http://elec3004.com
March 17, 2016

Week	Date	Lecture Title
1	29-Feb	Introduction
	3-Mar	Systems Overview
2	7-Mar	Systems as Maps & Signals as Vectors
	10-Mar	Data Acquisition & Sampling
•	14-Mar	Sampling Theory
3	17-Mar	Antialiasing Filters
	21-Mar	Discrete System Analysis
4	24-Mar	Convolution Review
	28-Mar	** 17.1
	31-Mar	Holiday
6	11-Apr	Digital Filters
0	14-Apr	Digital Filters
7	18-Apr	Digital Windows
'	21-Apr	FFT
0	25-Apr	Holiday
0	28-Apr	Feedback
0	3-May	Introduction to Feedback Control
9	5-May	Servoregulation/PID
10	9-May	Introduction to (Digital) Control
10	12-May	Digitial Control
11	16-May	Digital Control Design
11	19-May	Stability
12	23-May	Digital Control Systems: Shaping the Dynamic Response & Estimation
12	26-May	Applications in Industry
12	30-May	System Identification & Information Theory
15	31-May	Summary and Course Review

ELEC 3004: Systems

17 March 2016 4

Alliasing

• Aliasing - through sampling, two entirely different analog sinusoids take on the same "discrete time" identity

For $f[k] = \cos \Omega k$, $\Omega = \omega T$:

The period has to be less than F_h (highest frequency): $T \le \frac{1}{2\mathcal{F}_h}$

Thus: $0 \le \mathcal{F} \le \frac{\mathcal{F}_s}{2}$ ω_f : aliased frequency: $\omega T = \omega_f T + 2\pi m$

ELEC 3004: Systems

Sampling & Antialiasing

ELEC 3004: Systems

17 March 2016 17

RECONSTRUCTION

ELEC 3004: Systems

17 March 2016 27

Sampling and Reconstruction Theory and Practice

- Signal is bandlimited to bandwidth WB
 - Problem: real signals are not bandlimited
 - Therefore, require (non-ideal) anti-aliasing filter
- Signal multiplied by ideal impulse train
 - problems: sample pulses have finite width
 - and not \otimes in practice, but sample & hold circuit
- Samples discrete-time, continuous valued
 - Problem: require discrete values for DSP
 - Therefore, require A/D converter (quantisation)
- Ideal lowpass reconstruction ('sinc' interpolation)
 - problems: ideal lowpass filter not available
 - Therefore, use D/A converter and practical lowpass filter

Practical Reconstruction	
 Digital to analogue converter (D/A) zero order hold filter produces 'staircase' analogue output Reconstruction filter 	
 non-ideal filter: w_c = w_s/2 further reduces replica spectrums usually 4th - 6th order e.g., Butterworth for acceptable phase response 	
ELEC 3004: Systems	17 March 2016 42

D/A Converter

- convolution of output samples $y(n\Delta t)$ with $h_{ZOH}(t)$

$$y(t) = \sum_{n} y(n\Delta t)h_{ZOH}(t - n\Delta t)$$
$$h_{ZOH}(t) = \begin{cases} 1, & 0 \le t < \Delta t \\ 0, & \text{otherwise} \end{cases}$$

$$H_{ZOH}(w) = \Delta t \exp\left(\frac{-jw\Delta t}{2}\right) \frac{\sin(w\Delta t/2)}{w\Delta t/2}$$

D/A is lowpass filter with sinc type frequency response It does not completely remove the replica spectrums Therefore, additional reconstruction filter required

ELEC 3004: Systems

Summary	
 Theoretical model of Sampling bandlimited signal (wB) multiplication by ideal impulse train (ws > 2v convolution of frequency spectrums (creates repli Ideal lowpass filter to remove replica spectru wc = ws /2 Sinc interpolation Practical systems Anti-aliasing filter (wc < ws /2) A/D (S/H and quantisation) D/A (ZOH) Reconstruction filter (wc = ws /2) 	wB) cas) ms Don't confuse theory and practice!
ELEC 3004: Systems	17 March 2016 44

Summary

- bandlimited signal (wB)
- multiplication by ideal impulse train (ws > 2wB)
 - convolution of frequency spectrums (creates replicas)
- Ideal lowpass filter to remove replica spectrums
 - wc = ws /2
 - Sinc interpolation
- Practical systems
 - Anti-aliasing filter (wc < ws /2)
 - A/D (S/H and quantisation)
 - D/A (ZOH)

ELEC 3004: Systems

- Reconstruction filter (wc = ws /2)

Don't confuse theory and practice!

Next Time... • Digital Systems • Review: • Chapter 8 of Lathi • A signal has many signals © [Unless it's bandlimited. Then there is the one ω]