	http://elec3004.com
Signals as Vectors Systems as Maps &	
Data Acquisition	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 4	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	March 10, 2016

<u>ure So</u>	<u>chedu</u>	le:	
Week	Date	Lecture Title	
1	29-Feb	Introduction	
	3-Mar	Systems Overview	
	7-Mar	Systems as Maps & Signals as Vectors	
2	10-Mar	Data Acquisition & Sampling	
	14-Mar	Sampling Theory	
3	17-Mar	Antialiasing Filters	
	21-Mar	Discrete System Analysis	
4	24-Mar	Convolution Review	
	28-Mar	TT 1/1	
	31-Mar	Holiday	
	11-Apr	Digital Filters	
6	14-Apr	Digital Filters	
7	18-Apr	Digital Windows	
/	21-Apr	FFT	
0	25-Apr	Holiday	
8	28-Apr	Feedback	
0	3-May	Introduction to Feedback Control	
9	5-May	Servoregulation/PID	
10	9-May	Introduction to (Digital) Control	
10	12-May	Digitial Control	
11	16-May	Digital Control Design	
11	11 19-May	Stability	
12	23-May	Digital Control Systems: Shaping the Dynamic Response & Estimation	
12	26-May	Applications in Industry	
12	30-May	System Identification & Information Theory	
15	31-May	Summary and Course Review	

Basis Spaces of a Signal

- A basis of a vector space is a sequence of vectors that has two properties at once:
- 1. The vectors are linearly independent
- 2. The vectors span the space

→ The vectors $\mathbf{v_1}, ..., \mathbf{v_n}$ are a basis for \mathbb{R}^n exactly when they are the columns of a n×n invertible matrix. Thus \mathbb{R}^n has infinitely many bases.

Linear Dynamical Systems Review

10 March 2016 26

Linear Differential Systems

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{1}\frac{dy}{dt} + a_{0}y(t) = b_{m}\frac{d^{m}f}{dt^{m}} + b_{m-1}\frac{d^{m-1}f}{dt^{m-1}} + \dots + b_{1}\frac{df}{dt} + b_{0}f(t) \qquad (2.1a)$$

where all the coefficients a_i and b_i are constants. Using operational notation D to represent d/dt, we can express this equation as

$$(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}) y(t)$$

= $(b_{m}D^{m} + b_{m-1}D^{m-1} + \dots + b_{1}D + b_{0}) f(t)$ (2.1b)

Or

$$Q(D)y(t) = P(D)f(t)$$
(2.1c)

where the polynomials Q(D) and P(D) are

$$Q(D) = D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}$$
(2.2a)

$$P(D) = b_m D^m + b_{m-1} D^{m-1} + \dots + b_1 D + b_0$$
(2.2b)

ELEC 3004: Systems

ELEC 3004: Systems

10 March 2016 **27**

Second Order Systems

so solution of ay'' + by' + cy = 0 is

$$y(t) = \mathcal{L}^{-1} \left(\frac{\alpha s + \beta}{as^2 + bs + c} \right)$$

- $\chi(s) = as^2 + bs + c$ is called *characteristic polynomial* of the system
- form of $y=\mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- coefficients of numerator $\alpha s + \beta$ come from initial conditions

ELEC 3004: Systems

10 March 2016 **39**

Noise: "Unwanted" Signals Carrying Errant Information

- Cross-coupled measurements
- Cross-talk (at a restaurant or even a lecture)
- A bright sunny day obstructing picture subject
- Strong radio station near weak one
- observation-to-observation variation
 - Measurement fluctuates (ex: student)
 - Instrument fluctuates (ex: quiz !)
- Unanticipated effects / variation (<u>Temperature</u>)
- One man's noise might be another man's signal

Noise: Fundamental Natural Sources

- Voltage (EMF) Capacitive & Inductive Pickup
- Johnson Noise thermal / Brownian

•
$$1/f (V_j = \sqrt{4k_bTR})$$

- Shot noise (interval-to-interval statistical count) $V_f = \sqrt{\frac{\alpha V_R^2}{Nf}}$

ELEC 3004: Systems

SNR : Signal to Noise Ratio

$$V = V_s + V_n$$
Magnitude: $\overline{V^2} = \overline{V_s^2} + \overline{V_n^2} + V_s \overline{V_n}$

$$\frac{S}{N} = \frac{V_s^2}{V_n^2}$$
in dB: $10 \log \left(\frac{\overline{V_s}^2}{\overline{V_n}^2}\right) = 20 \log \left(\frac{V_s^{rms}}{V_n^{rms}}\right)$

Next Time...

- Register on Platypus
- Try the practise assignment
- We will talk about Data Acquisition / Sampling