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Week Date Lecture Title

1 29-Feb|Introduction

3-Mar|Systems Overview

7-Mar|Systems as Maps & Signals as Vectors

2 10-Mar|Data Acquisition & Sampling

14-Mar|Sampling Theory

17-Mar|Antialiasing Filters

21-Mar|Discrete System Analysis

4 24-Mar|Z-Transform

28-Mar|
31-Mar

Holiday

11-Apr|Digital Filters

14-Apr|Digital Filters

18-Apr|Digital Windows

21-Apr|FFT

25-Apr|Holiday

28-Apr|Feedback

3-May|Introduction to Feedback Control

5-May|Servoregulation/PID

9-May |Introduction to (Digital) Control

12-May |Digitial Control

16-May |Digital Control Design

19-May |Stability

23-May |Digital Control Systems: Shaping the Dynamic Response & Estimation

26-May|Applications in Industry

30-May|System Identification & Information Theory

31-May|Summary and Course Review
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Follow Along Reading:

! . B.P.Lathi
Signal processing
and linear systems
1998

TK5102.9.L.38 1998

— Today

» Chapter 11 (Discrete-Time System
Analysis Using the z-Transform)
— §11.1 The Z-Transform

— 8§ 11.2 Some Properties of the Z-
Transform

:» Chapter 10 (Discrete-Time System
:  Analysis Using the z-Transform)
— 8§10.3 Properties of DTFT

— §810.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z-Transform
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Announcements
Announcements + Add
Equation Editors & Tips! # Edit il Delete

3/23/16 12:55 PM

To post a response to a question asked by email...

A friendly reminder that, as noted in class, there are many equation
editing interfaces that may make LaTeX entry easier to learn and/or may
help with entering equations (such as 4x4 matrices).

Some links/tips that may (or may not) help:

List of Formula Editors: Available for many platforms and in many styles
(e.g., LaTeX4technics, MathMagic, EqualX, EQ Editor, efc.)

Matlab will export symbolic equations as LaTeX via the 1atex command

There are many introductions and online generator tools e.g., LaTex-

Tutorial and Table Generator

For inserting some quick symbols —- try Unicode.

| find Unicode Lookup and

Unicode characters and corresponding LaTeX math mode page helpful.

Thanks!
View on Piazza
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Announcements 4+ Add

Equation Editors & Tips! # Edit il Delete
3/23/16 12:55 PM

To post a response to a question asked by email...

A friendly reminder that, as noted in class, there are many equation

editing interfaces that may make LaTeX entry easier to learn and/or may
help with entering equations (such as 4x4 matrices)

Some links/tips that may (or may not) help
List of Formula Editors: Available for many platforms and in many styles
(e.g., LaTeX4technics, MathMagic, EqualX,

Q Editor, etc)

Matlab will export symbolic equations as LaTeX via the latex command
There are many introductions and online generator tools e.g., LaTeX-

Tutorial and Table Generator

]

s - For inserting some quick symbols - try Unicode
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- i Unicode charac s and corresponding LaTeX math mode page helpful.
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Coping with Complexity

Transfer functions help control complexity
— Recall the Laplace transform:

LF©) = f FOe=stdt = F(s)
0

where

L{f(t)} = sF(s)

X(t) ——  H(G) —— y(t)

* Is there a something similar for sampled systems?

Flashback,?: Euler’s approximation (L7, p.26)

d_x:hmw — dr  @eq —ak

dt ~ st—0 5t dat T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

e.g.
D(s) = ;E; - I‘(i”:b‘)‘) = % +bu= K(% + ae)
2. Differential equation — difference equation
e.g.
7%“,1; U 4 by = K(;‘HIT_ LI Ck)

= upt1 = (1 = bNup + Kepyr + K(al — 1)ep

= —ajukr + boers1 + biex




Discrete transfer function

Compare the discrete system time domain model:

Up, = —QQUp_1] — * — QpUf—pn + bocp + o+ bpen_m
n m
= — Z Qilp—; + Z bjern—; recurrence equation
i=1 j=0

with the continuous system model:

u(t) = *“1% - -an% boe + b1% +o bwz% differential equation
J Laplace transform |

U(s) = —arsU(s) = -~ — ans"U(s) + boB(s) + bisE(s) + - + bs™ E(s)

JLEEZ% =D(s) = bfi::: i Zzi i il::f: transfer function

Can we define a transfer function for the discrete system?

Discrete transfer function [2]

Suppose uy = w(kT) has transform U'(s) ...
...then how can we represent ug_1, up_o, etc.?

* Ifao(t) 255 X(s), then a(t — T) 215 e *T X (s), so

up  — U'(s)
Uh—1 — E_STU'(S)
up_g — e 21U’ (s)

etc

+ Define the discrete frequency domain operator

sT

Z=€

then
up  — U(z)

wk—1 — 2 U(2)

L8]
—

wr—2 — z U

etc




Discrete transfer function [3]

Comparison

* system representations:

Continuous Discrete
; U d%u
H()_ 7&157&2 di2 - Up = —A1URp 1 — A2UR_9 — -+

d ke b
+boe+b1d—i+... + boer + biex—1 +

* operators:

Continuous Discrete
du -
T Ul(s) Up_y — 271 U(z)
differential delay

Discrete transfer function [4]

Apply the transformation to the linear recurrence equation:

Uk = —AQ1UK—1 — A2UER-—2 — -+ — Apllk—n
+boer +biep_1 +- - bpegp_n

| transform |

U(z) = —a1z 'U(2) — azz 2U(z) — - anz "U(z)

+01E(z) + bez 'E(2) + -+ bnz "E(2)

This gives the z domain transfer function:

[}T(z) — D(Z) o bD + blz_l + bQZ_Q + - 'b}nz_rn

o 1+a1z*1 +azz*2+...+anz—n

Rationalize by multiplying top and bottom by z"

_ bp2" 4 Bzl oz b
a4 a2 4t an

D(z)




Discrete transfer function [5]

Analysis tools based on s domain transfer functions:

Pole & zero locations ——  damping, natural frequency,
eg. settling time & overshoot

Frequency response —>  gain & phase margins

... also apply to z domain transfer functions

Poles and zeros of D(z):

I (2 — z5) Jn-m Zeros: z;

D(z)=by————"22
(2) OH?:l(z — pi) poles: p;

— z;i & p; are real or in complex conjugate pairs
— n poles, n zeros, with n — m zeros at z =0

— at least as many poles as zeros

The z-Transform

* ltis defined by:

2 =rel¥

» Or in the Laplace domain (often r = 1):
z =resT

« Thatis - it is a discrete version of the Laplace:
A
fT) = e = Z{f(k)} = e




The z-Transform [2]

To summarise:

Sequence

{:[‘o..’l‘l. . }

Recurrence equation
Tp =01Tp—1 + ** + AnTh_p

X(z) provides an easy way to convert between sequences, recurrence equations
and their closed-form solutions

The z-Transform [3]

So far we have considered z™! as a delay operator acting on sequences

But to find E(z) from e(kT") we need to define the z-transform:

E(z) = 2{e(kT)} = Z{ex}
= Ze(kT)z_k = Zekz_k
k=0 k=0

Note:

* Single-sided z-transform — all variables are assumed to be zero for k < 0
[Franklin uses a different definition]

* Strictly speaking, we should give bounds on |z| for convergence, e.g.
O < |.?.'| < Rp

where ry, Ry depend on e(kT')
(these bounds are only needed in order to invert E(z) by integration)




The z-Transform [4]

+ Thus: .
Y(2)= Z h[k]2* y[n] PN Y(z)

« z-Transform is analogous to other transforms:
2 W)= ) fz™ = F(2)
k=0

and

Z{f(k = 1)} =z"'F(2)
~ Giving:

XK) —— F(z) —— y(K)

The z-Transform [5]

» The z-Transform may also be considered from the
Laplace transform of the impulse train representation of
sampled signal

u*(t) = u06(t) + U16(t - T) + ...+ Uk(t—KkT) + ..

- Z weS(t — KT)

k=0




The z-Transform [6]

Example — z-transform of a decaying exponential
Sample z(t) = Ce™ ™ U(t): (U(t) = unit step at t = 0)

TE = Ce_&k]—. k=0

and take the z-transform:

A{z) — i-‘rkl’_k _ Gie—ak]'z—k _ Ci(e—ﬂ'z—l)k

k=0 k=0 k=0
this is a geometric series which converges if |z| > e 7"
X C Cz
z = =
(") 1 —e—alz—1 z —e—aT

4

z-transform of exponental = rational polynomial (like Laplace)

The z-Transform [7]

Effect of delay:
Z{e(kT -T)} = 2 'E(z) where E(z)= Z{e(kT)}

Example — z-transform of a delayed sequence

Take a finite length sequence

€0,€1,€2,€3,€4,... = L(r). 1.6.1.7.0.0,...

introduce a delay of one sampling interval:
fosf1. fa, fay fa,...=0,1.5,1.6,1.7,0,...

take z-transforms _
E(z)= ch/fk =15+ 1.6 ' +1.722
k=0

F(z) pr,#‘ =152 +1.62 7+ 1.7277

10



The z-Transform [8]

Example — z-transform of a delayed exponential

Delay z(t) = Ce”*"U(t) by a time T

gy =a2(t=T) = y(t)=Ce DY@t -T)

sample y(t) with sample interval 7"
o k=0
T\ Cemat=T  — o

z-transform:
oo =]
Yi(z) = Zyk Lk Z(-/.C—a(kfl)Tsz
k=0 k=1
el

oo
—1 —aT _—1.\j
=0 :

Comparing X (2) and Y (2):
X = — o v =X

zZ) =
2 — e—aT

The z-Transform [9]

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
52 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTeaT
(s + a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 72— (2cosal)z+ 1

11



z-Transform Example [10]

* Obtain the z-Transform of the sequence:
x[k] ={3,0,1,4,1,5,..}

« Solution:
X(z2)=3+z?%4+4z3+z*+52z7°

Pulse Response

E(z) U(z) = D(z) E(z)
er ? ug =7
For continuous systems: D(s) = E{d(f)} d(t) = plant impulse response

What is the equivalent property for the discrete transfer function [J(z)?

* Let (K1) = discrete unit pulse:
1 k=0 > _k
o = Ok = = E(z)=)Y ez =1
o {0 k=1,2,... ) E;“

* then

|U@:D@Hﬂzﬂd‘

ie. D(z) = Z{d(A:T)} = z-transform of the plant pulse response

12



Pulse Response [2]

Example — The recurrence equation up = up_—1 + é(t"k + €k—1)
U(z) z(, + 1)

has transfer function D(z) = = -
( E(z) 2(z—1)

Check this by finding the pulse response and taking its z-transform

k Up—1 €l €1 Ul
0 0 1 0 T/2

o L T/2 0 1 T _
er = 0y, gives 9 T 0 0 e e up =T/2,T,T,...
3 T 0 0 T
Nk e T T T (z41)
so {(,,)_;T/, T2 = 5~ 530621
The z-Plane
z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):
* S-plane: e z=¢€°T Plane
Img(s) Img(z)
X
> Re(s) § 1 Re(2)
X
— A—Plane — v —Plane

13



Deep insight # |

The mapping between continuous and discrete poles and
zeros acts like a distortion of the plane

max frequency
mg(s) H Img(2)

v-plane Stability

» For ay-Plane (e.g. the one the z-domain is embedded in)
the unit circle is the system stability bound

Img(s) Img(2)

’

unit circle

} | )

14



v-plane Stability

e That is, in the z-domain,

the unit circle is the system stability bound

Img(s)

"
=

Re(s)

v Img(2) @

-
N

>
} . Re(z)

z-plane stability

« The z-plane root-locus in closed loop feedback behaves just

like the s-plane:

Img(s)

Re(s)

Img(2) @ |

X

Re(2)

15



Region of Convergence

+ For the convergence of X(z) we require that

2 }az_] ]m <
n=0

« Thus, the ROC is the range of values of z for which |az|< |
or, equivalently, |z| > |a|. Then

N ;i

N
N\
NN

Az ma
7 > ’/,/ //

as1

.
N

An example!

+ Back to our difference equation:

y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes

Y(z2) =X(2) + Az71X(2) — Bz7'Y(2)
(z+B)Y(2) =(z+4A)X(2)
which yields the transfer function:

Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™"

16



This looks familiar...

» Compare:
YG) _ stz @) _ z+A
X(s)  s+1 X(z)  z+B

How are the Laplace and z domain representations related?

- Linearity:

1,2 s e
a1y1[n] + agya[n] +— a1Y1(2) + aoYa(z)

Z-Transform Properties: Time Shifting

o . wa[n] =yln — nol
_ RN 1) Vg oo
y[n —no] «— 27"Y (2) Yo(e) = 3 wlk —nolo™

k=—00

- Z y:i]z—([+n(3)

l=—0o
. :3—71[;};(3)
» Two Special Cases:

« z'%: the unit-delay operator:

xn — 1]« 27 1X(2) R'=RN{0< ||}

* Z: unit-advance operator:

x[n+ 1] = 2X(2) R'=RN{|z] <}

17



More Z-Transform Properties

« Time Reversal

« Multiplication by n (or
Differentiation in z):

x[n] < X(z) ROC =R

xln] = X(z) ROC =R

1 1
([—n]= X|— Rz
x[—n] (2) =

dX(z, .
nx[n]ﬂfz—() R' =R
dz

« Multiplication by z"
« Convolution

x[n] = X(z) ROC = R

) x[n] < X,(z)  ROC=R,
ghaln = X| i] R'=|z|R xfnl = X(:)  ROC=R,
\ <0/ .

x,[n] * x,[n] < X,(2)X,(z) R'DR NR

z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

yln] = ayln — 1] + buln]

h[n]

mn n

hin] = {ba n=0,

0 otherwise.

H(z}Zibakz_kzbi(g)k— b when 2| > |al.

18



z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

yln] = ayln — 1] + bu[r]

y[n] — ay[n — 1] = bu|n]

A

-+

Y(z) —az 'Y (2) = bU(2)

L Y(z) b . "
H(z)= 00) =7 a.z_l,when does it converge”

L(ZOH)=?? : Whatis it?

1—e1s 1—eTs
Ts <
»  Wikipedia * Lathi

7|+ Franklin, Powell, Workman
|| + Franklin, Powell, Emani-Naeini
» Dorf & Bishop

« Oxford Discrete Systems:
(Mark Cannon)

« MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!

19



Zero-order-hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0,then the output
h(t) = z(0)[1(t) — 1(t —T)] +=(T)[1(t —T) — 1(t — 2T)] +

= Z X(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

Transfer function of Zero-order-hold (ZOH)

» Recall the Laplace Transforms (£) of:
LIEMW) =1 L[f(t —kT)] = F(s)e *Ts

) efkTs
LE(t—kT)] = "5 L1t —kT)] =
» Thus the £ of h(t) becomes:
C[R(1)] = E[fi X(KT)L(t - kT) - 1(t - (k+1)T)]]
k=0
o0 00 —RT& —(k+1)Ts
— Z z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z m(kT)[ _¢ S ]
“?:—OO e—kTs _ e—(k+1)Ts 00 k:OT 1_eTs = )
= S 2(kT) - =3 ;r(ch) e HTs — — 3 a(kT)e *Ts
k=0 S k=0 k=0

20



Transfer function of Zero-order-hold (ZOH)

.. Continuing the £ of h(t) ...
C[h()] = E[i X(KT)[1(t - kT) - 1(t - (k+1)T)]]

Qo k=0 o0 —RT& e—(k'-{-l)Ts
— Z z(ET)L[1(t - kT) - 1(t - (k+1)T)] = ; m(kT)[ - . ]
ko_oo e—kTs _ o—(k+1)Ts 00 k—OT 1_eTs
= 3 2(kT) =Y m(.ch) e kTs — 3 w(kT)e kTs
k=0 s k=0 S k=0
= X(s) =L | a(kT)6t —kT)| = Y a(kT)e *s
k=0 k=0
_ ,—Ts > _ —Ts
CH(s) = LID)] =Y wkT)e T = 2T x(s)
k=0 8
=>» Thus, giving the transfer function as: ( )
_ H(s) 1—eTs Z 1—e ol
GzoH(s) = X(s) = s > Gzop (2) = S
Example:
* Is this system stable?
u(k) =09u(k—1) —0.2ulk — 2)
» Time-shift it:
2u (k)

2) =0.9
. z-Tra f?’( /
1)z — 0.9z +

» Characteristic Roots:
z=0.5, z=0.4 = STABLE!

21



Region of Convergence (ROC) Plots

O e =

Hn
a=.5 a

ELEC 3004: Systems

=12

24 March 2016 49

Combinations of Signals

. ba™ >0 {0 n>0
T = n| =
o 0 n<o0 2 —ba™ n<0

a=.5

ROC for aqy1[n] + asya[n]

ELEC 3004: Systems 24 March 2016 50
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s<— 4

(More than “cmenican English’)

ELEC 3004: Systems

24 March 2016 53

Hint: Use y to Transform s < z: z=e*T

) 5-0-0-0-0N-0-8-5-8-6—

s-plane s-plane Symbeol

% 5 ¢
A (a)
| Real frequency axis
s=a<0 0
[~ Cwy + jwny/1=(* A
a+jb
|
| Constant damping ratio
| if ¢ is fixed and w,

1c8
EJ(/T) + 0,0 0 ~rmmmmmnnn

-

"~

z-plane z-plane

Logarithmic spiral

23



S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s§=0+ jw
o = constanjt 7Y T
I z =
|z| = ¢”T = constant
Alm(s)
0 I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)
52+Cw05+w3:0 V1—(wo
v 9
rRe(s

s = —(wo i)myo

cos =

s = —(wo +\jﬂwo: ¢ = constant

—0.5 Alm(s) Im(2)
¢=07 o ///T ¢=0.7
7T

R ﬁ% .
K Re(s) 'I\Q ?l Re(z)
¢=07 1 ¢=07
¢=05 -

; 2
2 = ¢ SwoT =i/ 1-CPwoT

24



s <> Z: Pulse Transfer Function Models

E(2)

e(kT) ?

D(z)

U(z) = D(z) E(z)

u(kT) =7

 Pulse in Discrete is equivalent to Dirac-6

1 fork=0
0 fork =0

u(t - ) ’
e o e SO e Y

G(z)

>

Gz)=1-z"YHz{c?

G(s)

S

_ G(s)
= (1—Z 1)Z T

t=kT

Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26

transforms

Relationship with s-plane poles and z-plane

If F(s) has a pole at s =a F(s)

FOET) F(z)
then F'(z) has a pole at z = ¢*% -
1(ET)
z— 1
1 Tz
- kT 12
consistent with z = ¢*? ® N
1 l—u.f.'t' =
s+a z —e—al
1 P—— Tze T
. (s+a)? (z—e—aT)2
What about transfer functions?
(1 _ .—aT
, . (,.;(h‘) a 1 — e~ @ kT M
G(z)=(1-2"hzy =2 s(s +a) (= 1)(z—eaT)
S - .
b 1 —akT —bkT ("'_M et )z
v . e i i
¥ (s+a)(s+ D) (z—e aT)(z —e—PT)
If G(s) has poles s = a; a kT zsinaT
N o paiT 82 + g2 Stk z2 — (2cosaT)z + 1
then G(z) has poles z = ¢
b —akT G LT ze” " TsinbT
but the zeros are unrelated (sta@tbz B T 9= aT(cos bT)z + e—201

25



Recall dynamic responses

+ Ditto the z-plane:

More
1 Oscillatory >"<
X h

More damped 2(
f— = Pure integrator
7 ——% Re(@)
N~ — = Faster

/ . >\‘;More unstable”

)

Discrete-Time

System Analysis

ELEC 3004: Systems

24 March 2016 60
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Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = kT

r(t)| e(kT) u(kT S u(t) y(t)
(t) + S (kT) Difference ( )> DAC S H(s) 5

I r(kT) 5 equations |

I

|

|

I |

! :

: |

|

! XD I o 0 or

: sampler |

________ controlier ~~~ "~~~ 7"

Remember: Selection of Sampling Frequency!

D/A |
——>  with ——» Plant
S/H

l Noise
’ Analog

_ + SENsor

.| Digital
controller

Antialiasing |
filter

N
N

To Prevent Aliasing:

» Make sure your sampling frequency is greater than twice of the
highest frequency component of the signal. In practice, take it
ten times the highest frequency component.

» Pre-filtering of the analog signal

« Set your sampling frequency to the maximum if possible

27



Remember: Effect of Noise...

» Without pre-filtering:
(a) 25

1 2 \rm'\! Nﬁ%’h . 2
A AN |
ECL SR A W A
E —05 l', | “h Nﬂ 2 _os &L : bll s
! ' ,y'w m’u J F l :
- Yyl ! 7 )
« With Filt‘él’li"né Chmew LR R s T E e
© 25 @ ..
T
:‘ 0 é OITWH Hh,% i-rﬂH H[T‘w
_;l \ ’I:,."J \ / j :i “ °=. H
-2 \./’ N . 04
Zero Order Hold

« An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

28



Effect of ZOH Sampling

Lower sample rate =  more oscillatory response

— Why?
Sampling and reconstruction introduces:

delay in time domain
& phase lag in freq. domain + can destabilize the closed loop system

On average u(kT") is delayed by T'/2 relative to u(t) due to the ZOH:

uy 72

- -
P T~ /
rd
- ~

ZOH output

// A “ H(T)
// /// \\ \\/
/T g \(/
o P . , N 3‘( ;fundamental component
0 T 2T &— ~+— of ZOH output

Effect of ZOH Sampling

The ZOH delay of T'/2 (sec) causes
phase lag = wT/2 (rad) at w rads™'
phase lag = 7/2 =90°  at w = 7/T [= Nyquist rate]
phase lag = /30 =6°  at w = 7/(15T)

x 90° phase lag could be catastrophic

* If weamp > 30 X winax,

then system bandwidth: wmax < 7/(15T),

so the maximum phase lag is less than 6°

usually safe to ignore

# Any time needed to compute u;. causes additional delay (!)
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L(ZOH)=?? : Whatis it?

1-— E‘_ll‘s 1— e—Ts
Ts

«  Wikipedia + Lathi

e ~ | + Franklin, Powell, Workman

|| « Franklin, Powell, Emani-Naeini
» Dorf & Bishop

» Oxford Discrete Systems:
(Mark Cannon)

* MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!

Zero-order-hold (ZOH)

M x(KT) [ Zero-order | h(t)

Sampler Hold _—

+ Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0,then the output

h(t) = z(0)[1(t) — 1(t = T)] + =(T)[1(t - T) — 1(t —2T)] + - -

= i x(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0
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Transfer function of Zero-order-hold (ZOH)

* Recall the Laplace Transforms (£) of:
L)) =1 LIf(t—kT)] = F(S)e—kTs

& e—kTs
Lt —kD)]=e % L1t —kT)] =

» Thus the £ of h(t) becomes:

C[R(2)] = E[i x(KT)[1(t - KT) - 1(t - (k+1)T)]]
k=0

) o0 —kTs  —(k+1)Ts
= S e(KT)LI(t - KT) - 1(t - (k+ D)D) = 3 (kD) e _ DT ]

k=0 k=0 8 5

00 —kT's —(k s [e=] —Ts —Ts oo
= S 2(kT)- o — e Ts 3 2 (kT L= ehrs 1€ S a(kT)e *Ts

k=0 k=0 k=0

Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

C[R()] = L[> x(KT)[1(t - KT) - 1(t - (k+1)T)]]

k=0 o0 e—kTs  o—(k+1)Ts

z(KT)L[1(t - KT) - 1(t - (k4+1)T)] = Z z(kT)[ - ]

0 k=0 8 8

C —kT's —(k+1)Ts 00 —~Ts -Ts o0

.’I‘(k‘T)e e e‘ ) = Z m(kT)ie_kTS — 17; Z x(k’T)e_kTS
s k=0 8 5 k=0

T
gk

e

gk

k

Il
=}

o0

S a(kT)5(t — kT)

k=0

o0
= > z(kT)e *Ts
k=0

- X(s)=L

_Ts oo _ —TIs
CHE) = L] =T Y a(kT)e T = ()
k=0
=» Thus, giving the transfer function as:
H(: 1—eTs
GzoH(s) = ng = 2| Guon(x) =

(1 - e_aT)
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Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e”* cos(bt) U(t) (U(t) = unit step)
+ sample:  y(kT) = r* cos(k8) U(ET) with r = e T & § =0T

1 z 1 z

2 (z — rei?) *3 (z —re—d¥)
z(z —rcosf)

T (z—rei?)(z — re—i?)

* transform: Y'(z) =

Im(z)A
* e.g. yi is the pulse response of G(z): ) .
z(z — rcosf) '
G(z) = X
) (z —rei?)(z — re—i¥) / ror
[ z=rel® ﬁé;—.‘g—e—]b Re(z)
poles: { it !
zeros: { 7~ 0 *
' { z =rcost
Response of 2nd order system [1/3]
Responses for varying r: 1
r=0.7
oor<l 05y 6=m/4]
+ of ) e ——
exponentially decaying T T
envelope 05 2 2 6 8 10
sample k
Bor=1 U — -

A
- ~
0.5 \
+
= Of

sinusoidal response

. r=1.0
with 27 /6 samples o5t e
. ) P #=m/4
per period 4 . e . .
0 2 4 6 8 10
sample k
= r>1 10
A
N N ) 5 A \
exponentially increasing - \
P N
envelope of T r=13%
-
e 6=m/4
0 2 4 6 8 10
sample k
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Response of 2nd order system [2/3]

1
1

Responses for varying 8:

r=0.7
e #=0 > 05} T =0
W w““”""«#._,__r__"
decaying exponential 0 ‘ ‘ ]
0 2 4 6 8 10
sample k
1% w
. -/ \
b O=m/2 \ r=0.7
l 031 0=mn/2]

27 /0 = 4 samples - ok \ . /K\P
per period -
70.50 - .

-t

2 4 3 8 10
sample k
=3 f=m ! I
05F *
A \ / .
. . \ / e ;
2 samples per period = o/ \/\\4/' B
\ / r=0.7
—05F
¥ f=m
- L
4] 2 8 10

sample k

Response of 2nd order system [3/3]

Some special cases:

r»  for # =0, Y (z) simplifies to:

Y(z) =
— exponentially decaying response

> whenf#=0and r=1:

— unit step

> when r =0:

— unit pulse

> whenf=0and -1 <r<0:

samples of alternating signs
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2" Order System Specifications

Characterizjng the step response:

> ' 1%

e o
0.1
* Risetime (10% - 90%): i~ 18  Steady state error to unit step:
wo
e~ TE €ss
. Overshoot; Mp*= S +  Phase margin:
46 ¢pyp = 100¢

+ Settling time (to 1%): ¢, =
Cwo

2" Order System Specifications

Characterizing the step response:

_ 1%
[ o
L/ \_ﬁ.{:-_.-_—:— _____ T

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 , o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:<co1
» Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F (2)}
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2" Order System Response

T T

0.8F

0.6F

0.4+

0.2r

b

e

—

s

 Response of a 2" order system to increasing levels of damping:
2

(=0
0.2 o

plane

The z-plane [ for all pole systems |

[Adapted from Franklin, Powell and Emami-Naeini]

» We can understand system response by pole location in the z-

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)

36



Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAN NN N

VVVVVVI[ VY™™

Re(z)
Pole positions in the z-plane
« Poles inside the unit circle
are stable
Im(z)

« Poles on the unit circle
are oscillatory

Poles outside the unit circle -
unstable W
_~

Real polesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

Lower apparent damping
for larer and r
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Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — {2

Img(z) &

. 08
08% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T B e e e R - Ny s
04 ot il P AT e L N

L) A Vg AN
02 i e L PSRN A RN
0 [~ . : : \\

-1.b -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1\0
[Adapted from Franklin, Powell and Emami-Naeini]

Ex: System Specifications = Control Design [ /4]

Design a controller for a system with:
« A continuous transfer function: & (s) =
» A discrete ZOH sampler
« Sampling time (T,): T,=1s
+ Controller:
UL = —O.5uk71 + 13 (ek - 0.886]{:71)

0.1
s(s+0.1)

The closed loop system is required to have:
« M, <16%

 t,<10s

¢ eSS< 1
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Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G/(s) plus the ZOH

¥ e Uy | ) ) 3L 0)) y
o o P e L g [
- i G@) i

G(z)=(1— 271)2{@} - e I)Z{ .92(,40—;—10.1)}

e.g. look up Z{a/s*(s +a)} in tables:

(= —1) z((().l —14+e 0 (1 — e — 0.1670'1))
z 0.1(z—1)2(z — e 01)

0.0484(= + 0.9672)

T (2= 1)(z = 0.9048)

G(z) =

(b) Find the controller transfer function (using = = shift operator):

Ulz) (1-088z"1) 13z = 088)
E(z) (14+0.5271) 77 (24+0.5)

=D(z)=13

Ex: System Specifications = Control Design [3/4]

2. Check the steady state error e, when 7, = unit ramp

ess = lim ep = lim (2 — 1)E(z)
k— oo z—1

R E U Y Ez) __ LI
4_'_5?—‘ D(z) G(2) » R(z) 1+ D(2)G(»)
- Tz
R(z) = (z—1)2
Tz 1 T
s = li z—1 = lim
0 ess = limq( )(; 121+ D(z)c:(;)} 2GS 1D)D(R)GR)
= lim
21 . 0.0484(z + 0.9672) @ |
z — - <] 8F-
(==1) (z—1)(z — U‘D(MS)D(U g
3 of-
_ oo 0 g |
0.0484(1 + 0.9672)D(1) >
= o
—> ess <1 (as required) ©
0
0

5
Time (sec)
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Ex: System Specifications = Control Design [4/4]

3. Step response: overshoot M, < 16% == (¢ > 0.5
settling time ts <10 = |z| < 0.011/19 = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
(2 —0.88) 0.0484(z + 0.9672)
1+13 . - - =0
T T05) (2= 1)(z — 0.0048)
= 2z = 0.88, —0.050 £ 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and

v P =031, 6=1.73
2= —0.050 4 j0.304 = ret?  — { i -

¢ =056
° N S RN S S N
5 ‘ I
£ : H
g e :
> N
=] 7
S : -
3 -4 all specs satisfied!
5 6 8 9 10
Time (sec)

Convolution

ELEC 3004: Systems

24 March 2016 88

40



Convolution Definition

The convolution of two functions f,(t) and
f,(t) is defined as:

f(t) = j"‘; f,(x) f,(t—1)dr

= 1:1 (H)* fz (t)

Properties of Convolution

f1 (t) * fz (t) — fz (t) * fl (t)
LO* M= f@Lt-7d=]" f()f,¢-x)0dr
IR AR A S () R

—_ I :” f,(t—1)f,(7)dt
[ Lt-9 5@ = LO* L0

Source: URI ELE436
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Convolution & Properties

£1(8) * folt) = fm 1) falt — 7) dr

Properties:
« Commutative: f;(t)«fo(t) = fo(t)* f1(t)
» Distributive: £, (t) « [2(t) + fa(t)] = f1(¢) * fo(t) + f1(2) * f(t)

* ASSOCIAlVE: () x [£2(t) x f3(t)] = [£1(2) * F2(t)] * f3(2)
* Shift:

if f,()*f,(t)=c(t), then f,(t-T)*f,(t)= f,()*,(t-T)=c(t-T)
+ Identity (Convolution with an Impulse):

F) 66 = 7O
+ Total Width:

Based on Lathi, SPLS, Sec 2.4-1

Convolution & Properties [lI]

« Convolution systems are linear:
h# (g + Bus) = alh *uy) + B(h *ua)

 Convolution systems are causal: the output y(t) at time t
depends only on past inputs

 Convolution systems are time-invariant
(if we shift the signal, the output similarly shifts)

- 0 t <1
-> u(t) = { Wt —T) t>0

. [0 t<T
yt) = { y(t—1) t>0




Convolution & Properties [lII]

« Composition of convolution systems corresponds to:
— multiplication of transfer functions
— convolution of impulse responses

composition

w BA Yy

* Thus:
— We can manipulate block diagrams with transfer functions as if
they were simple gains
— convolution systems commute with each other

Convolution & Systems

+ Convolution system with input u (u(t) = 0, t <0) and output y:

y(t) = /l h{m)u(t — ) dr = /t h(t — T)u(T) dr
Jo Jo

« abbreviated:

y=nh=xu
* in the frequency domain:

Y(s)= H(s)U(s)
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Convolution & Feedback

* |In the time domain:

* In the frequency domain:
— Y=G(U-Y)
=Y (s) = H(s)U(s) N G(s)

Graphical Understanding of Convolution

= For c(z)=U+am— [ fgt-ryar :

1. Keep the function f (z) fixed

2. Flip (invert) the function g(r) about the vertical axis (t=0)
= thisis g(-7)

3. Shift this frame (g(-7)) along t (horizontal axis) by t,.
= this is g(t,-7)

=>» For c(ty):
4. c(ty) = the area under the product of f (z) and g(t, -7)

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.
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Another (Better) View

e.g. convolution

x(nN)=12345
h(n)=321
x(kly 0012345 0012345 0012345
h(nk) 1230000 0123000 00123|00 h(n-k)
y(n,k) ﬂ 26\ 14@
y(n) 3 8 14

™

\ I / Notice the
gain

Sum over all k

Matrix Formulation of Convolution

Hx

<
I

S

Il
O O O ©O O O k-
O O O O O Fr N
O O O O Fr NN W
O O O Fr N W O
O O P N W O O
O P N W O O o
P N w O O O o
N W O O O o O
w O O O O o o

T
O O o0 M W NP O O

Toeplitz Matrix
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Next Time...

« DTFT

— Then DT-FFT!
* Then DT-FFTW!

* Review:

— Chapter 10 of Lathi

* FFT-W: Is itreally the Fastest FFT in the West?
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