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Follow Along Reading:

— Today
.. B.P.Lathi « Review mostly ©

Signal processing

and linear systems | *  Chapter 9 (Time-Domain Analysis
1998 of Discrete-Time Systems)
TK5102.9.1.38 1998

— §9.4 System Response to External Input
— §9.6 System Stability

:» Chapter 10 (Discrete-Time System
:  Analysis Using the z-Transform)
— 8§10.3 Properties of DTFT

— §810.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z-Transform

. Next Time sssssssesssssssssssssssssssnannssnsnassnnnannnnnnnns ,

Announcements

* I’m Sorry! I got hit by an ARC LIEF!!



http://library.uq.edu.au/record=b2013253~S7

“Plan B”

Review Z-Transforms

Review Convolution

Review Problem Set 1
— Sorry about the delay here!
— Chronic case of “grant-itis” ©

Review Analog Filters

L(ZOH)=?? : Whatis it?

1- f.’ill‘s 1-— €7T8
Ts

»  Wikipedia * Lathi

7|+ Franklin, Powell, Workman
|| + Franklin, Powell, Emani-Naeini
» Dorf & Bishop

« Oxford Discrete Systems:
(Mark Cannon)

« MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!




Zero-order-hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0, the output
h(t) = z(0)[1(t) — 1(t —T)] +=(T)[1(t —T) — 1(t — 2T)] +

= Z X(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

Transfer function of Zero-order-hold (ZOH)

» Recall the Laplace Transforms (£) of:
LIEMW) =1 L[f(t —kT)] = F(s)e *Ts

) efkTs
LE(t—kT)] = "5 L1t —kT)] =
» Thus the £ of h(t) becomes:
C[R(1)] = E[fi X(KT)L(t - kT) - 1(t - (k+1)T)]]
k=0
o0 00 —RT& —(k+1)Ts
— Z z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z m(kT)[ _¢ S ]
“?:—OO e—kTs _ e—(k+1)Ts 00 k:OT 1_eTs = )
= S 2(kT) - =3 ;r(ch) e HTs — — 3 a(kT)e *Ts
k=0 S k=0 k=0




Transfer function of Zero-order-hold (ZOH)
... Continuing the £ of h(t) ...
C[R(1)] = E[i X(KT)[1(t - kT) - 1(t - (k+1)T)]]
00 k=0 00 e—kTs e—(.’i'-‘-l)Tﬁ
= S 2(RT)L[A(t - KT) - 1(t - (k+1)T)] = 5 2(kT)| — - - ]
k=0 k=0 E E
s Il S PSS Sl R OV Ll I PR
k=0 k=0 8 k=0
= X(s) =L | a(kT)6t —kT)| = Y a(kT)e *s
k=0 k=0
_ —Ts o _ —Ts
CH(s) = LID)] =Y wkT)e T = 2T x(s)
k=0
=>» Thus, giving the transfer function as: ( : )
__H(s) 1—eTs AR (1= el
Gzon(s) = X(s) = s > Gzop (2) = S

Z Transform

(Encore)
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Flashback_é: Euler’s approximation (L7, p.26)

de _ o, 2t+6) —2@) . de  okn o
dt ~ a0 5t = s T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

eg.
_U(s) K(s+a) du _ g-(de
D) =55 = Tzn — q Hou=K (G ae)

2. Differential equation — difference equation

e.g.
€k4+1 — €

Ukl — Uk ) B k X
— 7 +bhur =K (7T + ﬂ-C}g)
= ukt+1 = (1 = 0T )ur + Kegy1 + K(aT — 1)ex

= —aijuk + boers+1 + biek

Discrete transfer function

Compare the discrete system time domain model:

cer = GpUk—n + boek +---+ bmek—m

U = —A1UE—-1 —
n m

= — E aitp_; + E bjer—; recurrence equation
i=1 =0

with the continuous system model:

u(t) = *(ll% - -an% + boe + b1% +--F bm% differential equation
J Laplace transform |
U(s) = —a1sU(s) = -~ — ans"U(s) + bo E(s) + bisE(s) + - - - + bms" E(s)
g Uts) _ D(s) = b,o Fhs bQS% oot ™ transfer function
E(s) L+ ars 4 azs? + -« + ans”

Can we define a transfer function for the discrete system?




Discrete transfer function [2]

Suppose u; = w(kT') has transform U'(s) ...
...then how can we represent wuy_1, uy_o, etc.?

* Ifz(t) =55 X(s), then 2t — T) =55 e X (s), so

ur  — U'(s)

wp 1 — e TU(s)

up_a — e 2TU'(s)
etc

+ Define the discrete frequency domain operator

sT

Z =€

then
ur  — U(z2)
wr—1 — 2z U(2)
Uk_o — 2 2U(z)

etc

Discrete transfer function [3]

Comparison

* system representations:

Continuous Discrete
U d*u
u(t) = _ﬂ-la_fmm_'” Up = —Q1UE_1 — A2UE_2 — *+
de boer + brex— e
L hoe+ b ... + boex + breg—1 +
dt
* operators:
Continuous Discrete
du R
— — s U(s) up_y — 2z U(2)
dt
differential delay




Discrete transfer function [4]

Apply the transformation to the linear recurrence equation:

Uk = —Q1UE—1 — Q2UR—2 — -+ — AnUk—n
+boer +bieg_1 + - bpep_n

| transform |

U(z) = —a1z27 U (2) — a2z 2U(2) — -+ anz "U(z2)

+01E(2) 4 boz 'E(2) 4+ 4 buz "E(2)
This gives the z domain transfer function:

["T(Z) _ D(Z) _ bD +bl—z_1 + 522_2 + - 'bmz_m
- T 1t ezt taz 4 fagzn

Rationalize by multiplying top and bottom by z"

_ boz™ + Bz b bez 2 b2

D
(2) zhtaiz" 1 +az" 2+ tan

Discrete transfer function [5]

Analysis tools based on s domain transfer functions:

Pole & zero locations —  damping, natural frequency,
eg. settling time & overshoot

Frequency response —  gain & phase margins

...also apply to z domain transfer functions

Poles and zeros of D(z):

D(Z,) — bO H:’il(z — zj)zn—m Zeros: zj
I, (z — ps) poles: p;

— z; & p; are real or in complex conjugate pairs
— n poles, n zeros, with n — m zeros at z =0

— at least as many poles as zeros




Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)

— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)

— Convolution: Z{f (k) * g(k)} = F(z)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!

Z Transform
(Another Way to L® @k at it)

ELEC 3004: Systems 4 April 2016 18




The z-Transform

So far we have considered z ! as a delay operator acting on sequences

But to find F(z) from e(kT') we need to define the z-transform:

E(z) = Z{e(kT)} = Z{ex}

.st(ﬁcft"'),z'_fc = Z e;cz_k

k=0

-
il

Il

Note:

* Single-sided z-transform — all variables are assumed to be zero for k < 0
[Franklin uses a different definition]

* Strictly speaking, we should give bounds on |z| for convergence, e.g.
ro < |z| < Ro

where ry, Ry depend on e(kT)
(these bounds are only needed in order to invert E(z) by integration)

The z-Transform

Example — z-transform of a decaying exponential

Sample z(t) = Ce™ ™ U(t): (UA(t) = unit step at t = 0)

T = Ce_&k]—, k=0
and take the z-transform:

A{z) — i-‘rkl’_k _ Gie—ak]'z—k _ Ci(e—ﬂ'z—l)k

k=0 k=0 k=0

this is a geometric series which converges if |z| > e 7"
. c Cz

1—eaTz=1 7 gl

4

z-transform of exponental = rational polynomial (like Laplace)

10



The z-Transform

Effect of delay:
Zle(kT -T)} = =z 'E(z) where E(z)= Z{e(kT)}

Example — z-transform of a delayed sequence

Take a finite length sequence
Co,€1.€2.83ﬁ04....:=Jﬂ5.l.6.1.7ﬁ0.(h...

introduce a delay of one sampling interval:
fos f1. fa, fa, fa,...=0,1.5,1.6,1.7,0,...

take z-transforms:

e
E(z) = Zek;’ F 1541627 417272
k=0
=
F(z)=> friz ™" =151+ 16272 4+ 17277
k=0
=z"1E(2)

The z-Transform

Example — z-transform of a delayed exponential

Delay =(t) = Ce™*2(t) by a time T
yt) =2t -T) = y(t)=Ce " UE-T)

sample y(t) with sample interval T'

o b=0
M PP L ST

z-transform

Y(z) = Zyk Lk Z(t.e—a(kfl)Tsz
k=0 k=1
v, —1 — —aT _—1 CV
=Ce7' Y (7Y = ——p
7=0 :

Comparing X (z) and Y (z):

N = ——r

A

—  Y(z) =z 'X(2)

11



The z-Transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

Table of Z-Transform Pairs
ofn] = ZTHX@)} = 2§ Xy < X() = Z{alil} = ST elnle " ROC
2] == X(2) R:
al-n] = X() ~
] =Es X Re
erlon]  =Es XL ~
Re{efn]} == L[X()+ X7 Re
Smfel]} == ZX(x) - X*(z")] Rx
time shifting @fn —no] 2= =z R:
aaln] = X (2 a|Rs
downsampling by N «[Nn] N &Ny 2= A¥yViix (W= *) Wy =e Ry
awin] +bealn]  =Z= aXi(z) + bXa(z) R.N Ry
wilnlasln] = 5§ X)Xz (£)wldu R.N Ry
@:n] * waln] = X1 () X2 (t) R.nRy
Sln]  =Z= 1 Yz
Sl — ol = 2o vz
uln] = = [o] > 1
u[-n—1] — ey |2 <1
nuin] e E i |2 > 1

The z-Transform

To summarise:

Sequence

{;Ifo.il’l. . }

Recurrence equation
Ty = 01Tkp—1 + -+ AnTh_n

X (z) provides an easy way to convert between sequences, recurrence equations
and their closed-form solutions.

12



Pulse Response

E(z) U(z) = D(z) E(z)
ek ? ur =7

For continuous systems: D(s) = E{d(f)} d(t) = plant impulse response

What is the equivalent property for the discrete transfer function D(z)?

* Let e(kT) = discrete unit pulse:

1 k=0 > T
. =0 = — FE(z)= k2 =1
k= 0k {l] =12, .. (2) kZ:O“
* then
| U(z) = D(2)E(z) = D(z) ‘
ie. D(z) = Z{d(kT)} = z-transform of the plant pulse response

Pulse Response [2]

Example — The recurrence equation uy = up—1 + %(q +er_1)
Ul) _T(+1)

has transfer function D(z) = -
( E(z) 2(z-1)

Check this by finding the pulse response and taking its z-transform

k Up—1 €L Ch—1 Upa
0 0 1 0 T/2

o 1 T/2 0 1 T ) Ty
e = 0y gives 9 T 0 0 T e u, =T1/2,1T.T,...
3 T 0 0 T
S L T T T(+1)
e “’“)*kzﬂT’“ 7T/271—,,17272(/;—1)

13



. Eigenfunctions of Discrete-Time LTI Systems

O

In Section 3.6 we showed that if the input to an LTI system is written as a
linear combination of basis functions ¢,[n], that is,

x[n] = 2 awdiln], (6.1.1)
P
then the output of the system can be similarly expressed as
yln] = z;akw,([n], (6.1.2)
where the w,[n] are output basis functions given by

P[n] = ¢e[n] = hn]. (6.1.3)

This is, in fact, simply a general statement of the property of linearity. In

the special case where the input and output basis functions ¢[r] and ,[n]
have the same form, that is,

ln] = bugyln] {6.1.4)

for constants by, the functions ¢[n] are called eigenfunctions of the

discrete-time LTI system with corresponding eigenvalues b,. The eigenfunc-

tions are then basis functions for both the input x[a] and the output y[n]

because
ylnl = 2 exgulnl, (6.1.5)
k

for constants ¢, = a.b,. Source: Jackson, Chap. 6

. Eigenfunctions of Discrete-Time LTI Systems

o

In analogy with the continuous-time case, the eigenfunctions of
discrete-time LTI systems are the complex exponentials

Puln] =z (6.1.6)
for arbitrary complex constants z.. Alternatively, to avoid the implication
that the eigenfunctions form a finite or countably infinite set, we will write
them as simply

pfn] = 27, (6.1.7)

where z 1s a complex variable. To see that complex exponentials are indeed
eigenfunctions of any LTI system, we utilize the convolution sum in Eq.
(3.6.10), with x[r] = ¢[n] = 2", to write the corresponding output y[n] =

Y[n] as
Pln] = E . h[m]p[n — m]

= > Alm]z

m

(6.1.8)
= gt E him|z™"

"e—

= H(z)z".

Source: Jackson, Chap. 6

14



. Eigenfunctions of Discrete-Time LTI Systems

LGl

Hence the complex exponential z" is an eigenfunction of the system for any
value of z, and H(z) is the corresponding eigenvalue given by

H(z) = 2, hlmjz ™. (6.1.9)

The above results motivate the definitions of the z transform, the
discrete-time Fourier transform (DTFT), and the discrete Fourier series
(DFS) to be presented in this chapter and the next. In particular, if the basis
functions for the input can be enumerated as

duln] = zi,
that is, if x(¢) can be expressed in the form of Eq. (6.1.1) as
x[r] = 2 azi, (6.1.10)
k
then the corresponding output is simply, from Eqs. (6.1.2) and (6.1.8),

vlnl = 2 ayH(z)z} (6.1.11)
k

The discrete Fourier series for periodic signals is of this form, with
2z = &N _If, on the other hand, the required basis functions cannot be
enumerated, we must utilize the continuum of functions r,/;[uj =2z" to
represent x[n] and y[n] in the form of integrals. When z is restricted to have
unit magnitude (that is, z = ¢/**), the resulting representation is called the
discrete-time Fourier transform, while if z is an arbitrary complex variable,
the full z-transform representation results.
Source: Jackson, Chap. 6

-~ Eigenfunctions of Discrete-Time LTI Systems

EXAMPLE 6.1 Consider the output of an LTI system having h(n] =
a"u[n] with |a| < 1 to the sinusoidal input
x[n] = 2cos Qun = e/ gmif0,

This input signal is of the form of Eqg. (6.1.10), with z, = ¢/ and
¢ ™ Therefore the output is given by Eq. (6.1.11) as simply

yla] = H(e e/ + H(e /e 120, (6.1.12)

Computing H(e’*), we utilize Eq. (6.1.9) with h[n] = a"u|n| and

z = ¢’ to produce

He"™™) S hln)e Mo = N gte it

2 ¢

= 2 (ae "y = — = = Ae'®
by} 1 ae ¥
That is, we define A and ¢ 1o be the magnitude and angle, respectively,
of the complex number H(e™ ). Similarly, H{e '™) is readily deter-
mined 1o be
1
Hie .u‘) - = Ae i
1 ~ ae’

Hence, from Eq. (6.1.12), the outpul y[n] is obtained as

yln] = Ae!Pe!n 4 ApTi0e i

o
(6.1.13)

= 2A cos(yn + ¢)
Thus, as expected, a sinusoidal input to this {or any other) stable LTI
tem produces a sinusoidal output with the same frequency £, but, in
ral, a different amplitude A and phase ¢ that depend upon the

ger
frequency response H{e'*™).

Source: Jackson, Chap. 6
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The z-Plane

z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):

+ S-plane: o z=eT Plane
Img(s) Img(2)
X
Re(s) §> § 1 Re(z)
X
— A —Plane — v —Plane
The z-Plane & Stability
| :
Im Unstable
Marginally Stable
] Re —

Stable

Fig. 9.6 Characteristic roots location and system stability.

16



The z-Plane & Stability

|||[llij ““[Hn rJl]"_) !HH‘

Car” | g

!HJ.lHI_TJlHa i'”]"ljji]m
| |
DT Causality & BIBO Stability
+ Causality:
h[n]=0,n<0
—y[n] = i h [k)x [n — K] or = yn] = i x [k]h [n — k]
k=0 k=—o0

Input is Causal if: z[n] =0,n <0

» Then output is Causal:

y[n] = i hklz[n—k] = i z [k]h [n — K]
k=0

k=0

« And, DT LTI is BIBO stable if:

> |h[k]] <

k=—00

17



Impulse Response (Graphically)

Let's define the impulse response, h[n], as the result of applying
an LTI system to the unit impulse:

aln hin
L LTI System L

By time invariance, we know

d[n — k| hin — k]|
LTI System -————

And by linearity, we know

ad[n — k] + cad[n — ko

'nll’p:n — Jy] + aohn — ko)

| LTI System
| yn
- 4»[ } LTI System 4>[ }
uln] = i ulk]dn — k| yln] = Z ulklhln — k]
| B k=—oc

oo matrix X oo vector?

Linear Difference Equations

g = f(€ny. s €k U, - -5 Uke1).
Up = —Q1UL—1 —B2Up—2 —* —ApUk—pn +boeg +brep_1+- -+ bl .
Vug = ugp — ug—1 (first difference),
V2up = Vug — Viug—_q (second difference),

Vi = VP luy — Vg (nth difference).

Up, = Uk,
g1 = u — Vg,

Up_g = u — 2Vup + Voug.

agvzuk — (ay + 2a2)Vuk + (az +a; + l)u}; = bpeg.

18



Assume a form of the solution

YA
* k: “order of difference”
» k: delay
Az* = A5 4 AZF R
1=z"14272
2=z+1.

Discrete-Time

System Analysis

ELEC 3004: Systems 4 April 2016 39
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2" Order System Response

T T

0.8F

0.6F

0.4+

0.2r

b

e

—

s

 Response of a 2" order system to increasing levels of damping:
2

(=0
0.2 o

plane

The z-plane [ for all pole systems |

[Adapted from Franklin, Powell and Emami-Naeini]

» We can understand system response by pole location in the z-

Re(z)

20



Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)

21



Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAN NN N

VVVVVVI[ VY™™

Re(z)
Pole positions in the z-plane
« Poles inside the unit circle
are stable
Im(z)

« Poles on the unit circle
are oscillatory

Poles outside the unit circle -
unstable W
_~

Real polesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

Lower apparent damping
for larer and r

22



Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — {2

10~ s z ] : o e !
0.8 N | A/ |
0.6 T RV S AN Ny oo
0a - Ao e N
| o | SO\ T
| \\ | AN
L , Re(2)

-1.b -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1\0
[Adapted from Franklin, Powell and Emami-Naeini]

Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e cos(bt) U(t) (U (t) = unit step)
+ sample:  y(kT) = r* cos(k#) U(kT) with r = e~ & = bT
1 z 1 z
-2 (z —red?) + 2 (z—rei%)

B z(z —rcos#)
T (2 —rei?)(z — re—i9)

* transform: Y'(z)

Im(z)A
* e.g. Y is the pulse response of G(z): ) -
Glz) = 3(3_7 rcosé) _ . X '
(z —rei?)(z — re—if) Pt
2 — pel® I 0{,'\‘8 & > Re(z)
poles { z=re 1° I
X
zeros { 2=0 .
z =rcosf

23



Response of 2nd order system [1/3]

Responses for varying 7:

r=0.7
s P ] st N
L r< 1 - 6=m/4
+ 0 . e ——p
exponentially decaying T
envelope 03 2 4 6 8 10
sample k
Bor=1 = ' S
054 \
sinusoidal response = 0r
. r=1.0
with 27 /6 samples 05| 1
. P f=m/4
per period 4 . S~ . .
0 2 4 6 8 10
sample k
& > 1 10
o
I s SN
exponentially increasing . / \\\
envelope of T ) r=1.3%4
[ 0=m/4
K 2 2 6 8 10
samplz K
Response of 2nd order system [2/3]
Responses for varying 8: 1
r=0.7
> =0 =05 S =0 |
h T
decaying exponential 0 ‘ ‘ T — |
0 2 4 6 8 10
sample k
. - I+ ‘ ‘ : ‘
> 0= ' 2 \._\.. r=0.7
U ) 05 \\ 0=m/2]
27 /6 = 4 samples ol /\\‘L T
per period -
03 2 2 6 8 10
sample k
B> f=m 1 i
05 * 1
. A\ / .y .
2 samples per period = o N/ e "'*~+-*"""’""‘6““
\ /S r=0.7
051 Vi 1
¥ 0=m
o 2 2 3 8 10
sample k

24



Response of 2nd order system [3/3]

Some special cases:
r for 8 =0, Y (z) simplifies to:

Y(z) =

z

zZ—=Tr

— exponentially decaying response

> whent# =0and r=1:

— unit step

> when r =0:

— unit pulse

> when#=0and -1 <r <0

samples of alternating signs

Hint: Use y to Transform s < z: z=e"T

i d —f
/
~ seplane s-plane Symbol z-plane z-plane
[s=Jw (a) . {U. ! ]
| Real frequency axis - Unit cirele
s=020 [ z=r>1
=g <0 [e]e]e} : <r<ld
o= —Cua +jun/T-C2  BAA z = reffwhere r = exp(—CwnT)
[ =-a+jb =e T,
| 8 =w,T\/1-(2 =bT
| Constant damping ratio Logarithmic spiral
| if ¢ is fixed and wy
l varics
s=xj(m/T)+ 0,0 S0 ~rrmmnmnn z r

25



Convolution

ELEC 3004: Systems 4 April 2016 52

Convolution Review

How to calculate ug from e & the pulse response d.?

+ Any sequence e can be decomposed into a series of pulses, e.g.

€0,€1,€2,6e3,... = 1.0,1.2,1.3,0,0,...
= e = 100k + 1.20k—1 + 130k >

% but
er = O gives uy = dj, = system pulse response
hence

ur can be computed by scaling & superimposing
system pulse responses

(because the system is linear)
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Convolution

Example
System pulse response: dy,dy1,ds,ds,ds,d5 ... =1.0,0.5,0.3,0.2,0.1,0,. ..
so if eo,e1,ea,e3,e4,... = 1.0,1.2,1.3,0,0,.. ., then
k 0 1 2 3 4 5 6 7
er 1 1.2 1.3 0 0 0 0 0
e dp 1 05 0.3 0.2 0.1 0 0 0
erdi—1 | 0 1.2 0.6 036 024 0.12 0 0
eadip_o | 0 0 1.3 065 039 026 013 0
Uk 1 1.7 22 121 073 038 013 0
25
2
—a—g(kT)
15 ——e(0)d(kT)
——e(1)d(kT)
1 —a—e(2)d(kT)
—=u(kT)
0.5
o -
Convolution

Equivalently: find uy from U(z) = D(2)F(z)
=(do+diz"" +--- )(eo + erz o)
= doeo + (eody + exdo)z™ ' + - -
=uwo 4wz 4

4

wp = eodo
uy = €od1 + 61(10
Uy = eqda + e1dq + eadp

ug = egds + e1dy + eady + esdy

etc.
k
e up = E eidp_; = e * di

=0
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Convolution

Example %4 di 4
WUE 1,04
0.5 051
: > e ] Ty
o 1 3 4 5 i ol 1 2 3 4 5 i

d;.e dy; e

101 ug = egdy 1,04 uy = egd1 + erdy
5] 0.5
ARE NEE

0 1 3 4 5 i 0 1.2 3 4 5 i
dyye dsi e
E . us = egdy + e1dq E X ug = egds + erds
1,05 + eadp 1.05 + ead; + esdy
0.5 057 [
vJL > ] ——o————»>
ol 1 3 4 5 i ol 1 2 3 4 5 i
Convolution

The convolution of a pair of sequences ex and dj. is defined as

k
uE = E e;dp_; = ep *dy,

=0

So. ..
multiplying the input by the transfer function in the frequency domain
is equivalent to
convolving the input with the pulse response in the time domain

—> D(z) —>

ek dp up = ep * d,

28



Convolution Definition

The convolution of two functions f,(t) and
f,(t) is defined as:

f(t) = j"‘; f,(x) f,(t—1)dr

= 1:1 (H)* fz (t)

Properties of Convolution

f1 (t) * fz (t) — fz (t) * fl (t)
LO* M= f@Lt-7d=]" f()f,¢-x)0dr
IR AR A S () R

—_ I :” f,(t—1)f,(7)dt
[ Lt-9 5@ = LO* L0

Source: URI ELE436
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Convolution & Properties

£1(8) * folt) = fm 1) falt — 7) dr

Properties:
« Commutative: f;(t)«fo(t) = fo(t)* f1(t)
» Distributive: £, (t) « [2(t) + fa(t)] = f1(¢) * fo(t) + f1(2) * f(t)

* ASSOCIAlVE: () x [£2(t) x f3(t)] = [£1(2) * F2(t)] * f3(2)
* Shift:

if f,()*f,(t)=c(t), then f,(t-T)*f,(t)= f,()*,(t-T)=c(t-T)
+ Identity (Convolution with an Impulse):

F) 66 = 7O
+ Total Width:

Based on Lathi, SPLS, Sec 2.4-1

Convolution & Properties [lI]

« Convolution systems are linear:
h# (g + Bus) = alh *uy) + B(h *ua)

 Convolution systems are causal: the output y(t) at time t
depends only on past inputs

 Convolution systems are time-invariant
(if we shift the signal, the output similarly shifts)

- 0 t <1
-> u(t) = { Wt —T) t>0

. [0 t<T
yt) = { y(t—1) t>0




Convolution & Properties [lII]

« Composition of convolution systems corresponds to:
— multiplication of transfer functions
— convolution of impulse responses

composition

w BA Yy

* Thus:
— We can manipulate block diagrams with transfer functions as if
they were simple gains
— convolution systems commute with each other

Convolution & Systems

+ Convolution system with input u (u(t) = 0, t <0) and output y:

y(t) = /l h{m)u(t — ) dr = /t h(t — T)u(T) dr
Jo Jo

« abbreviated:

y=nh=xu
* in the frequency domain:

Y(s)= H(s)U(s)

31



Convolution & Feedback

* |In the time domain:

* In the frequency domain:
— Y=G(U-Y)
=Y (s) = H(s)U(s) N G(s)

Graphical Understanding of Convolution

= For c(z)=U+am— [ fgt-ryar :

1. Keep the function f (z) fixed

2. Flip (invert) the function g(r) about the vertical axis (t=0)
= thisis g(-7)

3. Shift this frame (g(-7)) along t (horizontal axis) by t,.
= this is g(t,-7)

=>» For c(ty):
4. c(ty) = the area under the product of f (z) and g(t, -7)

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.
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Another (Better) View

e.g. convolution

x(nN)=12345
h(n)=321
x(kly 0012345 0012345 0012345
h(nk) 1230000 0123000 00123|00 h(n-k)
y(n,k) ﬂ 26\ 14@
y(n) 3 8 14

™

\ I / Notice the
gain

Sum over all k

Matrix Formulation of Convolution

Hx

<
I

S

Il
O O O ©O O O k-
O O O O O Fr N
O O O O Fr NN W
O O O Fr N W O
O O P N W O O
O P N W O O o
P N w O O O o
N W O O O o O
w O O O O o o

T
O O o0 M W NP O O

Toeplitz Matrix
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Remember: Effect of Noise...

» Without pre-filtering:
(a) 25

B 25
- JJ\'M'M ﬂfﬁ%’u .
ANANNE |
E S S A N o
2 s " N "l‘ I o3 ‘L A I
Z § flh |N‘ il‘ Jf E ] .
-15 ! IJ' :Ll lﬂ 15 °
2 lbﬂ,'ﬂ'f‘.' mﬁm\”‘ _2] 2ge
- With Filtering =« FrERET IR
(© 25 ),
E

How to beat the noise

° Fllterlng (Narrow-banding):

Only look at particular portion of frequency space
* Multiple measurements ...
* Other (modulation, etc.) ...

phase

signal
noise

frequency

By adding shared information (structure) between the
sender and receiver (the noise doesn’t know your structure)
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Frequency

» How often the signal repeats
 Can be analyzed through Fourier Transform

f
signal (t) ‘ signal(f)

« Examples:

time Gl frequency

oos bt
: I
L,
lm
=]

1 o @

Treating Uncertainty with Multiple Measurements

-\J“(U

l‘_r_':(”

x (N} (t )

——- {1 o average

A b, iy

Y

ensemble average

1. Over time: multiple readings of a quantity
over time
“stationary” or “ergodic” system
Sometimes called “integrating”

2. Over space: single measurement (summed)
from multiple sensors each distributed in
space

3. Same Measurand: multiple measurements
take of the same observable quantity by
multiple, related instruments

e.g., measure position & velocity
simultaneously

- Basic “sensor fusion”

_ _ 1
Ofinal = 01"+ o5+ oyl




Modulation

Analog Methods:

* AM - Amplitude modulation
— Amplitude of a (carrier) is

modulated to the (data) /\/\&g ]
« FM - Frequency modulation e
— Frequency of a (carrier) signal I
is varied in accordance to the AN PRI e
amplitude of the (data) signal S
* PM — Phase Modulation
Source: http://en.wikipedia.org/wiki/Modulation
Modulation [Digital Methods] e *L
Start with a “symbol” & place it on a channel
« ASK (amplitude-shift keying) j

oo 11 1] oo S o ]
(’ﬂ 00111 oﬂo 0 time j{ié} L1 e
» FSK (frequency-shift keying)

\ Nh N ARAR Ann
J L il i i / "”‘| il
NanrAvannrRyaill
. RYAlyRY
| | ! ! IJ\ I /AT I\
Data

» PSK (phase-shift keying)
 QAM (quadrature amplitude modulation)
s(t) = A - cos(we + (1))

= x;(t) cos(w,t) + x4(t) sin(w,t)

l[;ﬂ
Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL 334 | http://en.wikipedia.org/wiki/Constellation_diagram
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https://en.wikipedia.org/wiki/Amplitude-shift_keying
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https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
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https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
http://en.wikipedia.org/wiki/Modulation
http://users.ecs.soton.ac.uk/sqc/EL334
http://users.ecs.soton.ac.uk/sqc/EL334
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram

Modulation [Example — V.32bis Modem]

Figure 10.13 Illustration of the QAM constellation for a V.32bis dialup
modem.

Source: Computer Networks and Internets, 5e, Douglas E. Comer

Multiple Access (Channel Access Method)

+ Send multiple signals on 1 to N channel(s)
— Frequency-division multiple access (FDMA)
— Time-division multiple access (TDMA)
— Code division multiple access (CDMA)
— Space division multiple access (SDMA)

« CDMA:
— Start with a pseudorandom code (the noise doesn’t know your code)

T

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access
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Now: (analog) Filters!

ELEC 3004: Systems 4 April 2016 76

Filters

Lowpass 8 Bandpass
\

A I

Highpass Bandstop (Notch)

Frequency-shaping filters: LTI systems that change the shape
of the spectrum

Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others
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Filters

t Lowpass

JII (111)”

Highpass «

Specified Values:
* Gp = minimum passband gain
Typically:
1
Gp = —== —3dB

V2

+ Gs = maximum stopband gain
— Low, not zero (sorry!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

 Transition Band:
transition from the passband to the

stopband =» wp# ©s

Filter Design & z-Transform

Filter Type

Mapping Design Parameters

Low-pass

Bandpass

High-pass 7>

s 2 —[2e/(B + 1™ + (8 — /(B + 1))

- _ sinf(w, — w})/2]
1 —az! sinf(w, + @)/2]
. = desired cutoff frequency

4o __cos(w, + w])/2]

Tl+az! ¢ cos[(w, — w])/2]
w,. = desired cutoff frequency

_ cosl{we + w.)/2]

Bandstop z7!

A - /(B + DIz — 2af/(B + D)z + 1

2% = [2a/(B 4+ D)lz"' +1(1 = B)/(1 + )]

cos[(we — we)/2]
B = cotl(w. — w)/2] tan(w, /2)

;1 = desired lower cutoff frequency
wy = desired upper cutoff frequency

=B Bl — /(B + Dl £ 1

* oSl — w2)/2)
B = tan[(wa — w.)/2]tan(w, /2)

wy = desired lower cutoff frequency

w2 = desired upper cutoff frequency
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Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt order Butterworth
low pass filter is given by:

B (ju)] =~

» The normalized case (o.=1)

1

= — B () (o) = [HGw) =

1
14w

H(jw)

Recall that: |H (jw)|? = H (jw) H (—jw)

Butterworth Filters

t
| H ()|

ideal (n = oo)

0.707 |
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butterworth Filters ot Increasing Order:

Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2 n=3

x
X
s Y /3 /
- Li— L] - TS S —
-1 -1 -1
X
®

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:

Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3
x X
X
x M4
/4 w/3 / /
- —_— K — -
-1 -1 -1 -1 '
X
X
x x

n=4

« Since H(s) is stable and causal, its poles must lie in the LHP

 Poles of -H(s) are those in the RHP
* Poles lie on the unit circle (for a normalized filter)

n is the order of

1 the filter
H(s) =
> H (s) (s —s1)(5—82)...(s— sn)
Where: \
Sk = ':i" @htin=1) \4
= cos 2%{2%1.—1; — 1) +jsin %(2*’ tn—1) & =y dudymym
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Butterworth Filters: 4" Order Filter Example

n=1 n=3 =4

* Plugging in for n=4, k=1,...4:

1
H(s) = ————
/= (s + 0.3827 — 50.9239) (s + 0.3827 + j0.9239)(s + 0.9239 — 70.3827)(s + 0.9230 + 50.3827)
1
(82 4 0.76545 + 1)(s2 + 1.8478s 1)
1

T s4 £ 2613153 1 3.41425% + 2.61315 + 1

» We can generalize =» Butterworth Table

n a1 az az aq a5

This is for 3dB
2 1.41421356

bandwidth at
3 2.00000000 2.00000000 _
4 2.61312593 3.41421356  2.61312593 (t)c—l
5 5798 5.23606798  5.23606798  3.23606798

3370331 7.46410162  9.14162017  7.46410162  3.86370331

Butterworth Filters: Scaling Back (from Normalized)

« Start with Normalized equation & Table
« Replace o with - in the filter equation

» For example:
for f.=100Hz = ®»,=200mx rad/sec

From the Butterworth table: for n=2, a,=\2
Thus:

H (s) =

1
(z)"+v/2(g57) 1
= $24-2007+/2440,00072
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Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= o,
» Then:

We

2n
Gz = 20log g |H (jws)| = —101log [1 + (fl) ]

2n']

G, = —10log [1 s (ﬁ) J
And thus: e

T 2n
G, =—10log [I—F(VWV’*) }

Or alternatively: . {]ur‘a-«:.lj"“ & we [—m .(;;‘,’1oj‘

Solving for n gives:

log Km*és/w ~1)/ (10—@»/10 - Jﬂ

n = . P—
2log(ws/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB

Chebysheyv Filters

!
1H (o) | b (o) |

| 1

= 1

A 2 Vi+e?

n=6 n=7

- ol 1

+ equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour
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Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=> For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

e 1
’H(]’.UN = I; e -
V"l + €2C, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

3 =l 3 n Cr(w)
Clulw) = cos (necos™ w)
Cn(w) = cosh (n cosh 1r,;) 01
1 w
- - (+ 9,,2
and where C, is given by: i f“’.‘ 1;
. 4w* — ow
4 8wt-8uw?+1
5 16w’ — 2003 + 5w
6 32wS —48w% +18w2 -1

Normalized Chebyshev Properties

* It’s normalized: The passband is 0<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

» Number of ripples: there is a total of n maxima and minima
over the passbhand 0<w<1

1, n:odd

2 . 0, n:odd |H (0) = ) )
* Cp(0)= { 1, n: even |:> )l SirE n:even

. e ripple height > 7 = /1 + €2

» The Amplitude at v=1: ,1,= \/1:—3

« For Chebyshev filters, the ripple r dB takes the place of G,
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Determination of Filter Order

« Thegainisgivenby: ¢ - —10log[1+ 2, %(w)]
Thus, the gain at o is: 20,2 (ws) = 10-C+/10 _ 1

« Solving:
. 1/2
L [107G10 _q]”
= iy e (e
cosh™ " (ws) 10 —1

» General Case:

e = T 10710 J

N 1/2
——— —~ _cosh™} 10—/ ﬂ'
cosh ™ (w, [wp

Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

1 1 1 1
a = sinh (—sinh_l (—)) & b= cosh (—sinh_1 (—))
T € T €

And the poles are at the locations:

1
H(s) =
) = T =) G =)
sp = —sin {M]sinhwﬂcos (k—=1)m coshe, k=1,...,n
2n 2n
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Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:
1. Draw two semicircles of radii a and b
1 (from the previous slide).

8 2. Draw radial lines along the corresponding
Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

3. The location of the k! Chebyshev pole is
Ya the intersection of the horizontal
projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.
Chebyshev Values / Table
. K
H(s) = =2 = . =
C .,,_(s) 8" +an-15" 1+ - 4+ ais+ag
ag n odd
Kn = ag ag
'\‘/Tﬁ = W/QU n even
n ap ai az a3z
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114




Other Filter lypes:
Chebyshev Type Il = Inverse Chebyshev Filters

» Chebyshev filters passband has ripples and the stopband is smooth.

* Instead: this has passband have smooth response and ripples in
the stopband.

=>» Exhibits maximally flat passband response and equi-ripple stopband
= Cheby2 in MATLAB

62 2 w
(@) = 1= Moo = gz
Where: H, is the Chebyshev filter system from before =
 Passband behavior, especially for small o, is better than Chebyshev
» Smallest transition band of the 3 filters (Butter, Cheby, Cheby?)
 Less time-delay (or phase loss) than that of the Chebyshev
 Both needs the same order n to meet a set of specifications.

 $3%3 (or number of elements):
Cheby < Inverse ChEbyShev < Butterworth (of the same performance [not order])

Other Filter Types:
Elliptic Filters (or Cauer) Filters

« Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H(w)| = — -
V1t 2R, (w)

Where: R, is the nth-order Chebyshev rational function determined from a given ripple spec.
€ control% the ripple

P
- Most efficient m)
— the largest ratio of the passband gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip
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In Summary

Filter Type Pas_sband Stopband Transition MATLAB Design
Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheby
Chebyshev Type Il "
(Inverse Chebyshev) No es Tight cheby2
Eliptic Yes Yes Tightest ellip

Next Time... /2 |

- DTFT

— Then DT-FFT!
* Then DT-FFTW!

* Review:

— Chapter 10 of Lathi

« FFT-W: Isitreally the Fastest FFT in the West?
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