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Lecture Schedule: 
Week Date Lecture Title

29-Feb Introduction

3-Mar Systems Overview

7-Mar Systems as Maps & Signals as Vectors

10-Mar Data Acquisition & Sampling
14-Mar Sampling Theory

17-Mar Antialiasing Filters

21-Mar Discrete System Analysis

24-Mar Convolution Review

28-Mar

31-Mar

11-Apr Digital Filters

14-Apr Digital Filters

18-Apr Digital Windows

21-Apr FFT

25-Apr Holiday

28-Apr Feedback

3-May Introduction to Feedback Control

5-May Servoregulation/PID

9-May Introduction to (Digital) Control

12-May Digitial Control

16-May Digital Control Design

19-May Stability

23-May Digital Control Systems: Shaping the Dynamic Response & Estimation

26-May Applications in Industry

30-May System Identification & Information Theory

31-May Summary and Course Review

Holiday
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Systems as Maps 
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• A basis of a vector space is a sequence of vectors that has two 

properties at once: 

 

1. The vectors are linearly independent 

 

2. The vectors span the space 

 

 

 The vectors v1, …, vn are a basis for ℝn exactly when they are 

the columns of a n×n invertible matrix.  Thus ℝn  has infinitely 

many bases. 

 

   

 

Basis Spaces of a Signal 
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Then a System is a MATRIX 
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• Linear & Time-invariant (of course - tautology!) 

• Impulse response: h(t)=F(δ(t)) 

• Why? 
– Since it is linear the output response (y) to any input (x) is: 

 

 

 

 

• The output of any continuous-time LTI system is the convolution of 

input u(t) with the impulse response F(δ(t)) of the system. 

 

Linear Time Invariant  

LTI 

h(t)=F(δ(t)) u(t) y(t)=u(t)*h(t) 
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≡ LTI systems for which the input & output are linear ODEs 

 

 

 

 

 

 

 

• Total response = Zero-input response + Zero-state response 

Linear Dynamic [Differential] System 

Initial conditions External Input 
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• Linear system described by differential equation 

Linear Systems and ODE’s 

• Which using Laplace Transforms can be written as 
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where A(s) and B(s) are polynomials in s 
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• δ(t): Impulsive excitation 

• h(t): characteristic mode terms 

Unit Impulse Response 

LTI 

F(δ(t)) δ(t) h(t)=F(δ(t)) 

Ex: 
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Consider the following system: 

 

 

 

 

 

 

 

 

 

 

• How to model and predict (and control the output)? 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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Consider the following system: 

 

 

 

 

 

 

 

 

 

 

• How to model and predict (and control the output)? 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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• Consider the following system: 

 

 

 

 

• x(t) ∈ ℝ8, y(t) ∈ ℝ1  8-state, single-output system 

• Autonomous:  No input yet!  ( u(t) = 0 ) 

 

 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 

10 March 2016 ELEC 3004: Systems 13 



7 

• Consider the following system: 

This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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This can help simplify matters…  
An Example 

Source: EE263 (s.1-13) 
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Expand the system to have a control input… 

•  B∈ ℝ8×2, C ∈ ℝ2×8 (note: the 2nd dimension of C) 

 

 

 

• Problem: Find u  such that   ydes(t)=(1,-2) 

• A simple (and rational) approach:  
– solve the above equation! 

– Assume: static conditions (u, x, y constant) 

 

 Solve for u: 

 

 

 

Example:  Let’s consider the control… 
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Example:  Apply u=ustatic and presto! 

• Note: It takes 1500 seconds for the y(t) to converge … 

     but that’s natural … can we do better?  
Source: EE263 (s.1-13) 
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• How about: 

 

 

 

 

 

 

 

 

 

 

 

Example: Yes we can! 

Source: EE263 (s.1-13) 
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• How about: 

 

 

 

 

 

 

 
 

 

 
 

• Converges in 50 seconds (3.3% of the time ) 

Example: How?  How about a more clever input? 

Source: EE263 (s.1-13) 
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• Converges in 20 seconds (1.3% of the time ) 

Example: Can we beat it? Larger inputs & LDS 

Source: EE263 (s.1-13) 
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• Matlab: deconvwnr 

Ex: Deblurring 
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What about … 
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• For small current inputs, neuron membrane potential output 

response is surprisingly linear. 

• Though this has limits …  

neurons “spike” are (quite) nonlinear (truly) 

What about … 

Source: (s.3-49) 
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http://web.mit.edu/6.003/F11/www/handouts/lec01.pdf
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Linear Dynamical Systems Review 
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Linear Differential Systems 
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• In practice: m ≤ n 

∵ if m > n: 

then the system is an  

(m - n)th -order differentiator of high-frequency signals! 

 

• Derivatives magnify noise! 

Linear Differential System Order 

y(t)=P(D)/Q(D) f(t) 

P(D): M  

Q(D): N   

(yes, N is deNominator) 
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Second Order Systems 
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Second Order Systems 
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Three Types: 

• I: Underdamped:  

Second Order Response 
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Three Types: 

• II: Critically Damped:  

Second Order Response 
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Three Types: 

• III: Over Damped:  

Second Order Response 
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Unit-Step Response 

Second Order Response 

Normalize 
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Second Order Response 
Envelope Curves 
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• Delay time, td: The time required for the response to reach half the final value  

• Rise time, tr: The time required for the response to rise from 10% to 90% 

• Peak time, tp:The time required for the response to reach the first peak of the overshoot 

• Maximum (percent) overshoot, Mp:  

 

 

• Settling time, ts: The time to be within 2-5% of the final value 

 

Second Order Response 
Unit Step Response Terms 
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Example: Quarter-Car Model 

10 March 2016 ELEC 3004: Systems 37 



18 

Example: Quarter-Car Model (2) 

10 March 2016 ELEC 3004: Systems 38 

 

Data Acquisition 
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Digital Signal 
• Representation of a signal against a discrete set 

 

• The set is fixed in by computing hardware 

 

• Can be scaled or normalized … but is limited 

 

 

• Time is also discretized 
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Analog vs Digital 

• Analog Signal: An analog or analogue signal is any 

variable signal continuous in both time and 

amplitude  

 

 

• Digital Signal: A digital signal is a signal that is both 

discrete and quantized  

E.g. Music stored in a 

CD: 44,100 Samples 

per second and 16 bits 

to represent amplitude  
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Representation of Signal 

• Time Discretization • Digitization 
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Coarse time discretization

 

 

True signal

Discrete time sampled points
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Coarse signal digitization

 

 

True signal

Digitization
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Signal: A carrier of (desired) information [1] 

• Need NOT be electrical: 
• Thermometer 

• Clock hands  

• Automobile speedometer 

 

 

• Need NOT always being given 

– “Abnormal” sounds/operations 

– Ex: “pitch” or “engine hum” during machining as an  

indicator for feeds and speeds 
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Signal: A carrier of (desired) information [2] 

• Electrical signals 

– Voltage 

– Current 

 

 

•  Digital signals 

– Convert analog electrical signals to an appropriate 

digital electrical message 

– Processing by a microcontroller or microprocessor 
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Transduction (sensor to an electrical signal) 
• Sensor reacts to environment (physics)  

• Turn this into an electrical signal: 
– V: voltage source 

– I:  current source 

• Measure this signal 
– Resistance 

– Capacitance  

– Inductance 
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Ex: Current-to-voltage conversion 

• simple:  

Precision Resistor  

 

 

 

• better:  

Use an “op amp” 
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BUT there is Noise … 

Note: this picture illustrates the concepts but it is not quantitatively precise 

Source: Prof. M. Siegel, CMU 10 March 2016 ELEC 3004: Systems 47 
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• Cross-coupled measurements 

• Cross-talk (at a restaurant or even a lecture) 

• A bright sunny day obstructing picture subject 

• Strong radio station near weak one 

• observation-to-observation variation 
– Measurement fluctuates  (ex: student) 

– Instrument fluctuates  (ex: quiz !) 

• Unanticipated effects / variation (Temperature) 

• One man’s noise might be another man’s signal 

Noise: “Unwanted” Signals  
Carrying Errant Information 
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Noise: Fundamental Natural Sources 
• Voltage (EMF) – Capacitive & Inductive Pickup 

 

• Johnson Noise – thermal / Brownian 

 

 

• 1/f (Hooge Noise) 

 

 

• Shot noise (interval-to-interval statistical count) 
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SNR : Signal to Noise Ratio 
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• Register on Platypus 

 

• Try the practise assignment 

 

• We will talk about Data Acquisition / Sampling 

Next Time… 
 

10 March 2016 ELEC 3004: Systems 52 


