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Follow Along Reading:
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| B. P. Lathi

ssing

1998

and linear systems

Signal processing and SyStemS)

TK5102.9.0.38 1998 — §8.2 Some Useful Discrete-Time Signal Models

— Today

» Chapter 8 (Discrete-Time Signals

§ 8.1 Introduction

— 88.3 Sampling Continuous-Time
Sinusoids & Aliasing

—  88.4 Useful Signal Operations
— 88.5 Examples of Discrete-Time Systems

:» Chapter 11 (Discrete-Time System
:  Analysis Using the z-Transform)
— §11.1 The Z-Transform

— §11.2 Some Properties of the Z-
Transform
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Feedback on the Peer Review/Flagged Answers

Please Note
Q) «-17
+ Isan indicator in Platypus, that nothing was calculated.
» It does not effect grades at all (it’s treated as a NAN)
(2) Flag “serious and egregious” oversights in the marking
*  “why so low”, “give me mark plz”
is not an egregious oversight
(3) If a peer or tutor gave you a lower than expected mark, then it
might mean that you didn’t communicate it clearly to them.
» Ask your self how you can do better?
* Remember: “Seeing is forgetting the name ...”
(4) Keep in mind the big picture here
» Focus on the learning, not the marks
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Lecture Overview

* Course So Far: Transfer

ODE functions Convolution

Q O O

L: Laplace (s)

Z-Transfo

+ Lecture(s):

F: Fourier Series L>F:
Convolution (Periodic (E=0+i1) C: Poles & Zeros DFFT Z-Transform
functions) (R>C)




Complex Numbers and Phasors

Positive Frequency Y
component Ref
Rsin(O) R
Rcos(6) X
Re'” = (Rcosé, Rsin 6)
= Rcoséf+ JRsing
= R(cosé@+ jsinb)

Nyquist sampling theorem

What continuous signal is represented by a given set of samples?

Infinitely many continuous signals have the same discrete samples:

An answer is provided by Nyquist's sampling theorem:

A signal y(t) is uniquely defined by its samples y(kT') if the
sampling frequency is more than twice the bandwidth of y(t).




Nyquist sampling theorem [2]

Example — Sampled sinusoidal signal
Sample cos(wt) at frequency w. = 27/T"

y(t) = cos(wt) Sample, y(kT') = cos(kwTl') = cos(2mk w/w,)
Identical samples are obtained from a sinusoid with frequency ws — @w:

cos((ws — w)t) sample, s

(k(we —@)T) = cos(2mk — 2rk @ /w,)

= cos(27k w/w;)
p
e s MR
\ 7 AY AN
0.5 \\ " ‘\ J" ‘\ ] COS(Wt)
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v A ~
T N v K v cos((ws — @)t)
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The spectrum of y(kT') contains an alias at frequency w, — & !!

(a copy of the original signal y(t) shifted to a different frequency)

Nyquist sampling theorem

Example — Sampled sinusoidal signal

By the same argument, y(kT') contains an infinite number of aliases at
ws W, 2w £w, 3w Ew,...
(w)

spectrum
i N I I I I

Tt T
W= Wy WD  20—0 2

+—t — (1}
Dy 205t

The Nyquist sampling theorem requires ws > 2w

U

y(t) and alias spectra do not overlap

y(t) can be recovered without distortion from y(kT') (via low-pass filter)




Nonuniqueness of Discrete-Time Sinusoids [p. 553]
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Iy graphiznl artifice to determine the reduced frequency of a discrete-time

Complex Numbers and Phasors

Negative frequency Y
component
R cos(-6)
. 0
Rsin(-6) R X
| I— , .............. Re—w

Re )’ = (Rcos(-6), Rsin(-0))
= Rcos(—68) + JRsin(—6)
= R(cosé — jsinb)




Positive and Negative Frequencies

» Frequency is the derivative of phase
more nuanced than :

1
p = repetition rate

» Hence both positive and negative frequencies are possible.

« Compare
— velocity vs speed
— frequency vs repetition rate

Negative Frequency

* Q: What is negative frequency?
A: A mathematical convenience

Trigonometrical FS
— periodic signal is made up from
— sum 0 to « of sine and cosines ‘harmonics’

Complex Fourier Series & the Fourier Transform
— use exp(Fjwt) instead of cos(wt) and sin(wt)

— signal is sum from 0 to oo of exp(+jwt)

— same as sum -oo to oo of exp(—jwt)

— which is more compact (i.e., less LaT X!)




Linear Differential System Order

Q(Dy(t) = P(D)f(2)

Q(D)=D"+anaD" '+ +a1D +ap y(t)=P(D)/Q(D) f(t)
P(D)"—hmem"'bm——le_'l"'"‘+b1D+bo P(D) M

Q(D):N
« In practice: m<n (yes, N is deNominator)
wifm>n:

then the system is an
(m - n)th -order differentiator of high-frequency signals!

« Derivatives magnify noise!

Zero-Input | Zero-State

Total response = zero-input response + zero-state response

Zero Input Zero-State

» = The system response when < = the system response to the
the input f(t) = 0 so that it is external input f (t) when the
the result of internal system system is in zero state,

conditions (such as energy meaning the absence of all

storages, initial conditions) internal energy storages;

alone. that is, all initial conditions
« lItis independent of the are zero.

external input.




System Stability

Real =

stable

marginally stable —
Red=0

Fig. 2.15 Characteristic roots location and system stability.

Lathi, p. 149
System Stability [II]
Characterisic Root Characterisic Root
Location Zero-Input Response Location Zero-Input Response
" I o T l Ol pe
(a) (b)
0 e . Mz\_’
{©) (d)
Lathi, p. 150




System Stability [lll]

)

(&) h

Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.

Discrete-Time
Signal Analysls

ELEC 3004: Systems 21 March 2016 20
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Discrete-Time Signal: f[k]

SLk1} or f{kT)

”U HH!HTI%H::&

1 i

-2T T 5T 10T [

* Discrete-time signal:
— May be denoted by f(kT), where time t values are specified at t = KT
— OR f[k] and viewed as a function of k (k € integer)

+ Continuous-time exponential:
s f(t) = et sampledat T=0.1=> f(kT) = e ¥ = =01k

Why e T ?
« Solution to First-Order ODE!
* Ex: “Tank” Fill
« Where: IhT !
» H=steady-state fluid height in the tank H
* h=height perturbation from the nominal vaIueL g

» Q=steady-state flow rate through the tank
+ g;=inflow perturbation from the nominal value
* (y=outflow perturbation from the nominal value

Goal: Maintain H by adjusting Q.




Why e ¥T ? 2]

h = Rq,

dc(h+H) oy
— = @+0Q) — (g0 + Q) 1% |,

dh  h_a b o

dt T C H

T=RC I -
Solution:

t-tg 1.t =4
* h(t) =e * h(ty) +Eftoe © q;(D)dA
For a fixed period of time (T) and steps k=0,1,2,...:
-T T
e h(k+1) = e7h(k) +Rl1 — =l q,(00)

So Why Is this a Concern? Difference equations

Difference equations arise in problems where the independent variable, usually
time, is assumed to have a discrete set of possible values. The nonlinear differ-
ence equation

vk +n)=flyk+n—1), vk+n—2), ..., vk+1), vk), u(k +n),

(2.1)
uk+n—1), ..., wk+1), uk)

with forcing function u(k) is said to be of order n because the difference between
the highest and lowest time arguments of y(.) and u(.) is n. The equations we deal
with in this text are almost exclusively linear and are of the form
vik+n)+a,—ppk+n—1)+ -« +ayvk+ 1) +apyk)

=bulk+n)+b, qulk+n—1)+ --- + bjulk + 1)+ byu(k)
We further assume that the coefficients a;, b, i=0, 1, 2, ..., are constant. The
difference equation is then referred to as linear time invariant, or LTL If the forcing
function u(k) is equal to zero, the equation is said to be homogeneous.

Difference equations can be solved using classical methods analogous to those
available for differential equations. Alternatively, z-transforms provide a convenient
approach for solving LTI equations, as discussed in the next section.

12



Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1) —x(k)
T

IR

X

X(terq) /Z

 AsT — 0, approximation
error approaches 0

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

Difference Equation: Euler’s approximation

d_x:hmw — dr  @eq —ak

dt ~ st—0 5t dat T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

e.g.
D(s) = ;E; - I‘(i”:b‘)‘) = % +bu= K(% + ae)
2. Differential equation — difference equation
e.g.
7%“,1; U 4 by = K(;‘HIT_ LI Ck)

= upt1 = (1 = bNup + Kepyr + K(al — 1)ep

= —ajukr + boers1 + biex

13



Difference Equation: Euler’s approximation [2]

Discrete controller recurrence equation:

UL = —aUp_| — AolUj_o — ...+ bger + bjep_1 + ... ‘

coefficients ai,as,...,

Example
Controller:  D(s) = %
8
1
Plant: G(S) = m

@ Step response with continuous controller:

bo,bi, ... depend on T

15

E T
ERRI S
Eost / 1
o /

0 " 1 1 L 1 L

0 0.5 1 15 2 25 3

Time (sec)

K=70,a=2rads™ !, b=10rads™!

Difference Equation: Euler’s approximation [3]

@ Step responses with discrete controller:

04 0.6
Time (sec)

0.4 06
Time (sec)

158 1.5
> = e
s 4l s 4 e e
a [=%
=] g 7
2 2 /
505 1T =80Hz - 5 05F y 1T=20Hz
T i
0 . . . . Dl . . .
0 02 4 0. 08 0 0.2 X 08 1
Time (sec) Time (sec)
15 T T T T 15 T T T
- ‘_Sﬁnj.‘m_m - P mon— S _
- 2 e - A e —
a 1r — ] 2 1t /,. ,/ e
3 3
1] € /
505 1T =40 Hz - 1T =10 Hz
o o e
0 . \ 0 = \ \ ) )
0 02 08 0.2 0.8 1
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Difference Equation: Euler’s approximation [4]

At high enough sample rates Euler’s approximation works well:

« discrete controller = continuous controller

But if sampling is not fast enough the approximation is poor:
1
T > 30 X [System Bandwidth]

Works, but Not Efficient (n)

Later (May) We consider:
— better ways of representing continuous systems in discrete-time
— ways of analysing discrete controllers directly

Linear Differential Systems

d"y dn—iy dy
e + an-1 21 +-- 4+ al'&? + agy(t) =
dmf dm—lf df
bmm‘i'bm_,lzm—_r ++b]£ +b0f(t) (213)

where all the coefficients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(D" + @n-1D™ 1+ +a1D +ag)y(t)

= (bmD™ + b1 D™ Vo £ 51D +bo) f(2)  (2.1D)
or

Q(D)y(t) = P(D)f(t) (2.1c)

where the polynomials Q(D) and P(D) are
QD)=D"+an D" 14 -+ a;D+ag (2.2a)
P(D)=bpD™ + by D™ L 01D +bg (2.2b)

15



Discrete-Time Impulse Function §[k]

8 k]

{8}

e

LR -

B (k-m)

——

The discrete-time counterpart of the continuous-time impulse function 6{¢) i=

§[k], defined by oo
1 =
ti={y 70 (82

This function, also called the unit impulse sequence, is shown in Fig. 8.3a. The time-
shifted impulse sequence &[k—m] is depicted in Fig. 8.3b. Unlike its continuous-time
counterpart &(£), this is a very simple function without any mystery.

Later, we shall express an arbitrary input f{k] in terms of impulse components.
The {zero-state) system response to input f[k] can then be obtained a3 the sum of

system responses to impulse components of f[k].

Discrete-Time Unit Step Function u[k]

defined by

(4] = 1 for k=0
HE = 0 for k<0

we need only multiply the signal with «[&].

The discrete-time counterpart of the unit step function u(t) is u[k] (Fig. §4),

(8:2)

If we want a signal to start at k = 0 (3o that it has & zero value for all k < 0),

16



Discrete-Time Exponential y*

(@ (b)

ELEC 3004: Systems 2| March 2016 33

Discrete-Time Exponential y*

o oM = yk

e y=etori=Iny

®)

« In discrete-time systems, unlike the continuous-time case,
the form y* proves more convenient than the form e?¥

Why?

« Consider e/ (1 = jQ .. constant amplitude oscillatory)
o D Yk fory = /@

o e/ =1, hence |y| =1

ELEC 3004: Systems 2| March 2016 34
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Discrete-Time Exponential y*

)

Consider et*

When A: LHP

Then

y=e’

Yy = e/'L — e0tjb — papjb

|)/| — |eaejb| = |e?| .'.|ejb| =1

Discrete-Time

System Analysis

ELEC 3004: Systems

21 March 2016 36
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Simple Controller Goes Digital

d; (+ | controller — plant dy

I— sensor

= |

T
—————————p ; = desiredFront

» I, = distanceFront

s

plant:  y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]

Complex system behaviors, depending on K

Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = KT

r)! + S e(KT)  bifference |U(KT) l u(t)> y(t)>

H(s)

r(kT) % equations

y(kT) O\O |

sampler |

>
O
O

A

controller

19



Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = KT

r(t)! + ek u(kT) 14 0
o P G s = o [T

1 r(kT) ’ . :
|
. T ;
: Ly |
|
: KT l |
' YD) ADC [¢ O "o :
: sampler |
________ controlier ~~ "~~~ 7"

Return to the discrete domain

« Recall that continuous signals can be represented by a
series of samples with period T

X T x(kT)

—

AT T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

20



Zero Order Hold

» An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Effect of ZOH Sampling

Lower sample rate ==  more oscillatory response

— Why?
Sampling and reconstruction introduces:

delay in time domain
& phase lag in freq. domain <+ can destabilize the closed loop system

On average u(kT) is delayed by T'/2 relative to u(t) due to the ZOH:

“4 12
4 - ZOH output
/, // = =
e NN u(t)
Vi ,/ \'\\ ™ /

/] g (13
a7 . . v 3T fundamental component
0 T 2T “&— "+ of ZOH output

21



Effect of ZOH Sampling

The ZOH delay of T'/2 (sec) causes
phase lag = wT/2 (rad) at w rads™!
phase lag = /2 =90°  at w = «/T [= Nyquist rate]
phase lag = 7/30 =6°  at w = 7/(15T)

+ 90° phase lag could be catastrophic

x M wamp > 30 X Wnax,

then system bandwidth: wmax < 7/(157),

so the maximum phase lag is less than 6°

usually safe to ignore

* Any time needed to compute u; causes additional delay (!)

Properties of the ROC

=>» The ROC is always defined by circles

centered around the origin.

Rh[k]r—* is absolutely summable, where + = |z|.

=»Right-sided signals have “outsided” ROCs.

if 3ng such that h[n] = 0 ¥n < ng, then if 7o € ROC, then ¥r with
rog < r < oc are also in the ROC.

=>» Left-sided signals have “insided” ROCs.

(with Vr within 0<r<r)

22



Region of Convergence (ROC) Plots

O e =

Hn
a=.5 a

ELEC 3004: Systems 2| March 2016 45

=12

Combinations of Signals

. ba™ >0 {0 n>0
T = n| =
o 0 n<o0 2 —ba™ n<0

a=.5

ROC for aqy1[n] + asya[n]

ELEC 3004: Systems 2| March 2016 46
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Back to the future

A quick note on causality:
* Calculating the “(k+1)th” value of a signal using
y(k+1) =x(k+ 1)+ Ax(k) — By(k)
future value curren{ values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

* Real systems always run with a delay:
y(k) =x(k) + Ax(k — 1) — By(k — 1)

Symbol z-plane
EEES =1 - .
{1'..i1 cirele (bj
0o z=r21
a= QOO0 z=r,0<r<1
5= —(ua+jon/1-(7  LAA z=relfwhere v = exp(—(waT)
[ =-a+jb =g ol
a nT /1 1
| Constant damping ratio Logarithmic spiral
if ¢ is fixed and wy
varies
s=%j(7[T) + 0,0 0 ~~rrmmmmnn

24



S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s=0 4+ jw
o = constanjt S I
I z =
|z| = ¢”T = constant
Alm(s)
0 : I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)

24 Cwos + wd=0

4 0
s =—Cwo£j/1—(Cwo %0 'Re(s)
cosl = ¢

=05 Alm(s)

C=0.7 -

C=05
s = —C(wo + j\/1 — (2wp: ¢ = constant 2 = e~SwoT =i/ 1=¢PwoT




Relationship with s-plane poles and z-plane
transforms

If F'(s) has a poleat s =a F(s) FRT) F(2)
then F(z) has a pole at z = ¢"? -
- (kT
s z—1
L kT ( I"l)_.,
consistent with z = ¢*? ; N
1 e—akT z
s+ a z—e-al
m. . —aT
1 i kT e akT _ I'z i
. (s+a)? (z —e—aT)2
What about transfer functions?
2(1 —e™2T)
] G(s “ 1 —e akT 2 =er)
(;(z):(l—z*')z{—' ( )} s(s +a) ' (z = 1)(z —eaT)
S
b—1 —akT —bkT (e T _ et )z
= . e
+ (s+a)(s+b) (z— e aT)(z — e~ bT)
If GG(s) has poles s = a; a kT zsinal
then G(z) has poles z = e’ §% 4 a? e 22 — (2cosal)z + 1
[). . —akT G b T . ,tz.‘ '”Txirlw‘[)"." _
but the zeros are unrelated (s +a)2+ b2 z2 2e=T(cos bT)z + e—2aT

s — Z: Pulse Transfer Function Models

E(z) U(z) = D(z) E(z)
D(z)
e(kT) ? u(kT) =7
 Pulse in Discrete is equivalent to Dirac-6

1 fork=0
€k =
0 fork =10

o RE O e PO

> G2
60 = -z (F2) e a-ra{fR

t=kT

Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26
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z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

yln] = ay[n — 1] + bu[n]

h. [-n.: h, n]
n n
nooa s
hin] = ba™ n > O,l
) 0 otherwise.
~_1‘ k_—k _ - ak _ b .
H(J}fzba.& —bz(;) —m when |.:, >|C€‘

k=0 k=0

z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

yln] = ayln — 1] + buln]

y[n] — ay[n — 1] = bu|n]

A

-+

Y (2) —az" 'V (2) = bU(z)

=~ — — 1 !?
H(z) 002 ——> When does it converge*

27



Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

So, all those block diagram manipulation tools you know and love

will work just the same!

Next Time...

e z-Transforms!

* Review:
— Chapter 11 of Lathi

« Lower Sampling Rate means More Oscillation ®

@/
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