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Signal: A carrier of (desired) information [1]

A NeedNOT be electrical:

A Thermometer
A Clock hands
A Automobile speedometer

A NeedNOT always being given

TAAbnor mal 6 sounds/ operatio

TEx: Apitcho or Aengine
indicator for feeds and speeds

h um

Signal: A carrier of (desired) information [2]

A Electrical signals
T Voltage
T Current

A Digital signals

T Convert analog electrical signals to an appropriate
digital electrical message

T Processing by a microcontroller or microprocessor




Transduction (sensor to an electrical signal)
A Sensor reacts to environment (physics)

A Turnthis into an electrical signal:
i V: voltage source
I I: currentsource

A Measure this signal
i Resistance
i Capacitance
i Inductance
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Note: this picture illustrates the concepts but it is not quantitatively precise
Source: Prof. M. Siegel. CML)

NOT S €. ouUnwantedo SI gn
Carrying Errant Information

A Crosscoupled measurements

A Crosstalk (at a restaurant or even a lecture)
A A bright sunny day obstructing picture subject
A Strong radio station near weak one

A observatiorto-observation variation
I Measurement fluctuates (ex: student)
T Instrument fluctuates (ex: quiz!)

A Unanticipated effects / variatio émperaturp
AOne manés noise might be a




Noise: Fundamental Natural Sources

A Voltage (EMF)i Capacitive & Inductive Pickup

A Johnson Noisé thermal / Brownian

A 1fWv; =4k TR

A Shot noiseiftervakto-interval statistical count)

aV?2
Vi=y\~n7f

Digital
Signals & Systems

Why?
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Digital Signal

A Representation of a signal against a discrete set

A The set is fixed in by computing hardware

s E 7, |
ACan be scaled or normalize

s € 7(0,...,210)

A Time is also discretized

7.(0,...,219)
216

s e

Analog vs Digital

A Analog Signal An analog or analogue signal is any
variable signatontinuousin both time and

amplitude Q Q Q

A Digital Signat A digital signal is a signal that is both
discreteand quantized

E.g. Music stored in a
CD: 44,100 Samples
per second and 16 bits
to represent amplitude




Digital Systems

A Continuous:

()

Controller

Sensor

.............................................................

u(kT) 70 (1)
Controller » DAC — Plant
A I -
YKD [ Do
ADC [« Sensor
- y &
C Digital System§
Better SNR Better Processing
A We tradeoff A Digital microprocessorsarein a

v A ne . ] _rangeof objects, fronobvious €.g.
ficertainty in timed  fs@mal fi phone)to disposablde.g.Go cards).

noise/uncertaintyd (what doesnodot ha

Compared to antilog computing

A Analogb ti me r es dPY®i on
. L . . A" Accuracy: digital signals are usually
i Digital has fixed time steps represented using 12 bits or more.

Y A Reliability : The ALU is stable over
/\/\/\/ TL \‘ 7H | ! L t|me
dood A Flexibility : limited only
) _ _ programming ability!
A This avoidghe noise and A Cost advances in technology make

uncertainty in component values microcontrollers economicalven for

: small, low cost applications
that affect analogue signal (Raspberry Pi 3: US$35)

processing




SNR : Signal to Noise Ratio

V=Vs+Vp

Magnitude: V2 = V2 + V2 + ViVy,

S _ V2
N TV

— 2 rms
in dB: 10 log (?2) — 20log (%)

Data Acquisition




Representation of Signal

A Time Discretization

Coarse time discretization

D
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A Digitization

Coarse signal digitization
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Quantisation

A Analogue to digital converter (A/D)
I Calculates nearest binary numbexaDt)
A X[n] = q(x(nDt)), where q() is notinear roundingctn
i output modeled ag[n] = x(nDt) +€[n]
A Approximation process
i therefore, loss of information (unrecoverable)
I k n o wmnuaatsatiain o i )0
i error reduced as number of bits in A/D increased
A i.e., Dx, quantisatiorstep size reduces

Dx
efn] ¢ >




NPUEOUTPUT Tor ZDIt quantiser

_2A

2"-1
where A = max amplitude
m = no. quantisation bits

0111
0110
0101

(t woods compIDi'bit?gpent)

0100 !
y—'ﬁ
010 '

0001
0000
1111
-2/ 1110
-3 1101
-4 1100
-5 1011

-6 1010

-7 1000

|'_\OHI\)OOJ>O"ICD\J

Dx

guantisation
step size

Analogue

Signal to Quantisation Noise

A To estimate SQNR we assume
i €[n] is uncorrelated to signal and is a
i uniform random process

A assumptions not always correct!

A Al so known a O6pPynamic
I expressed in decibels (dB)
T ratio of power of largest signal to smallest (noise)

aI:)signal

R, = 10Iogm£D .

rangeo

I not the only assumptions we coul d

( R

ma
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Dynamic Range

Need to estimate:

1. Noise power
i uniform random proces®, .= Dx%/12

2. Signal power 1 extra bit halves Dx
T (at least) two possible assumptions i =
1 SinusoidalPoyue AY2 i.e., 20log10(1/2) = 6dB

2. zero mean Gaussian proceBg;., = s2
A Note: ass © A/3: Py, ® A%9
A wheres2 = variance, A = signal amplitude

Regardless of assumptions: R increases by 6dB
for every bit that is added to the quantiser

Derivativesmagnifynoisé

Asin(lowm o A 10cos(10m¢ e

1
us
of

A sin(107t) 4+ 0.1sir

>
~~
-
o

Ont) Ao cos(10xt) + 10cos L)

11



Sampling!

ELEC 3004Systems
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Not

t his typlk of sampl

SEMINAR REFRESHMENTS!

Catreine More Carbe
' Catreine  cugar  Sfraight CS.??
L for your YPp Sugar SUGBE  cormare

Caftfeine

Nothing says "We are confident this seminar will be intellectually

stimulating for you”like a table full of things to help you stay awake.

JORGE CHAM D 2013
WWW.PHDCOMICS.COM
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9 10 11 12 13

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png

Sampling Theorem

A TheNyquistcriterion states:

To prevent aliasing, bandlimitedsignal of bandwidthwg
rad/s must be sampled at a rate greater thagp /s

W, > 2Wg

Note: this is a > sign not a 2

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

13



Mathematics of Sampling and Reconstruction

sampling reconstruction
X() '?c(t) DSP Ideal y()
LPF
Impulse train Gain
d.(y= ad(t - nox)
[
"t 0 f. Freq

Sampling frequency f, = 1/

Cut-off frequency = f,

Mathematical Model of Sampling

A x(t) multiplied by impulse trainlT(t)

(1) =

(1) (t)
= x(t)[d(t) +d(t- Dt) +al(t- 2Dt)+? |
= a x(nDt)d(t - nDt)

A x(t) is a train of impulses of heightt)|.-,4

14



Continuous-time

2 T T T
1 T
//,—/—_;7 — - ///
E=—
1k \ _ ~ 7
—
_2 L L L ] ] ] L L
-10 8 -6 -4 -2 0 2 6 8 10
t
Discrete-time
2 T T T
(ONNG) ?
\p
oI T2 ® | ||

(1)

_2 L L L ] ] ] L L
-10 8 -6 -4 -2 0 2 6 8 10
t
Discrete Time Signal
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Discrete Time Signals

A Digitization helps beat the Noise!

Amplitude

15
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Signal Manipulations

A Shifting

y (n) =z (n—ng)
A Reversal

y(n) = z(—n)

A Time Scaling
(Down Sampling)

y(M) = z(Mn)

(Up Sampling)
n
n)=Ir\| —
v (1) (N)

Discrete Time Signals

A Can make control tricky!

) Figure 1

Fle Edt View Insert Tools Desktop Window Help

nsert  Tin
DeHSE aams (0B 8O0
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Discrete Time Signals

A Can make control tricky!

File Edit View Insert Tools Desktop Window Help

—ibixi

DSHES 3 RANs € 0B 20

Step Response

O

Nyquist Sampling Theorem ardiasing

Al A signal y(t) is uniquely defined by its samples y(kT) if the
sampling frequency is more than twice the bandwidth of y(t).

Plant output y

%--—4

5/ 1/T=40Hz
X 04 06

Plant output y

/ T =10Hz
E 0. 0.6




Sampling Theorem

A TheNyquistcriterion states:

To prevent aliasing, Bandlimitedsignal of bandwidthw
rad/s must be sampled at a rate greater thagp /s

I W, > 2wy

Note: this is a > sign not a 2

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

Time Domain Analysis of Sampling

A Frequency domain analysis of sampling is very useful to understand
T sampling (X(w)& dw - 2m/2) )
I reconstructionlpwpassfilter removes replicas)
T aliasing (ifwg ¢ 2wg)
A Time domain analysis can also illustrate the concepts
I sampling ssinewaveof increasing frequency
I sampling images of a rotating wheel

19



Original signal

Discrete-time samples

[ .
|

Reconstructed signal

A signal of the original frequency is reconstructed
U%
e

Original signal

Discrete-time samples

J;LL <Ll

Reconstructed signal

A signal with a reduced frequency is recovered, i.e., the signal is
aliased to a lower frequency (we recover a replica)

20



Sampling < NyquisfA Aliasing

15

signal

¥ [ True signal
—e— Aliased (under sampled) signal
-1.5 L L
0 5 10 15
time

Nygqui st I S not enough

1Hz Sin Wave: Sin@2pt)- 2 Hz Sampling
l T T T 7 T 7 T T T

T
]

Normalized magnitude
Q —
1

0.6

0.4 .

-021 ‘ | .
-0.41 | .
06 | | | “‘ | ‘: ] | | || .
08 ‘ ;‘ .

-1 L L L L L L
0 1 2 3 4 5 6 7

Time(s)
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A |little more than Nyaqg

1Hz Sin Wave: Sin@2pt)§] 4 Hz Sampling
T T

-2 -

0.8k
0.6- |
0.4

0.2

-0.2

Normalized magnitude
o

0.4

-0.6

-0.8

Time(s)

Frequency Domain Analysis of Sampling

A Consider the case where the DSP performs no filtering
operations
i i.e., only passes xc(t) to the reconstruction filter
A To understand we need to look at the frequency domain
A Sampling: we know
i multiplication in time! convolution in frequency
T FH{Xx(0} = X(w)
i F{dT(t)} = ad(w - 2pn/Dt),
i 1.e., an impulse train in the frequency domain

22



Frequency Domain Analysis of Sampling

A In the frequency domain we have

X_ (W) :i%((w)*ﬁa daag\,_ @8.8 Remember
convolution with
1. & 2mp an impulse?
ae} X?" o 0 Same idea for an
impulse train
Letds | ook at an examp

A where X(w) is triangular function
A with maximum frequency w,, rad/s

A being sampled by an impulse train, of
frequency w, rad/s

Sampling Frequency

A In this example it was possible to recover the original sign
from the discretéime samples

A But is this always the case?

A Consider an example where the sampling frequendy
reduced

T i.e.,Dt isincreased

23



Fourier transform of original SIgNe(y )

(signal spectruin

Fourier transform of impulse train d(w/2p) (sampling signal)

FL8-(0]

w, = 2p/Dt

0
Fourier transform of sampled signal

X ()

4p/Dt

/Dt
) A A s
W

Original spectrum
convolved with
spectrum of

impulse train

Original

Replica 1

Replica 2

Spectrurz»af samplesignal

1/Dt
é é
W

Original Replica 1 Replica 2
Reconstruction filter (ideal lowpass filter)
Hy(w)
Dt
W, W, = W,

Spectrum of reconstructed signal

X(w)=Hi(0) X.(@)

w

Reconstruction filter
removes the replica
spectrums & leaves
only the original

M Wiy

w
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Sampled Spectrunv. > 2wm

LPF ?
| é
W, W, Wy w
orignal replica 1 é

original freq recovered
Sampled Spectrum wg < 2w, spectrums overlap

LPE 4 Lower frequency
s Al s 4 recovered (Wg i w,,)

Original and replica

'Wm W‘mWs W

H_/
orignal —— é

replica 1

RECHNSTRUCTIEN
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Reconstruction

I*szauzzzs
781

Sampling and Reconstruction
Theory and Practice

A Signal is bandlimited to bandwidth WB
I Problem: real signals are not bandlimited
A Therefore, require (nemleal) antialiasing filter
A Signal multiplied by ideal impulse train
I problems: sample pulses have finite width
i and notA in practice, but sample & hold circuit

A Samples discrettime, continuous valued
i Problem: require discrete values for DSP
A Therefore, require A/D converter (quantisation)
Al deal | owpass reconstruct.i

i problems: ideal lowpass filter not available
A Therefore, use D/A converter and practical lowpass filter

26



Time Domain Analysis of Reconstruction

A Frequency domain: multiply by ideal LPF
i idealreddP F :un& tht, cunoffy)g ai n
T removes replica spectrums, leaves original
A Time domain: this is equivalent to
i convolutsindnfwnthi 6n
i asF {Dt rec{wiw,)} = Dtw,sindw,t/p)
i i.e., weightedsincon every sample
A Normally, w, = wy2

- . aw.(t- nDt) §
x(t)=a x(nDt)thCsmcS‘egg
gt ¢ b =
Reconstruction
A Whittakeii Shannon interpolation formula
z(t) =300 x[n] -sinc (%)
AX(f)
B B 1




Zero Order Hold (ZOH)

;'"zoa(r)
1
ZOH impulse response
0 At t
| Hyy (02) )
ZOH amplitude response 1
;I\r -_\IAH;U"(U)J Af Ar
ZOH phase response =
Reconstruction
A Zero-Order Hold [ZOH]
®
L
® ® O I
o 0o
01...1'456781
@
@
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Reconstruction

A Whittakeil Shannon interpolation formula

o I ... |

_ I? g
4 5 6 78“.\‘

1 12 13

Ideal "sinc" Interpolation of sample values [0 0 0.75 1 0.5

00]

T T T T

0.8+ [

\
[N

\‘ .— reconstructed signal x(t)
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6staircased output from D/ A

16 T T D

T T T
O  output samples

—— DJA output

14 -

12+ ¢ i

10+ b

Amplitude (V)
o]
T
|

Time (sec)

Smooth output from reconstruction filter

16 T T T T
/kﬁ\‘\ [ — DI/Aoutput

! ‘ < ‘ — Reconstruction filter output ‘
14 -

=
o
T
1

Amplitude (V)

fee]
T
1

2 1 I I I I
0 2 4 6 8 10 12

Time (sec)




Example: error due to signal quantisation
16 T T T T T T T T

) —— original signal x(t)
0} 0] o, ~ Quantised samples x(t)
14+
12+
10+
S R
@
Ser
=
£
<
6L A\
4k
2 =
0
0 1 2 3 4 5 6 7 8 9 10

Sample number

Finite Width Sampling

A Impulse train sampling not realisable
I sample pulses have finite width (say nanosecs)

A This produces two effects,

A Impulse train has sinc envelope in frequency domain
i impulse train is square wave with small duty cycle
i Reduces amplitude of replica spectrums
A smaller replicas to remove with reconstruction filter
A Averaging of signal during sample time

i effective low pass filter of original signal
A can reduce aliasing, but can reduce fiddlity
A negligible with most S/H
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Practical Sampling

A

A

Sample and Hold (S/H)
1. takes a sample eveBt seconds
2. holds that value constant until next sample

Produces O0stax(mfased wavefor m,

sample instant

f/é“ )

— t

hold for Dt

Practical Reconstruction

Two stage process:

1.

2.

Digital to analogue converter (D/A)

T zero order hold filter
I produces Ostaircased anal

Reconstruction filter

i nonideal filter:w, = w,/2
T further reduces replica spectrums
i usually 47 6" order e.g., Butterworth

A for acceptable phase response

o
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D/A Converter

A Analogue output y(t) is
T convolution of output samplesnt) with h,q(t)

y(t) =Q y(nDt)h,q,, (t- nDt)

€L, 0¢ct<Dt
:'O, otherwise

_ a- jwDt gsin(wDt/2)
H w) =Dtexpge———0———=
zon (W) ng 5 9 WDt/ 2

hyon (1) =

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required

Summary

A Theoretical model of Sampling
I bandlimited signal (wB)
I multiplication by ideal impulse train (ws > 2wB)
A convolution of frequency spectrums (creates replicas)

i Ideal lowpass filter to remove replica spectrums
Awc =ws /2
A Sinc interpolation

A Practical systems
i Anti-aliasing filter (wc < ws /2)

i A/D (S/H and quantisation)

i DI/A (ZOH) Donaot
i Reconstruction filter (wc = ws /2) theory and
practice!

c
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1H[W 7LPH«

A Aliasing and Anti-Aliasing

A Review:
T Chapter 5 ot.athi

A A signal has many signals
[ Unl ess itds

bandl i mited]
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