 2.17 Location of characteristic roots for systems in Example 2.12.

A Exercise E2.16

For each of the systems specified by the equations below, plot its characteristic roots in the
complex plane and determine whether it is asymptotically stable, marginally stable, or unstable.

(a) D(D+2)y(t) =3f(t)

(b) DD +3)y(t) = (D +5)f(t)

(e) (D+1)D+2y(t) = (2D + 3)f(t)

(d) (D?+1)(D? +9)y(t) = (D? + 2D +4) f(t)

(&) (D+1)(D?-4D+9)y(t) =(D+7f()

Answer: (a) marginally stable (b) unstable (c) stable (d) marginally stable (e) unstable.

2.6-1 System Response to Bounded inputs

From the example of the right circular cone, it appears that when a system is
in stable equilibrium, application of a small force (input) produces a small response.
In contrast, when the system is in unstable equilibrium, a small force (input) pro-
duces an unbounded response. Intuitively we feel that every bounded input should
produce a bounded response in a stable system, whereas in an unstable system this
would not be the case. We shall now verify this hunch and show that it is indeed
true.

Recall that for an LTIC system

y(t) = h(t) « £(2)
= /00 R(T)f(t—T)dr (2.64)

—00
Therefore

()] < / = RN - )] dr

Moreover, if f(t) is bounded, then |f(t — 7)| < K1 < o0, and

o0

(o)l < Ky / Ih(r)] dr

-0
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Also, y(t) = 0 when t < 0 [see Eq. (2.38)]. This result, along with Eq. (2.41), yields 9 teMtu(t) eMtult) ettt _ ¢ (‘)\+ (/}\1 - Az)te u(t)
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A Exercise E2.5

m
For an LTIC system with the impulse response h(t) = 6e~tu(t), determine the system re- 1 gmettt u(t) hetet u(t) Z
sponse to the input: (a) 2u(t) and (b) 3e~3tu(t). e
=i

Answer: (a) 12(1 —e~!)u(t) (b) 9(e~t - e 3t)u(t) ©
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u(t)

4L Exercise E2.6 M £ A
Repeat Exercise E2.5 if the input f(t) = e~tu(t). i 2
Answer: 6te”tu(t)
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The Convolution Table 12 e™%tcos (Bt + B)u(t) e u(t) (t)

The task of convolution is considerably simplified by a ready-made convolution
table (Table 2.1). This table, which lists several pairs of signals and their resulting
convolution, can conveniently determine y(t), a system response to an input f(t),
without performing the tedious job of integration. For instance, we could have
readily found the convolution in Example 2.4 using pair 4 (with Ay = —1 and

Az = —2) to be (e —e~%)u(t). The following example demonstrates the utility of
this table.

14

eMtu(t)

eMtu(—t)

Ve + X2+ g2
¢ = tan™[=B/(a + N)]

e Mtu(t) + e tu(—t)

Agty (0 ReXz > Re A
ety (—t) = e Az 1
Mt _ Azt
et —¢
Aat, 0 —t
e u(—t) FPw u(~t)
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Fig. 9.6 Characteristic roots location and system stability.
It is clear that a system is asymptotically stable if and only if

I’yi[<1 i=12,---,n

These results can be grasped more effectively in terms of the location of charac-
teristic roots in the complex plane. Figure 9.6 shows a circle of unit radius, centered
at the origin in a complex plane. Our discussion clearly shows that if all charac-
teristic roots of the system lie inside this circle (unit circle), v;| < 1 for all ¢ and
the system is asymptotically stable. On the other hand, even if one characteristic
root lies outside the unit circle, the system is unstable. If none of the characteristic
roots lie outside the unit circle, but some simple (unrepeated) roots lie on the circle
itself, the system is marginally stable. If two or more characteristic roots coincide
on the unit circle (repeated roots), the system is unstable. The reason is that for
repeated roots, the zero-input response is of the form ¥™~~* and if |y| = 1, then
[k*~19%| = k™! - o0 as k — 0.} Note, however, that repeated roots inside
the wnit circle do not cause instability. Figure 9.7 shows the characteristic modes
corresponding to characteristic roots at various locations in the complex plane. To
summmarize:

1. An LTID system is asymptotically stable if and only if all the characteristic
roots are inside the unit circle. The roots may be simple or repeated.

2. An LTID system is unstable if and only if either one or both of the following
conditions exist: (i) at least one root is outside the unit circle; (ii) there are
repeated roots on the unit circle.

3. An LTID system is marginally stable if and only if there are no roots outside
the unit circle and there are some unrepeated roots on the unit circle.

tIf the development of discrete-time systems is parallel to that of continuous-time systems, we
wonder why the parallel breaks down here. Why, for instance, aren’t LHP and RHP the regions
demarcating stability and instability? The reason lies in the form of the characteristic modes. In
continuous-time systems we chose the form of characteristic mode as e*tt. In discrete-time systems
we choose the form (for computational convenience) to be 'yf . Had we chosen this form to be e**
where v; = e*i, then LHP and RHP (for the location of ;) again would demarcate stability and
instability. The reason is that if ¥ = *, |y| = 1impliesje*| = 1, and therefore A = jw. This shows
that the unit circle in -y plane maps into the imaginary axis in the X plane.

T
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Fig. 9.7 Characteristic roots location and the corresponding characteristic modes.
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Fig. 12.4 Various pole-zero configurations and the corresponding frequency response.

LH [e™T]. The phase spectrum —wT is a linear function of frequency and there-
fore represents a pure time-delay of T seconds (see Eq. (10.48) or Exercise E12.2).
Therefore, a pole (a zero) at the origin causes a time delay (time advance) of T
seconds in the response. There is no change in the amplitude response.

12.2 Frequency Response From Pole-Zero Location 725

For a stable system, all the poles must be located inside the unit circle. The
zeros may lie anywhere. Also, for a physically realizable system, H([z] must be
a proper fraction, that is, n > m. If, to achieve a certain amplitude response,
we require m > n, we can still make the system realizable by placing a sufficient
number of poles at the origin. This will not change the amplitude response but it
will increase the time delay of the response.

In general, a pole at a point has the opposite effect of a zero at that point.
Placing a zero closer to a pole tends to cancel the effect of that pole on the frequency
response.

Lowpass Filters

A lowpass filter has a maximum gain at w = 0, which corresponds to point
¢9°T = 1 on the unit circle. Clearly, placing a pole inside the unit circle near the
point z = 1 (Fig. 12.4a) would result in a lowpass response. The corresponding
amplitude and phase response appears in Fig. 12.4a. For smaller values of w, the
point e7“T (a point on the unit circle at an angle wT) is closer to the pole, and con-
sequently the gain is higher. As w increases, the distance of the point ¢/*T from the
pole increases. Consequently the gain decreases, resulting in a lowpass characteris-
tic. Placing a zero at the origin does not change the amplitude response but it does
modify the phase response, as illustrated in Fig. 12.4b. Placing a zero at z = —1,
however, changes both the amplitude and phase response (Fig. 12.4c). The point
z = —1 corresponds to frequency w = 7/T (z = e/T = ™ = —1). Consequently,
the amplitude response now becomes more attenuated at higher frequencies, with
a zero gain at w7 = w. We can approach ideal lowpass characteristics by using
more poles staggered near z = 1 {but within the unit circle). Figure 12.4d shows
a third-order lowpass filter with three poles near z = 1 and a third-order zero at
z = —1, with corresponding amplitude and phase response. For an ideal lowpass
filter we need an enhanced gain at every frequency in the band (0, w;). This can
be achieved by placing a continuous wall of poles (requiring an infinite number of
poles) opposite this band.

Highpass Filters

A highpass filter has a small gain at lower frequencies and a high gain at
higher frequencies. Such a characteristic can be realized by placing a pole or poles
near z = —1 because we want the gain at wT = = to be the highest. Placing a
zero at z = 1 further enhances suppression of gain at lower frequencies. Figure
12.4e shows a possible pole-zero configuration of the third-order highpass filter with
corresponding amplitude and phase response.

B Example 12.2: Bandpass Filter

Using trial-and-error, design a tuned (bandpass) filter with zero transmission at 0
Hz and also at 500 Hz. The resonant frequency is required to be 125 Hz. The highest
frequency to be processed is Fp = 500 Hz.

Because Fr = 500, we require T < g [see Eq. (8.17)]. Let us select T = 1073
Since the amplitude response is zero at w = 0 and w = 10007, we need to place zeros at
¢*T corresponding to w = 0 and w = 1000r. For w = 0,z = ™7 = 1; for w = 1000m
(with T = 1073), ™7 = —1. Hence, there must be zeros at z = 1. Moreover, we need
enhanced frequency response at w = 250x. This frequency (with wT = w/4) corresponds
to z = /T = &/™/4, Therefore, to enhance the frequency response at this frequency, we
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Fig. 12.10 Aliasing in digital filters, and a choice of the sampling interval T

hlk] = Jim Tha(kT)

In Chapter 5 (Fig. 5.6), we showed that the Fourier transform of the samples of ha(t)
consists of periodic repetition of H,(jw) with period equal to the sampling frequency
ws = 2r/T = 2nF,.1 Also H,(jw) is not generally bandlimited. Hence, aliasing
among various repeating cycles cannot be prevented, as depicted in Fig. 12.10b. The
resulting spectrum will be different from the desired spectrum, especially at higher
frequencies. If H,(jw) were to be bandlimited; that is, if H,(jw) = 0 for |w| > wo,
then the overlap could be avoided if we select the period 2 /T > 2wo. However, ac-
cording to the Paley-Wiener criterion [Eq. (4.61)], every practical system frequency
response is nonbandlimited, and the cycle overlap is inevitable. However, for fre-
quencies beyond some wp, if |H,(jw)| is a negligible fraction, say 1%, of Ha(jw)|max»
then we can consider! H,(jw) to be essentially bandlimited to wo, and we can select

=2 (12.46)

H Example 12.4
Design a digital filter to realize the first-order analog lowpass Butterworth filter with
the transfer function

Ha(s) = fwc we = 10° (12.47)

{How can we apply the discussion in Chapter 5, which applies to impulse samples of continuous-
time signals, to discrete-time signals? Recall our discussion in Sec. 10.4 (Fig. 10.8), where we
showed that the spectrum of discrete-time signal is just a scaled version of the spectrum of the
impulse samples of the corresponding continuous-time signal.
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7

System Time Response
Characteristics

In this chapter we investigate the time response of a sampled data system and compareit with
theresponseof asimilar continuous system. In addition, the mapping between thes-domain and
the z-domain is examined, the important time response characteristics of continuous systems
arerevised and their equivalents in the discrete domain are discussed.

7.1 TIME RESPONSE COMPARISON

An exampl e closed-l1oop discrete-time system with azero-order hold isshownin Figure 7.1(a).
The continuous-time equivalent of this system is also shown in Figure 7.1(b), where the
sampler (A/D converter) and the zero-order hold (D/A converter) have been removed. We
shall now derive equations for the step responses of both systems and then plot and compare
them.

As described in Chapter 6, the transfer function of the above discrete-time system is given

by

y(@) G(2)
— = 7.1
rz 1+G@®’ (7.2)
where
z
r(z) = —] (7.2)
and the z-transform of the plant is given by
1— efsT
G(S)= ———.
(s) s2(s+1)

Expanding by means of partial fractions, we obtain

6 =0-eN (514511

s2 s+1

Microcontroller Based Applied Digital Control  D. Ibrahim
© 2006 John Wiley & Sons, Ltd. ISBN: 0-470-86335-8
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r(s) — ZoH [ ; (Si 5 > Y()

@

r(s) > i D) > Y(s)

(b)

Figure7.1 (&) Discrete system and (b) its continuous-time equival ent

and the z-transform is

_ 1 1 1
G(Z):(l—Z 1)2{?—g+m}

From z-transform tables we obtain

Gl=01-2zY [

(z—12 z—1+ z—eT

Tz z z :|
Setting T = 1sand simplifying gives
0.368z +- 0.264
72 — 1.368z + 0.368°
Substituting into (7.1), we obtain the transfer function
y(z  G(z  0.368z+0.264
r20 1+G(z 22-z+0.632°
and then using (7.2) gives the output

G(2) =

2(0.368z + 0.264)
(z—1)(z2-2z+0.632)°
Theinverse z-transform can be found by long division: the first several terms are
¥(2) =03682 1 +2z2%+14z°%+1427%+1152°4+092°+082"+087z8
+0.9927° + ...

¥(2) =

and the time response is given by
y(nT) = 0.3685(t — 1) + 8(t — 2) + 1.45(t — 3) + 1.45(t — 4) + 1.155(t — 5)
+0.95(t — 6) +0.85(t —7) +0.875(t — 8) +....
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From Figure 7.1(b), the equivalent continuous-time system transfer function is

ys) _ G(s) 1/(s(s+ 1)) 1

rs) 1+G(s) 1+(@/s(s+1) s2+s+1

Sincer (s) = 1/s, the output becomes

1

S)= ——"—.
ye) s(s? +s+1)
To find the inverse Laplace transform we can write

(S)_l s+1 1 s+ 05 0.5
o = s T2 s+1" s (s+052-05 (s+05)2—-052"

From inverse Laplace transform tables we find that the time responseis
y(t) = 1 — e %% (cos0.5t + 0.577sin0.5t) .

Figure 7.2 showsthetimeresponsesof both the discrete-time system and its continuous-time
equivalent. The response of the discrete-time system is accurate only at the sampling instants.
As shown in the figure, the sampling process has a destabilizing effect on the system.

Figure7.2 Step response of the system shown in Figure 7.1
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7.2 TIME DOMAIN SPECIFICATIONS

The performance of a control system is usually measured in terms of its response to a step
input. The step input is used because it is easy to generate and gives the system a nonzero
steady-state condition, which can be measured.

Most commonly used time domain performance measures refer to a second-order system
with the transfer function:

Yo _ e

r(s) s2+2wns+ w?’

where wy, is the undamped natural frequency of the system and ¢ is the damping ratio of the
system.

When a second-order system is excited with a unit step input, the typical output response
is as shown in Figure 7.3. Based on this figure, the following performance parameters are
usually defined: maximum overshoot; peak time; rise time; settling time; and steady-state
error.

The maximum overshoot, M, isthe peak value of the response curve measured from unity.
This parameter is usually quoted as a percentage. The amount of overshoot depends on the
damping ratio and directly indicates the relative stability of the system.

The peak time, T, is defined as the time required for the response to reach the first peak of
the overshoot. The system is more responsive when the peak timeis smaller, but thisgivesrise
to a higher overshoot.

Therisetime, T;, isthe time required for the response to go from 0% to 100 % of itsfinal
value. Itisameasure of the responsiveness of asystem, and smaller rise times make the system
more responsive.

The settling time, Ts, isthe time required for the response curve to reach and stay within a
range about the final value. A value of 2-5% is usually used in performance specifications.

The steady-state error, Egs, isthe error between the system response and the reference input
value (unity) when the system reaches its steady-state value. A small steady-tate error is a
requirement in most control systems. In some control systems, such as position control, it is
one of the requirements to have no steady-state error.

y(®)

\ 4
—

0 T, Tp T,

Figure 7.3 Second-order system unit step response
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Having introduced the parameters, we are now in a position to give formulae for them
(readerswho are interested in the derivation of these formulae should refer to books on control
theory). The maximum overshoot occurs &t at peak time (t = T,) and is given by

Mp — e_(fﬂ/\/ 1_4'2)7

i.e. overshoot is directly related to the system damping ratio — the lower the damping ratio,
the higher the overshoot. Figure 7.4 shows the variation of the overshoot (expressed as a
percentage) with the damping ratio.

The peak timeis obtained by differentiating the output response with respect to time, letting
thisequal zero. It is given by

Tp=—
P g

wq = wﬁ\/l— ZZ@
is the damped natural frequency.

Therisetimeis obtained by setting the output response to 1 and finding the time. It isgiven
by

where

n—p

Wd

T, =

where
_1 Wd
Con
The settling timeis usually specified for a2 % or 5 % tolerance band, and is given by

B =tan

4
Ts = (for 2% settlingtime),

Cwn

3 -
Ts = (for 5% settling time).

Swn
Thesteady-stateerror can befound by using thefinal valuetheorem, i.e. if the Laplacetransform
of the output response is y(s), then the final value (steady-state value) is given by

lim sy(s),
s—0
100
80
S \
= 60
< N
o
@ 40 \
[<5]
& N
20
0
0 0.2 0.4 0.6 0.8 1

Damping ratio

Figure7.4 Variation of overshoot with damping ratio


uqssing7
Sticky Note
This should be w_n not w_n^2:
\omega_d=\omega_n\sqrt{1-\zeta^2}
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and the steady-state error when a unit step input is applied can be found from
Ess = 1 — limsy(s).
s—0

Example 7.1

Determine the performance parameters of the system given in Section 7.1 with closed-loop
transfer function

o _ 1
rs) s2+s+1
Solution
Comparing this system with the standard second-order system transfer function

v of
r(s) s?+2wnS+ v’
wefind that ¢ = 0.5 and w, = 1 rad/s. Thus, the damped natural frequency is

wd = w3y/1— ¢2 = 0.866rad/s.
The peak overshoot is

Mp = e ¢7/V1¢) = 0,16
or 16 %. The peak timeis

wq
Therisetimeis
T=""7
r wn ]
since
B =tant 24 — 1047,
Can
we have
- —1.047
T _* — 2.094s
wn 1
The settling time (2 %) is
4
Ts = =85,
S wn
and the settling time (5 %) is
3
Ts = =6s.
Can

Finally, the steady state error is

Es=1—-Ilimsyls)=1-lims————=0
s s—0 ye) s—0 §(s24+s+1)
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7.3 MAPPING THE s-PLANE INTO THE z-PLANE

The pole locations of a closed-loop continuous-time system in the s-plane determine the
behaviour and stability of the system, and we can shape the response of asystem by positioning
itspolesin the s-plane. It isdesirableto do the samefor the sampled data systems. This section
describes the relationship between the s-plane and the z-plane and analyses the behaviour of
a system when the closed-loop poles are placed in the z-plane.

First of all, consider the mapping of the left-hand side of the s-plane into the z-plane. Let
S =0 + jw describe apoint in the s-plane. Then, along the jw axis,

z = eST — eUTeij.
But 0 = 0 so we have
z=eT = coswT + j sineT = 1/wT.

Hence, the pole locations on the imaginary axis in the s-plane are mapped onto the unit circle
in the z-plane. As w changes along the imaginary axisin the s-plane, the angle of the poles on
the unit circlein the z-plane changes.

If w is kept constant and ois increased in the left-hand s-plane, the pole locations in the
z-plane move towards the origin, away from the unit circle. Similarly, if o is decreased in
the left-hand s-plane, the pole locations in the z-plane move away from the origin in the
z-plane. Hence, the entire left-hand s-plane is mapped into the interior of the unit circle in
the z-plane. Similarly, the right-hand s-plane is mapped into the exterior of the unit circlein
the z-plane. As far as the system stability is concerned, a sampled data system will be stable
if the closed-loop poles (or the zeros of the characteristic equation) lie within the unit circle.
Figure 7.5 shows the mapping of the left-hand s-plane into the z-plane.

As shown in Figure 7.6, lines of constant o in the s-plane are mapped into circles in the
z-plane with radius €’ . If the line is on the |eft-hand side of the s-plane then the radius of
thecirclein the z-planeislessthan 1. If on the other hand the lineis on the right-hand side of
the s-plane then the radius of the circle in the z-plane is greater than 1. Figure 7.7 shows the
corresponding pole locations between the s-plane and the z-plane.

\4

z-plane

s-plane

Figure 7.5 Mapping the |eft-hand s-plane into the z-plane
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I 77
BB 7/

Figure7.6 Mapping the lines of constant o
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s-plane

z-plane

Figure 7.7 Polesin the s-plane and their corresponding z-plane locations

The time responses of a sampled data system based on its pole positions in the z-plane are
shown in Figure 7.8. It is clear from this figure that the system is stable if all the closed-loop
poles are within the unit circle.

7.4 DAMPING RATIO AND UNDAMPED NATURAL FREQUENCY
IN THE z-PLANE

7.4.1 Damping Ratio
As shown in Figure 7.9(a), lines of constant damping ratio in the s-plane are lines where

¢ = cos « for a given damping ratio. The locus in the z-plane can then be obtained by the
substitution z = e". Remembering that we are working in the third and fourth quadrantsin
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Figure 7.8 Timeresponse of z-plane pole locations

the s-plane where s is negative, we get

z=e“TeloT, (7.3)
Since, from Figure 7.9(a),
_ T ot
o= tan(2 coS g), (7.9
substituting in (7.3) we have
Z=exp [—wT tan (% —cost ;)] eleT. (7.5)

Equation (7.5) describes a logarithmic spiral in the z-plane as shown in Figure 7.9(b). The
spiral startsfrom z = 1 when w = 0. Figure 7.10 shows the lines of constant damping ratioin
the z-plane for various values of ¢.

7.4.2 Undamped Natural Frequency

As shown in Figure 7.11, the locus of constant undamped natural frequency in the s-planeis
acircle with radius wy. From this figure, we can write

SO o =,/wt— o (7.6)
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A jo
joq 1-82
const
p > o
—Lw s-plane
@

const ¢
1.0

z-plane

(b)

Figure 7.9 (@) Line of constant damping ratio in the s-plane, and (b) the corresponding locusin

the z-plane

Figure 7.10 Lines of constant damping ratio for different ¢. The vertical lines are the lines of

constant wy,
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Line of

constant Line of constant w,,

Wn

Figure7.11 Locus of constant wy, in the s-plane

Thus, remembering that s is negative, we have
z=eST =eTe T —exp [—T( w2 — wZ)} g leT (7.7)

The locus of constant wy, in the z-plane is given by (7.7) and is shown in Figure 7.10 as the
vertical lines. Notice that the curves are given for values of w, ranging from w, = 7 /10T to
C!)n = 7T/T .

Notice that the loci of constant damping ratio and the loci of undamped natural frequency
are usually shown on the same graph.

7.5 DAMPING RATIO AND UNDAMPED NATURAL FREQUENCY
USING FORMULAE

In Section 7.4 above we saw how to find the damping ratio and the undamped natural frequency
of a system using a graphical technique. Here, we will derive equations for calculating the
damping ratio and the undamped natural frequency.

The damping ratio and the natural frequency of a system in the z-plane can be determined
if wefirst of all consider a second-order system in the s-plane:

2

=— 1 7.8
$? 4+ 2 wnS + w3 (7.8)

w,

G(s)
The poles of this system are at
Sl2 = —fwn £ jony1—¢2 (7.9)

We can now find the equivalent z-plane poles by making the substitution z = €°7, i.e.

z=€" =e ‘T /£ 0w, TY1-¢2 (7.10)



182 SYSTEM TIME RESPONSE CHARACTERISTICS

which we can write as

where

and

From (7.12) and (7.13) we obtain

or
—Inr

Jnr2 162’

and from (7.12) and (7.14) we obtain
1l ———

Example 7.2
Consider the system described in Section 7.1 with closed-loop transfer function

M _ G(2)  0.368z+0.264
rz) 14+G(@z 2-2+0632
Find the damping ratio and the undamped natural frequency. Assumethat T = 1s.

Solution

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

We need to find the poles of the closed-loop transfer function. The system characteristic

equationis1+ G(z) =0,
i.e

Z> - 7+0.632=(z— 05— j0.618)(z— 0.5+ j0.618) = 0,
which can be written in polar form as
2,=05+j0.618=0.795/+0.890=r/+ 6

(see (7.11)). The damping ratio isthen calculated using (7.14) as
B —Inr _ —1In0.795 .
= JnrZ+62  /(In0.795)2 + 0.8902
and from (7.15) the undamped natural frequency is, taking T = 1,

1
wn = ?\/(Inr)Z + 62 = \/(In0.795)2 4 0.8902 = 0.92.
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Figure7.12 Finding ¢ and w,, graphically

Example 7.3

Find the damping ratio and theundamped natural frequency for Example 7.2 using thegraphical
method.

Solution
The characteristic equation of the system is found to be
Z2—7+0632=(z— 05— j0.618)(z— 0.5+ j0.618) = 0
and the poles of the closed-loop system are at
71, =05+ j0.618.

Figure 7.12 showsthe loci of the constant damping ratio and the loci of the undamped natural
frequency with the poles of the closed-loop system marked with an x on the graph. From the
graph we can read the damping ratio as 0.25 and the undamped natural frequency as

0.297

wp =

=091

7.6 EXERCISES

1. Find the damping ratio and the undamped natural frequency of the sampled data systems
whose characteristic equations are given below
(@ z2—z+2=0
(b) 2—1=0
(© z2—z+1=0
(d 2-081=0
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G(s)

r(s) e(s) y(s)

1-eTs 1

A 4
A 4

Figure7.13 System for Exercise 2

2. Consider the closed-loop system of Figure 7.13. Assumethat T = 1s.
(a) Calculate the transfer function of the system.
(b) Caculate and plot the unit step response at the sampling instants.
(c) Calculate the damping factor and the undamped natural frequency of the system.

3. Consider the closed-loop system of Figure 7.13. Do not assume avalue for T.
(a) Calculate the transfer function of the system.
(b) Calculate the damping factor and the undamped natural frequency of the system.
(c) What will be the steady state error if aunit step input is applied?

4. A unit step input is applied to the system in Figure 7.13. Calculate:
(a) the percentage overshoot;
(b) the peak time;
(c) therisetime;
(d) settling timeto 5 %.

5. The closed-loop transfer functions of four sampled data systems are given below. Calculate
the percentage overshoots and peak times.

@ 6@ = 7>
®) 6@ =
© 6@ =713
@ 6@ = >z

6. Thes-planepolesof acontinuous-timesystemareats = —lands = —2. AssumingT = 1
s, calculate the pole locationsin the z-plane.

7. Thes-plane polesof acontinuous-timesystemareats; , = —0.54+ j0.9. AssumingT =1
s, calculate the pole locationsin the z-plane. Cal culate the damping ratio and the undamped
natura frequency of the system using a graphical technique.

FURTHER READING

[D’Azzo and Houpis, 1966] D’ Azzo, J.J. and Houpis, C.H. Feedback Control System Analysisand Synthesis, 2nd
edn., McGraw-Hill, New York, 1966.
[Dorf, 1992] Dorf, R.C. Modern Control Systems, 6th edn. Addison-Wesley, Reading, MA, 1992.
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Figure9.21 Root locus of the compensated system

Figure 9.21 showsthe root locus of the compensated system. Clearly the locus passes through
the required point. The d.c. gain at this point is K = 123.9.
The time response of the compensated system is shown in Figure 9.22.

9.2 PID CONTROLLER

The proportional—integral—derivative (PID) controller is often referred to as a ‘three-term’
controller. Itiscurrently one of the most frequently used controllersin the processindustry. In
aPID controller the control variable is generated from aterm proportional to the error, aterm
which istheintegral of the error, and aterm which is the derivative of the error.

* Proportional: the error is multiplied by again K. A very high gain may cause instability,
and avery low gain may cause the system to drift away.
¢ Integral: theintegral of theerror istaken and multiplied by again K. Thegain can be adjusted

to drive the error to zero in the required time. A too high gain may cause oscillations and a
too low gain may result in a sluggish response.

¢ Derivative: The derivative of the error is multiplied by again Kq. Again, if the gain is too
high the system may oscillate and if the gain is too low the response may be sluggish.

Figure 9.23 shows the block diagram of the classical continuous-time PID controller. Tuning
the controller involves adjusting the parameters K ,, Ky and K; in order to obtain a satisfactory
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Figure9.22 Time response of the system

» Kp
+
Kp +
E e > > U
TiS
4I+
> KpTdS

Figure9.23 Continuous-time system PID controller

response. The characteristics of PID controllers are well known and well established, and most
modern controllers are based on some form of PID.
The input—output relationship of a PID controller can be expressed as

ut) = K, e(t)+%/e(t)dt +Td? , (9.14)

where u(t) isthe output from the controller and e(t) = r (t) — y(t), inwhichr (t) isthe desired
set-point (reference input) and y(t) isthe plant output. T; and Ty are known astheintegral and
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derivative action time, respectively. Notice that (9.14) is sometimes written as

t
u(t) = Kpe(t) + K; / e(t)dt + Kd% + o, (9.15)
0
where
KD
Ki = T, and Kqg = KpTd. (916)

Taking the Laplace transform of (9.14), we can write the transfer function of acontinuous-time
PID as

U(s) p

—_— = — + K, Tgs. 9.17

E(S) P + TI s + pld ( )
To implement the PID controller using a digital computer we have to convert (9.14) from
a continuous to a discrete representation. There are several methods for doing this and the

simplest is to use the trapezoidal approximation for the integral and the backward difference
approximation for the derivative:

de(t) _ e(kT) —e(kT —T)
dt T

t n
and /O e(t)dwk;Te(kT).

Equation (9.14) thus becomes

u(kT) = K, {e(kT) 41, 2D - i(kT D, - Ze(kT)} + Uo. (9.18)

The PID given by (9.18) is now in a suitable form which can be implemented on a digital
computer. This form of the PID controller is also known as the positional PID controller.
Notice that a new control action isimplemented at every sample time.

The discrete form of the PID controller can aso be derived by finding the z-transform of

(9.27):
U2 T 1-zh
Expanding (9.19) gives
UkT) = u(kT —T) + Kp[e(kT) — e(kT — T)] + @e(kT)
KpTd [e(kT) — 2e(kT — T) — e(kT — 2T)]. (9.20)

Thisform of the PID controller isknown asthe vel ocity PID controller. Herethe current control
action uses the previous control value as a reference. Because only a change in the control
action isused, thisform of the PID controller provides a smoother bumpless control when the
error issmall. If alarge error exists, the response of the velocity PID controller may be slow,
especialy if theintegral actiontime T, islarge.

The two forms of the PID algorithm, (9.18) and (9.20), may look quite different, but they
are in fact similar to each other. Consider the positional controller (9.18). Shifting back one
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sampling interval, we obtain

n-1
ukT —T) = K, |:e(kT ~T)+ Ty ekT —T)—elkT =2T) | T Ze(kT)] + Uo.

T
T =i

Subtracting from (9.18), we obtain the velocity form of the controller, as given by (9.20).

9.2.1 Saturation and Integral Wind-Up

In practical applications the output value of acontrol action islimited by physical constraints.
For example, the maximum voltage output from a device is limited. Similarly, the maximum
flow rate that a pump can supply islimited by the physical capacity of the pump. As aresult
of this physical limitation, the error signal does not return to zero and the integral term keeps
adding up continuously. This effect is called integral wind-up (or integral saturation), and asa
result of it long periods of overshoot can occur in the plant response. A simple exampl e of what
happens is the following. Suppose we wish to control the position of amotor and a large set-
point change occurs, resulting in alarge error signal. The controller will then try to reduce the
error between the set-point and the output. The integral term will grow by summing the error
signals at each sample and a large control action will be applied to the motor. But because of
the physical limitation of the motor electronicsthe motor will not be ableto respond linearly to
the applied control signal. If the set-point now changesin the other direction, then the integral
termisstill large and will not respond immediately to the set-point request. Consequently, the
system will have a poor response when it comes out of this condition.

The integral wind-up problem affects positional PID controllers. With velocity PID con-
trollers, the error signals are not summed up and as a result integral wind-up will not occur,
even though the control signal is physically constrained.

Many techniques have been developed to eliminate integral wind-up from the PID con-
trollers, and some of the popular ones are as follows:

e Stop the integral summation when saturation occurs. Thisisalso called conditional integra-
tion. Theideaisto set theintegrator input to zero if the controller output is saturated and the
input and output are of the same sign.

e Fix the limits of the integral term between a minimum and a maximum.

¢ Reduce the integrator input by some constant if the controller output is saturated. Usually
the integral value is decreased by an amount proportional to the difference between the
unsaturated and saturated (i.e maximum) controller output.

e Usethe velocity form of the PID controller.

9.2.2 Derivative Kick

Another possible problem when using PID controllers is caused by the derivative action of
the controller. This may happen when the set-point changes sharply, causing the error signal
to change suddenly. Under such a condition, the derivative term can give the output a kick,
known as a derivative kick. Thisis usually avoided in practice by moving the derivative term
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to the feedback loop. The proportional term may also cause a sudden kick in the output and it
is common to move the proportional term to the feedback loop.

9.2.3 PID Tuning

When a PID controller is used in a system it is important to tune the controller to give the
required response. Tuning a PID controller involves selecting values for the controller param-
eters K, Ty and Ty. There are many techniques for tuning a controller, ranging from the first
techniques described by J.G. Ziegler and N.B. Nichols (known as the Ziegler—Nichols tuning
algorithm) in 1942 and 1943, to recent auto-tuning controllers. In this section we shall look at
the tuning of PID controllers using the Ziegler—Nichols tuning a gorithm.

Ziegler and Nichols suggested values for the PID parameters of a plant based on open-loop
or closed-loop tests of the plant. According to Ziegler and Nichols, the open-loop transfer
function of a system can be approximated with atime delay and a single-order system, i.e.

(9.21)

where Tp isthe system time delay (i.e. transportation delay), and T, isthe time constant of the
system.

9.2.3.1 Open-Loop Tuning

For open-loop tuning, we first find the plant parameters by applying a step input to the open-
loop system. The plant parameters K, Tp and T; are then found from the result of the step test
as shown in Figure 9.24.

Ziegler and Nichols then suggest using the PID controller settings given in Table 9.1 when
the loop is closed. These parameters are based on the concept of minimizing the integral of
the absolute error after applying a step change to the set-point.

An exampleis given below to illustrate the method used.

Unit step
response

A\ - > t

Figure9.24 Finding plant parameters K, Tpand Ty
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Table9.1 Open-loop Ziegler—Nichols settings

Controller Kp T Td
Proportional R
0.9T:
P 9L 33T
PID o 2Tp 0.5Tp

Example 9.7

The open-loop unit step response of a thermal system is shown in Figure 9.25. Obtain the
transfer function of this system and use the Ziegler—Nichols tuning algorithm to design (a)
a proportional controller, (b) to design a proportional plus integral (Pl) controller, and (c) to
design aPID controller. Draw the block diagram of the system in each case.

Solution

From Figure 9.25, the system parameters are obtained as K = 40°C, Tp = 5sand Ty = 205,
and the transfer function of the plant is

Proportional controller. Accordingto Table9.1, theZiegler—Nicholssettingsfor aproportional
controller are;
T

PT KT

Thus,

50°C

40°C

el A LA

Figure 9.25 Unit step response of the system for Example 9.7
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+ 40675
E(s) ——» 0.1 > > U(s)
1+ 20s)

Figure9.26 Block diagram of the system with proportional controller

The transfer function of the controller isthen
U
B~
and the block diagram of the closed-loop system with the controller is shown in Figure 9.26.

0.1,

Pl controller. According to Table 9.1, the Ziegler—Nichols settings for a Pl controller are

0.9T.
Kp=-— and T =33Tp.
KTpb
Thus,
0.9 x 20
p A0%5 0.09 and T =33x5 6.5
The transfer function of the controller isthen
uU(s) 1 0.09(16.5s + 1)
—— =0.091 =
E(s) [ + 16.53} 16.5s

and the block diagram of the closed-loop system with the controller is shown in Figure 9.27.

PID controller. According to Table 9.1, the Ziegler—Nichols settings for a PID controller are

1.2T
Kp= , T, =2Tp, Tyq=05Tp.
p KTD i D d D
Thus,
1.2 x 20
szm =012, T,=2x5=10, T4=05x5=25.
The transfer function of the required PID controller is
U(s) 1 1
—— =Kp|[1l4+ —+Tds|[=012(14+ — + 2.5s
£(9) "[Hs* ] [+10s»+ ]
or

U(s) 3s°+1.25+0.12
E(S) 10s '
The block diagram of the system, together with the controller, is shown in Figure 9.28.

+ |
E©) 0.09(16.55+1) |_,| 40 . UGS
i 16.55 (L+205)

Figure9.27 Block diagram of the system with PI controller
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+ 2 55
EG) 3s°+1.2s+0.12 R 40e > U(s)
10s (1+20s)

Figure9.28 Block diagram of the system with PID controller

9.2.3.2 Closed-Loop Tuning

The Ziegler—Nichols closed-loop tuning algorithm is based on plant closed-loop tests. The
procedure is as follows:

¢ Disable any derivative and integral action in the controller and leave only the proportional
action.

e Carry out a set-point step test and observe the system response.

¢ Repeat the set-point test with increased (or decreased) controller gain until astable oscillation
isachieved (see Figure 9.29). Thisgain is called the ultimate gain, K.

¢ Read the period of the steady oscillation and let this be P,.

* Calculate the controller parameters according to the following formulae: K, = 0.45K,
T = Pu/1.2 in the case of the PI controller; and K, = 0.6K,, Ti = P,/2, Ty = Tu/8inthe
case of the PID controller.

9.3 EXERCISES

1. The open-loop transfer function of a plant is given by:

(@) Design adead-beat digital controller for the system. Assumethat T = 1s.
(b) Draw the block diagram of the system together with the controller.
(c) Plot thetime response of the system.

Steady
oscillation Set-point

T
VARVARY,

Figure9.29 Ziegler—Nichols closed-loop test

«—P,—»






