	http://elec3004.com
Digital Filters	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 9 (with material from Lathi and Cannon (Discrete Systems))	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u>	April 4, 2016

Lecture Schedule:					
[[Week	Date	Lecture Title		
	1	29-Feb	Introduction		
	1	3-Mar	Systems Overview		
	2	7-Mar	Systems as Maps & Signals as Vectors		
	2	10-Mar	Data Acquisition & Sampling		
	2	14-Mar	Sampling Theory		
	5	17-Mar	Antialiasing Filters		
	4	21-Mar	Discrete System Analysis		
		24-Mar	Convolution Review		
		28-Mar	Holiday		
		31-Mar	Tonday		
	6	11-Apr	Digital Filters		
	U	14-Apr	Digital Filters		
	7	18-Apr	Digital Windows		
	'	21-Apr	FFT		
	8	25-Apr	Holiday		
	Ů	28-Apr	Feedback		
	0	3-May	Introduction to Feedback Control		
		5-May	Servoregulation/PID		
	10	9-May	Introduction to (Digital) Control		
	10	12-May	Digitial Control		
	11	16-May	Digital Control Design		
11		19-May	Stability		
		23-May	Digital Control Systems: Shaping the Dynamic Response & Estimation		
		26-May	Applications in Industry		
	13	30-May	System Identification & Information Theory		
15		31-May	Summary and Course Review		
ELEC 3004: Systems	ELEC 3004: Systems 4 April 2016 2				

"Plan B"

ELEC 3004: Systems

- Review Z-Transforms
- Review Convolution
- Review Problem Set 1
 Sorry about the delay here!
 - Chronic case of "grant-itis" ^(C)
- Review Analog Filters

What is it? *L*(ZOH)=??? $1 - e^{-Ts}$ $\underline{1 - e^{-Ts}}$ TsWikipedia • Lathi Franklin, Powell, Workman ٠ • Franklin, Powell, Emani-Naeini • Dorf & Bishop • Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) • Matlab • Proof! ELEC 3004: Systems

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Transfer function of Zero-order-hold (ZOH)} \\ \dots & \text{Continuing the } \mathcal{L} \text{ of } h(t) & \dots \\ \mathcal{L}[h(t)] = \mathcal{L}[\sum\limits_{k=0}^{\infty} x(kT)[1(t-kT)-1(t-(k+1)T)]] \\ = \sum\limits_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT)-1(t-(k+1)T)] = \sum\limits_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}] \\ = \sum\limits_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum\limits_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \rightarrow X(s) = \mathcal{L}\left[\sum\limits_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \therefore & H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s) \\ \Rightarrow \text{ Thus, giving the transfer function as:} \\ \hline & \mathcal{L}_{2OH}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s} \xrightarrow[s]{} \xrightarrow{Z}{} \qquad \mathcal{L}_{2OH}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}} \end{array}$$

<text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

\mathcal{Z} Transform (Another Way to L ${\circ} \circ$ k at it)

4 April 2016 18

The z-Transform

So far we have considered z^{-1} as a delay operator acting on sequences

But to find E(z) from e(kT) we need to define the z-transform:

$$E(z) = \mathcal{Z}\left\{e(kT)\right\} = \mathcal{Z}\left\{e_k\right\}$$
$$= \sum_{k=0}^{\infty} e(kT)z^{-k} = \sum_{k=0}^{\infty} e_k z^{-k}$$

Note:

- * Single-sided z-transform all variables are assumed to be zero for k < 0[Franklin uses a different definition]
- \star Strictly speaking, we should give bounds on |z| for convergence, e.g.

$$r_0 < |z| < R_0$$

where r_0 , R_0 depend on e(kT)(these bounds are only needed in order to invert E(z) by integration)

ELEC 3004: Systems

The z -Transform	
Example – z-transform of a delayed exponential	
Delay $x(t) = Ce^{-at}\mathcal{U}(t)$ by a time T :	
$y(t) = x(t-T) \implies y(t) = Ce^{-a(t-T)}\mathcal{U}(t-T)$	
sample $y(t)$ with sample interval T :	
$y_k = \begin{cases} 0 & k = 0\\ Ce^{-a(k-1)T} & k = 1, 2, \dots \end{cases}$	
z-transform: $Y(z) = \sum_{k=0}^{\infty} y_k z^{-k} = \sum_{k=1}^{\infty} C e^{-a(k-1)T} z^{-k}$	
$= Cz^{-1} \sum_{j=0}^{\infty} (e^{-aT} z^{-1})^j = \frac{C}{z - e^{-aT}}$	
Comparing $X(z)$ and $Y(z)$: $X(z) = \frac{Cz}{z - e^{-aT}} \implies Y(z) = z^{-1}X(z)$	
ELEC 3004: Systems	4 April 2016 22

The *z*-Transform

• In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the *z*-transform of your functions

:	Eigenfunctions of Discrete-Time LTI	Systems
	In analogy with the continuous-time case, the eigen discrete-time LTI systems are the complex exponentials	functions of
	$\phi_k[n] = z_k^n$ for arbitrary complex constants z_k . Alternatively, to avoid the that the eigenfunctions form a finite or countably infinite set, we them as simply $\phi[n] = z^n$,	(6.1.6) e implication we will write (6.1.7)
	where z is a complex variable. To see that complex exponential eigenfunctions of any LTI system, we utilize the convolution (3.6.10), with $x[n] = \phi[n] = z^n$, to write the corresponding ou $\psi[n]$ as $\psi[n] = \sum_{n=1}^{\infty} h[m]\phi[n-m]$	Is are indeed sum in Eq. (tput $y[n] =$
	$= \sum_{m=-\infty}^{\infty} h[m] z^{n-m}$ $= z^n \sum_{m=-\infty}^{\infty} h[m] z^{-m}$	(6.1.8)
	$=H(z)z^{n}.$	Source: Jackson, Chap. 6
🖳 ELE	C 3004: Systems	4 April 2016 28

Convolution F(x) = F(x) =

Filter De	sign & z-Transform	
Filter Type	Mapping	Design Parameters
Low-pass	$z^{-1} \rightarrow \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$	$\alpha = \frac{\sin[(\omega_c - \omega'_c)/2]}{\sin[(\omega_c + \omega'_c)/2]}$ $\omega'_c = \text{desired cutoff frequency}$
High-pass	$z^{-1} \rightarrow -\frac{z^{-1}+\alpha}{1+\alpha z^{-1}}$	$\alpha = -\frac{\cos[(\omega_c + \omega'_c)/2]}{\cos[(\omega_c - \omega'_c)/2]}$ $\omega'_c = \text{desired cutoff frequency}$
Bandpass	$z^{-1} \rightarrow -\frac{z^{-2} - [2\alpha\beta/(\beta+1)]z^{-1} + [(\beta-1)/(\beta+1)]}{[(\beta-1)/(\beta+1)]z^{-2} - [2\alpha\beta/(\beta+1)]z^{-1} + 1}$	$\alpha = \frac{\cos[(\omega_{c2} + \omega_{c1})/2]}{\cos[(\omega_{c2} - \omega_{c1})/2]}$ $\beta = \cot[(\omega_{c2} - \omega_{c1})/2]\tan(\omega_c/2)$
	$r^{-2} = [2r^{-1}/(2 + 1)]r^{-1} + [(1 - 2)/(1 + 2)]$	ω_{c1} = desired lower cutoff frequency ω_{c2} = desired upper cutoff frequency
Bandstop	$z^{-1} \to \frac{z^{-1} - (2\alpha/(\beta+1))z^{-1} + ((1-\beta)/((1+\beta))}{[(1-\beta)/((1+\beta))]z^{-2} - [2\alpha/(\beta+1)]z^{-1} + 1}$	$\alpha = \frac{\cos[(\omega_{c1} + \omega_{c2})/2]}{\cos[(\omega_{c1} - \omega_{c2})/2]}$ $\beta = \tan[(\omega_{c2} - \omega_{c1})/2]\tan(\omega_c/2)$
		ω_{c1} = desired lower cutoff frequency ω_{c2} = desired upper cutoff frequency
ELEC 2004 C		4.6

Butterworth Filters

- Butterworth: Smooth in the pass-band
- The amplitude response $|H(j\omega)|$ of an nth order Butterworth low pass filter is given by:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

• The normalized case ($\omega_c=1$)

Recall that: $|H(j\omega)|^2 = H(j\omega) H(-j\omega)$

ELEC 3004: Systems

Chebyshev Filters

• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the sameorder Butterworth filter, but this is achieved at the expense of inferior passband behavior (rippling)

→ For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev filter gain is smaller than the comparable Butterworth filter gain by about $\underline{6(n-1)} dB$

• The amplitude response of a normalized Chebvshev lowpass filter is:

$$|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_n^2(\omega)}}$$

Where $Cn(\omega)$, the nth-order Chebyshev polynomial, is given by:

Normalized Chebyshev Properties
• It's normalized: The passband is $0 < \omega < 1$
• Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband
 Number of ripples: there is a total of <i>n</i> maxima and minima over the passband 0<ω<1
• $C_n^2(0) = \begin{cases} 0, n : odd \\ 1, n : even \end{cases}$ $ H(0) = \begin{cases} 1, n : odd \\ \frac{1}{\sqrt{1+\epsilon^2}}, n : even \end{cases}$
• ϵ : ripple height $\Rightarrow r = \sqrt{1 + \epsilon^2}$
• The Amplitude at $\omega = 1$: $\frac{1}{r} = \frac{1}{\sqrt{1 + c^2}}$
• For Chebyshev filters, the ripple r dB takes the place of G_p
ELEC 3004: Systems 4 April 2016 89

Chebyshev Pole Zero Diagram • Whereas Butterworth poles lie on a semi-circle, The poles of an nth-order normalized Chebyshev filter lie on a semiellipse of the major and minor semiaxes: $a = \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right) & b = \cosh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right)$ And the poles are at the locations: $H(s) = \frac{1}{(s-s_1)(s-s_2)\dots(s-s_n)}$ $s_k = -\sin\left[\frac{(2k-1)\pi}{2n}\right]\sinh x + j\cos\left[\frac{(2k-1)\pi}{2n}\right]\cosh x, \ k = 1,\dots,n$

C	Chebyshev Values / Table					
	$\mathcal{H}(s)$ =	$=rac{K_n}{C'_n(s)}=$	$\overline{s^n + a_{n-1}}$	$\frac{K_n}{s^{n-1}+\cdots+}$	$a_1s + a_0$	
		$K_n = \begin{cases} a_0 \\ \frac{1}{\sqrt{2}} \end{cases}$	$\frac{a_0}{1+\epsilon^2} = \frac{a_0}{10^{\hat{r}/2}}$	n odd $\overline{0}$ $n \text{ even}$	1	
n 1 2 3 4	a_0 1.9652267 1.1025103 0.4913067 0.2756276	a_1 1.0977343 1.2384092 0.7426194	a_2 0.9883412 1.4539248	a ₃ 0.9528114		1 db ripple $(\hat{r} = 1)$
	ELEC 3004: Systems					4 April 2016 93

Other Filter Types: **Chebyshev Type II** = Inverse Chebyshev Filters

- Chebyshev filters passband has ripples and the stopband is smooth.
- Instead: this has passband have smooth response and ripples in the stopband.

 \rightarrow Exhibits maximally flat passband response and equi-ripple stopband

→ Cheby2 in MATLAB

 $|\mathcal{H}(\omega)|^2 = 1 - |\mathcal{H}_C(1/\omega)|^2 = \frac{\epsilon^2 C_n^2(1/\omega)}{1 + \epsilon^2 C_n^2(1/\omega)}$ Where: H_e is the Chebyshev filter system from before

- Passband behavior, especially for small ω , is **better** than Chebyshev
- **Smallest transition band** of the 3 filters (Butter, Cheby, Cheby2)
- Less time-delay (or phase loss) than that of the **Chebyshev**
- Both needs the **same order** *n* to meet a set of specifications. ٠
- **\$\$\$** (or number of elements): Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order])

ELEC 3004: Systems

In Summary	ý			
Filter Type	Passband Ripple	Stopband Ripple	Transition Band	MATLAB Design Command
Butterworth	No	No	Loose	butter
Chebyshev	Yes	No	Tight	cheby
Chebyshev Type II (Inverse Chebyshev)	No	Yes	Tight	cheby2
Eliptic	Yes	Yes	Tightest	ellip
ELEC 3004: Systems				4 April 2016 96

