

e Sch	edul	e:	
Week	Date	Lecture Title	
1	29-Feb	Introduction	
1	3-Mar	Systems Overview	
2	7-Mar	Systems as Maps & Signals as Vectors	
2	10-Mar	Data Acquisition & Sampling	
2	14-Mar	Sampling Theory	
5	17-Mar	Antialiasing Filters	
	21-Mar	Discrete System Analysis	
4	24-Mar	z-Transform	
	28-Mar	TT 1'1	
	31-Mar	Holiday	
6	11-Apr	Digital Filters	
0	14-Apr	Digital Filters	
7	18-Apr	Digital Windows	
'	21-Apr	FFT	
8	25-Apr	Holiday	
Ŭ	28-Apr	Feedback	
9	3-May	Introduction to Feedback Control	
	5-May	Servoregulation/PID	
10	9-May	Introduction to (Digital) Control	
10	12-May	Digitial Control	
11	16-May	Digital Control Design	
	19-May	Stability	
12	23-May	Digital Control Systems: Shaping the Dynamic Response & Estimation	
	26-May	Applications in Industry	
13	30-May	System Identification & Information Theory	
	31-May	Summary and Course Review	

	Announcements	+ Add
PULL	Equation Editors & Tips! 3/23/16 12:55 PM To post a response to a question asked A friendly reminder that, as noted in cla editing interfaces that may make LaTeX help with entering equations (such as 4 Some links/tips that may (or may not) h List of Formula Editors: Available for m (e.g., LaTeX4technics, MathMagic, Equ Matlab will export symbolic equations and There are many introductions and onlin Tutorial and Table Generator For inserting some quick symbols – try	Edit Delete by email ss, there are many equation (entry easier to learn and/or may k×4 matrices). help: hany platforms and in many styles latX, EQ Editor, etc.) ss LaTeX via the latex command he generator tools e.g., LaTeX- y Unicode.
SCHOOL FOR THE GIFTED	I find Unicode Lookup and Unicode characters and corresponding Thanks! View on Piazza	LaTeX math mode page helpful.

The z -Transform	
• It is defined by:	
$z = re^{j\omega}$	
• Or in the Laplace domain (often $r = 1$): $z = re^{sT}$	
• That is \rightarrow it is a discrete version of the Laplace: $f(kT) = e^{-akT} \Rightarrow Z\{f(k)\} = \frac{Z}{Z - e^{-aT}}$	
ELEC 3004: Systems	24 March 2016 14

<text><text><text><equation-block><text><section-header><equation-block><equation-block><text>

<text><text><equation-block><text><text><text><text><text><text><text><equation-block>

 The <i>z</i>-Transform [9] In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the <i>z</i>-transform of your functions 				
	F (s)	F(kt)	F(z)	
	$\frac{1}{s}$	1	$\frac{z}{z-1}$	
	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$	
	$\frac{1}{s+a}$	e ^{-akT}	$\frac{z}{z - e^{-aT}}$	
	$\frac{1}{(s+a)^2}$	kTe ^{-akT}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$	
	$\frac{1}{s^2 + a^2}$	sin(akT)	$\frac{z \sin aT}{z^2 - (2 \cos aT)z + 1}$	
ELEC 3004: Sys	tems			24 March 2016 22

Region of Convergence

• For the convergence of X(z) we require that

 $\sum_{n=1}^{\infty} \left| a z^{-1} \right|^n < \infty$

• Thus, the ROC is the range of values of z for which $|az^{-1}| < 1$ or, equivalently, |z| > |a|. Then

An example! • Back to our difference equation: y(k) = x(k) + Ax(k-1) - By(k-1)becomes $Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)$ (z + B)Y(z) = (z + A)X(z)which yields the transfer function: $\frac{Y(z)}{X(z)} = \frac{z + A}{z + B}$ Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

ELEC 3004: Systems

24 March 2016 **32**

(ZOH)=??? : Wh	nat is it?
$\frac{1-e^{-Ts}}{Ts}$	$\frac{1-e^{-Ts}}{s}$
<complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof!
ELEC 3004: Systems	24 March 2016 44

Transfer function of Zero-order-hold (ZOH)
... Continuing the
$$\mathcal{L}$$
 of h(t) ...
 $\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t-kT) - 1(t-(k+1)T)]]$
 $= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT) - 1(t-(k+1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$
 $= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\rightarrow X(s) = \mathcal{L}\left[\sum_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\therefore H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s)$
 \Rightarrow Thus, giving the transfer function as:
 $\left[G_{ZOH}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s}\right] \xrightarrow{Z} \left[G_{ZOH}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}}\right]$

Г

Relationship with s-plane poles and z-plane			
transforms			
If $F(s)$ has a pole at $s = a$	$\mathcal{F}(s)$	f(kT)	F(z)
then $F(z)$ has a pole at $z = e^{aT}$	1	1(kT)	<u>z</u>
\uparrow	$\frac{1}{s^2}$	kT	$\frac{z-1}{Tz}$ $\frac{Tz}{(z-1)^2}$
consistent with $z = e$	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z - e^{-aT}}$
What about transfer functions?	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
$G(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$	$\frac{a}{s(s+a)}$	$1 - e^{-akT}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
↓ ↓	$\frac{b-1}{(s+a)(s+b)}$	$e^{-akT} - e^{-bkT}$	$-\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
If $G(s)$ has poles $s = a_i$ then $G(z)$ has poles $z = e^{a_i T}$	$\frac{a}{s^2 + a^2}$	$\sin akT$	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$
but the zeros are unrelated	$\frac{b}{(s+a)^2+b^2}$	$e^{-akT}\sin bkT$	$\frac{ze^{-aT}\sin bT}{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$
ELEC 3004: Systems			24 March 2016 58

Discrete-Time System Analysis

ELEC 3004: Systems

24 March 2016 60

£(ZOH)=??? : ₩h	nat is it?
$\frac{1 - e^{-Ts}}{Ts}$	$\frac{1 - e^{-Ts}}{s}$
<complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof!
ELEC 3004: Systems	24 March 2016 67

$$\begin{array}{c} \begin{array}{c} \hline \text{Transfer function of Zero-order-hold (ZOH)} \\ \dots & \text{Continuing the } \mathcal{L} \text{ of } h(t) \dots \\ \mathcal{L}[h(t)] = \mathcal{L}[\sum\limits_{k=0}^{\infty} x(kT)[1(t-kT)-1(t-(k+1)T)]] \\ = \sum\limits_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT)-1(t-(k+1)T)] = \sum\limits_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}] \\ = \sum\limits_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum\limits_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \rightarrow X(s) = \mathcal{L}\left[\sum\limits_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} \\ \therefore H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum\limits_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s) \\ \Rightarrow \text{ Thus, giving the transfer function as:} \\ \left[\mathcal{L}_{\text{ZOH}}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s} \right] \xrightarrow{\mathcal{Z}} \left[\mathcal{L}_{\text{ZOH}}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}} \right] \\ \end{array}$$

Ex: System Specifications \rightarrow Control Design [1/4] Design a controller for a system with: • A continuous transfer function: $G(s) = \frac{0.1}{s(s+0.1)}$ • A discrete ZOH sampler • Sampling time (T_s): T_s= 1s • Controller: $u_k = -0.5u_{k-1} + 13(e_k - 0.88e_{k-1})$ The closed loop system is required to have: • M_p < 16% • t_s < 10 s • e_{ss} < 1

