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Signal: A carrier of (desired) information [1]

* Need NOT be electrical:

» Thermometer
* Clock hands
« Automobile speedometer

* Need NOT always being given
— “Abnormal” sounds/operations

— Ex: “pitch” or “engine hum” during machining as an
indicator for feeds and speeds

Signal: A carrier of (desired) information [2]

« Electrical signals
— Voltage
— Current

 Digital signals
— Convert analog electrical signals to an appropriate
digital electrical message

— Processing by a microcontroller or microprocessor




Transduction (sensor to an electrical signal)
+ Sensor reacts to environment (physics)

« Turn this into an electrical signal:
— V: voltage source
— I: current source

» Measure this signal
— Resistance
— Capacitance
— Inductance
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BUT there is Noise ...
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Note: this picture illustrates the concepts but it is not quantitatively precise
Source: Prof. M. Siegel. CML)

Noise: “Unwanted” Signals
Carrying Errant Information

+ Cross-coupled measurements

+ Cross-talk (at a restaurant or even a lecture)
A bright sunny day obstructing picture subject
« Strong radio station near weak one

* observation-to-observation variation
— Measurement fluctuates (ex: student)
— Instrument fluctuates (ex: quiz !)

» Unanticipated effects / variation (Temperature)
* One man’s noise might be another man’s signal




Noise: Fundamental Natural Sources

)

Voltage (EMF) — Capacitive & Inductive Pickup

Johnson Noise — thermal / Brownian

1 (V; = /K, TR

Shot noise (interval-to-interval statistical count)

aV?2
Vi=y\~n7f

Digital
Signals & Systems

%
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Digital Signal

» Representation of a signal against a discrete set

» The set is fixed in by computing hardware

S

e (Can be scaled or normalized ... but 1s limited

s € 7(0,...,210)

« Time is also discretized

7.(0,...,219)
216

s e

Analog vs Digital

» Analog Signal: An analog or analogue signal is any
variable signal continuous in both time and

amplitude Q Q Q

« Digital Signal: A digital signal is a signal that is both
discrete and quantized

E.g. Music stored in a
CD: 44,100 Samples

per second and 16 bits
to represent amplitude




Digital Systems

« Continuous:

()

Controller

U]

Sensor

...................

Controller

1)

Plant

Sensor

=> Digital Systems ¢’

Better SNR

We trade-off
“certainty in time” for “signal
noise/uncertainty”

Analog: oo time resolution
— Digital has fixed time steps

J-" ;IL, (-LL
/\/\/\/ 1 | Hl\ 1|I

.

This avoids the noise and
uncertainty in component values
that affect analogue signal
processing.

Better Processing

« Digital microprocessors are in a
range of objects, from obvious (e.g.
phone) to disposable (e.g. Go cards).
(what doesn’t have one?)

Compared to antilog computing

(op-amp):

» Accuracy: digital signals are usually
represented using 12 bits or more.

* Reliability: The ALU is stable over
time.

» Flexibility: limited only
programming ability!

» Cost: advances in technology make
microcontrollers economical even for
small, low cost applications.
(Raspberry Pi 3: US$35)




SNR : Signal to Noise Ratio

V=Vs+Vp

Magnitude: V2 = V2 + V2 + ViVy,

S _ V2
NT V2

= 2 rms
in dB: 10log (?2) = 20log (%)

Data Acquisition




Representation of Signal

» Time Discretization  Digitization
Coarse time discretization . S
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Quantisation

» Analogue to digital converter (A/D)
— Calculates nearest binary number to x(nAt)
* Xq[n] = q(x(nAt)), where q() is non-linear rounding fctn
— output modeled as x,[n] = Xx(nAt) + e[n]
*  Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise’ (e[n])
— error reduced as number of bits in A/D increased
* i.e,, AX, quantisation step size reduces

AX
<
\e[n]\ <




(two’s compliment)

Input-output tor 4-bit quantiser

Diaital

2A
AX=—
2" -1
where A = max amplitude
m = no. quantisation bits

I.IIHIL(AI

0111

0110

0101 -

0100 !
010

|'_\OHI\)OOJ>O"ICD\J

0001 “y

0000 quantisation
1111 stepsize
1110

1101

1100

1011

1010

1000

Analogue

Signal to Quantisation Noise

* To estimate SQNR we assume

— e[n] is uncorrelated to signal and is a

— uniform random process
« assumptions not always correct!

— not the only assumptions we could make...
* Also known a ‘Dynamic range’ (Rp)

— expressed in decibels (dB)

— ratio of power of largest signal to smallest (noise)

R, =10 Ioglo(@]
P

noise
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Dynamic Range

Need to estimate:
1. Noise power
— uniform random process: P, ;. = AX?/12 ]
2. Signal power 1 extra bit halves Ax

- (at least) two possible assumptions i.e.. 20l0010(1/2) = 6dB

1. sinusoidal: Py, = A%2 ’ 910(1/2)

2. zero mean Gaussian process: P, = 62
Note: as o = A/3: Pggny = A9

»  where o2 = variance, A = signal amplitude

Regardless of assumptions: R increases by 6dB
for every bit that is added to the quantiser

Derivatives magnify noise!

e sin(10mt) o 10CoS(107t o

1
us
of

e sin(10xt) 4+ 0.1sin(1007t) *10cos(10xt) + 10cos L)

I3
~
-
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Sampling!
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Not this type of sampling ... ©

SEMINAR REFRESHMENTS!

Catheine More Carbe  racbe

Catreine  cugar  Sfraight with
L for your VP Sugar sugaC o
Cafteine s

Nothing says "We are confident this seminar will be intellectually
stimulating for you”like a table full of things to help you stay awake.

JORGE CHAM D 2013
WWW.PHDCOMICS.COM
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This type of sampling...

5(t)
S.

i

9 10 11 12 13

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png

Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

W, > 2Wg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

13



Mathematics of Sampling and Reconstruction

sampling reconstruction
x(t) (t)
(SO DSP Ideal | (1)
LPF
Impulse train Gain

8-(H)= 25(t - nAt)

11111 i

Sampling frequency f, = 1/At Cut-off frequency = f,

0 f

Mathematical Model of Sampling

 X(t) multiplied by impulse train 5T (t)

X, (t) = x(t)or (t)
= X()[S(t) + 5(t — At) + 5 (t — 2At) +- -]
= D X(nAt)S (t - nAt)

n
+  X(t) is a train of impulses of height X(t)|.=n

14



Continuous-time
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Discrete Time Signals

+ Digitization helps beat the Noise!
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Discrete Time Signals

But only so much...
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Signal Manipulations

« Shifting

y (n) =z (n — ng)
» Reversal

y(n) = z(—n)

« Time Scaling
(Down Sampling)

y(M) = z(Mn)

(Up Sampling)

o= (2)

Discrete Time Signals

« Can make control tricky!

) Figure 1

Fle Edt View Insert Tools Desktop Window Help

DeHSE aams (0B 8O0

Step Response
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Discrete Time Signals

» Can make control tricky! s
-
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\ VR
\ , \ I/ \\
\ / / \
\ ‘o, N
\ N
02 04 06 08

* | A signal y(t) is uniquely defined by its samples y(kT) if the
sampling frequency is more than twice the bandwidth of y(t).

o
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Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

—\W, > 2Wg

Note: this is a > sign nota >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

Time Domain Analysis of Sampling

+ Frequency domain analysis of sampling is very useful to understand
— sampling (X(w)*Y. &w - 27n/4t) )
— reconstruction (lowpass filter removes replicas)
— aliasing (if wg < 2wg)
» Time domain analysis can also illustrate the concepts
— sampling a sinewave of increasing frequency
— sampling images of a rotating wheel

19



Original signal

Discrete-time samples

[ .
|

Reconstructed signal

A signal of the original frequency is reconstructed
U%
e

Original signal

Discrete-time samples

J;LL <Ll

Reconstructed signal

A signal with a reduced frequency is recovered, i.e., the signal is
aliased to a lower frequency (we recover a replica)

20



Sampling < Nyquist = Aliasing

15

signal

¥ [ True signal
—e— Aliased (under sampled) signal
-1.5 L L
0 5 10 15
time

Nyquist is not enough ...

1Hz Sin Wave: Sin@2rt) - 2 Hz Sampling
l T T T 7 T 7 T T T

0.8+ | . ‘ ‘ | .
0.6H | [ | ‘ | N
0.4- .

0.2f- | | ‘ | .

Normalized magnitude
Q —
1

-021 ‘ | .
-0.41 | .
06 | | | “‘ | ‘: ] | | || .
08 ‘ ;‘ .

-1 L L L L L L
0 1 2 3 4 5 6 7

Time(s)
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A little more than Nyquist is not enough ...

1Hz Sin Wave: Sin@2rt) p> 4 Hz Sampling
T T

-2 -

0.8k
0.6- |
0.4

0.2

-0.2

Normalized magnitude
o

0.4

-0.6

-0.8

Time(s)

Frequency Domain Analysis of Sampling

 Consider the case where the DSP performs no filtering
operations
— i.e., only passes xc(t) to the reconstruction filter
» To understand we need to look at the frequency domain
» Sampling: we know
— multiplication in time = convolution in frequency
— F{x()} = X(w)
— F{8T(1)} = 28(w - 27n/At),
— i.e., an impulse train in the frequency domain

22



Frequency Domain Analysis of Sampling

* In the frequency domain we have

Xc(w)zi(X(w)*z—”25(W_2_”nD Remember
27 At 5 At J)| convolution with
1 27m an impulse?
TAt4 X W-— Same idea for an
impulse train

Let’s look at an example
= Where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency w, rad/s

Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

+ Consider an example where the sampling frequency w; is
reduced
— i.e., At is increased

23



Fouriler transtorm ot original signal X(W)
(signal spectrum)

Fourier transform of impulse train 6(w/27) (sampling signal)

FL8-(0]

w = 2m/At 41/At w

0
Fourier transform of sampled signal

X () Original spectrum

convolved with

VAL spectrum of
. *** |impulse train
W

Original Replica 1 Replica 2

Spectrun x«f sampled signal
1/At
Original Replica 1 Replica 2
Reconstruction filter (ideal lowpass filter)
Hy(w)
At
W, W, =W, w

Spectrum of reconstructed signal

Reconstruction filter
X(w) = Hy(o) X.(@) removes the replica
spectrums & leaves
only the original

Wy Wi w

24



Sampled Spectrum w. > 2wm

LPE 4
W, W, Wy
orignal replica 1

original freq recovered

Sampled Spectrum wg < 2w,
LPE )

A A A A

Original and replica
spectrums overlap
Lower frequency
recovered (wg — w,,)

W, w
H_/
orignal ——

replica 1

W,

m°'s

RECHNSTRUCTIEN
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Reconstruction

9

10 11 12 13

Sampling and Reconstruction
Theory and Practice

+ Signal is bandlimited to bandwidth WB

— Problem: real signals are not bandlimited
* Therefore, require (non-ideal) anti-aliasing filter

Signal multiplied by ideal impulse train

— problems: sample pulses have finite width
— and not ® in practice, but sample & hold circuit

Samples discrete-time, continuous valued

— Problem: require discrete values for DSP
 Therefore, require A/D converter (quantisation)

Ideal lowpass reconstruction (‘sinc’ interpolation)

— problems: ideal lowpass filter not available
 Therefore, use D/A converter and practical lowpass filter

26



Time Domain Analysis of Reconstruction

» Frequency domain; multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w)
— removes replica spectrums, leaves original
» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample
+ Normally, w, = w2

X, ()= i X(NAt) Atw, sinc(MJ

T

N=—o0

Reconstruction

» Whittaker—Shannon interpolation formula

z(t) = Y50 __ z[n] - sinc (%)

AX(f)

27



Zero Order Hold (ZOH)

;'"zoa(r)
1
ZOH impulse response
0 At t
| Hyg (@)
ZOH amplitude response
_4n n 0 n 4n @
S H,, (@)
ZOH phase response P s
ar on : ? o

Reconstruction

» Zero-Order Hold [ZOH]
¢
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Reconstruction

» Whittaker—Shannon interpolation formula

o I ... |

_ I? g
4 5 6 78“.\‘

1 12 13

Ideal "sinc" Interpolation of sample values [0 0 0.75 1 0.5

00]

T T T T

0.8 AN

\
[N

\‘ .— reconstructed signal x(t)
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Amplitude (V)

16

14

12

10

‘staircase’ output from D/A converter (ZOH)

o o

T T T

O  output samples

—— DJA output

Time (sec)

10

16

Smooth output from reconstruction filter

ey |

[— DA output

Amplitude (V)

14

12

=
o

fee]

Y

1 1 1

—— Reconstruction filter output

2 4 6
Time (sec)

12

30



Example: error due to signal quantisation

16 T T D T T T T T T

) —— original signal x(t)
0} 0] o, ~ Quantised samples x(t)
14+

Amplitude (V)
o]
T

Sample number

10

Finite Width Sampling

« Impulse train sampling not realisable
— sample pulses have finite width (say nanosecs)

This produces two effects,

Impulse train has sinc envelope in frequency domain
— impulse train is square wave with small duty cycle
— Reduces amplitude of replica spectrums

+ smaller replicas to remove with reconstruction filter ©
Averaging of signal during sample time

— effective low pass filter of original signal
« can reduce aliasing, but can reduce fidelity ®
* negligible with most S/H ©
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Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, X(nAt)

sample instant

f/[ﬁﬁ — X(nAt)

— t

hold for At

Practical Reconstruction

Two stage process:
1. Digital to analogue converter (D/A)
—  zero order hold filter
— produces ‘staircase’ analogue output
2. Reconstruction filter
— non-ideal filter: w, = w/2
—  further reduces replica spectrums

— usually 4t — 6™ order e.g., Butterworth
»  for acceptable phase response
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D/A Converter

» Analogue output y(t) is
— convolution of output samples y(nAt) with hq(t)

y(t) =Y y(nAth,q, (t—nAt)

1, 0<t<At
h,o (1) =
zon () {O, otherwise
— JwAt \sin(wAt/2)
H,on (W) = Ate
zon (W) Xp( > j WAL/ 2

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required

Summary

» Theoretical model of Sampling
— bandlimited signal (wB)
— multiplication by ideal impulse train (ws > 2wB)
« convolution of frequency spectrums (creates replicas)
— ldeal lowpass filter to remove replica spectrums
s WC=Ws/2
+ Sinc interpolation
* Practical systems
— Anti-aliasing filter (wc <ws /2)
— A/D (S/H and quantisation)

— DI/A (ZOH) Don’t confuse
— Reconstruction filter (wc = ws /2) theory and
practice!
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Next Time...

« Aliasing and Anti-Aliasing

* Review:
— Chapter 5 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited]
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