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Field Report: AASSFN 2016 [For the Break!]

 Patients with an attached stereotactic
frame played musical instruments during
surgery. Fluctuation in symptoms was
carefully checked.

Ref: ANN NEUROL 2013;74:648-654, Fig. 2
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System Classifications/Attributes

1. Linear and nonlinear systems

2. Constant-parameter and time-varying-parameter systems

3. Instantaneous (memoryless) and dynamic (with memory)
systems

4. Causal and noncausal systems

5. Continuous-time and discrete-time systems

6. Analog and digital systems

7. Invertible and noninvertible systems

8. Stable and unstable systems

Linear Systems

Linearity:

* A most desirable property for many systems to possess

« Ex: Circuit theory, where it allows the powerful technique or
voltage or current superposition to be employed.

Two requirements must be met for a system to be linear:
 Additivity
« Homogeneity or Scaling

Additivity U Scaling = Superposition




Linear Systems: Additivity

» Given input x4 (t) produces output y,(t)
and input x, (t) produces output y, (t)

« Then the input x; (t) + x5 (t)
must produce the output y; (t) + y,(t)
for arbitrary x, (t) and x, (t)

 EX:
— Resistor
— Capacitor
* Not Ex:
- y(t) = sin[x(t)]

Linear Systems: Homogeneity or Scaling

» Given that x(t) produces y(t)

» Then the scaled input a - x(t)
must produce the scaled output a - y(t)
for an arbitrary x(t) and a

e EXx:

- y() = 2x(t)
* Not EX:

- y(t) = x*(t)

-y() =2x(t) +1




Linear Systems: Superposition

» Given input x4 (t) produces output y,(t)

and input x, (t) produces output y, (t)

Then: The linearly combined input

x(t) = ax;(t) + bx,(t)
must produce the linearly combined output
y(©) = ay,(¢) + by, (t)
for arbitrary a and b

» Generalizing:

— Input: x(t) = X arxr(t)
— Output: y(£) = Xy ary(t)

Linear Systems: Superposition [2]

Consequences:

« Zero input for all time yields a zero output.

— This follows readily by setting a = 0, then 0 - x(t) = 0

DC output/Bias =» Incrementally linear

Ex:y(t) = [2x(D)] + [1]
Set offset to be added offset [Ex: yo(t)=1]

x(1) | Linear w(t) . (
system \ l ,J' 4




Dynamical Systems...

+ A system with a memory
— Where past history (or derivative states) are relevant in
determining the response

Ex:

— RC circuit: Dynamical
* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)
— R circuit: is memoryless “- the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.

=>» Leading to PDE Models

Causality:
Causal (physical or nonanticipative) systems

€ep HOw MUCH
9 TIME DO YoU —

: ‘ x|l b - I &

« Is one for which the output at any instant t, depends only
on the value of the input x(t) for t<t,. Ex:

(@) =a(t—2)=causal [u(t)==x(—2)+ 2+ 2) = noncausal

» A “real-time” system must be causals
— How can it respond to future inputs?

+ A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems




Causality:
Looking at this from the output’s perspective...

» Causal = The output before some time t does not depend on
the input after time t.

Given: y(t) = F (u(t))

For:
u(t)=u(t),V0<t<Tor[0,T)
Then for a T>0:

—yt)=y@), VO<t<T

then:

else:

u y

| | |
,, o . f
| a Ly | ¥
_ |
.

Causal Noncausal

Systems with Memory

« A system is said t have memory if the output at an arbitrary

time t = t, depends on input values other than, or in addition
to, x(t,)

* Ex: Ohm’s Law [MEMORYLESS]
V(to) = Ri(to)

» Not Ex: Capacitor [MEMORY]
t

1
V(ty) = Ef i(t)dt




Time-Invariant Systems

+ Given a shift (delay or advance) in the input signal
» Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — ty) produces output y(t — t,)

« Ex: Capacitor
.« V(te) =< [ it —ty)dr
=" limdr

:V(t - to)

Time-Invariant Systems

« Given a shift (delay or advance) in the input signal
« Then/Causes simply a like shift in the output signal

« If x(t) produces output y(t)
« Then x(t — t,) produces output y(t — t,)

¥ty === yit=1ty)
Shift

v

System

v

x{1)

®(t = tg) }’ru[”
System |p—

Shift

v
v




Signal Terminology
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Unit Step Function

0,t<0
* u(t)={1t>0

it

“Rectangular Pulse”
e p(t) =u() —ult-T)

ol




Unit-Impulse Function

8(r) = 0 for ¢ # 0.
. 6{r) undefined for ¢ = 0.
I, ife <0<t

] J: O(1) dr = {U. otherwise.

Iwd =

r

d

ain

Complex Exponential Signals

x(t) = Aet
« Aand A are generally complex numbers.

« If Aand A are, in fact, real-valued numbers, x(t) is
itself real-valued and is called a real exponential

x(t) (1)

1A =0)

10
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Signals as Vectors

 Back to the beginning!

F(.. .)=Tystem

signal i
m— F(x)  ——mh

Signals as Vectors

F(.. .)=Tystem

signal i |
imm—> F(X) i

» There is a perfect analogy between signals and vectors ...
Signals are vectors!

« A vector can be represented as a sum of its components in a
variety of ways, depending upon the choice of coordinate
system. A signal can also be represented as a sum of its
components in a variety of ways.

12



Signals as Vectors

* Represent them as Column Vectors

Signals as Vectors

 Can represent phenomena of interest in terms of signals

 Natural vector space structure (addition/substraction/norms)

 Can use norms to describe and quantify properties of signals

13



Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

e Can add two signals: = [n] + xa[n]
e Can multiply a signal by a scalar number: C' - x:[n]
e Form linear combinations: Cy - x1[n] + Cy - xa[n]

Various Types

 Audio signal (sound pressure on microphone)
« B/W video signal (light intensity on
 photosensor)

» Voltage/current in a circuit (measure with

« multimeter)

 Car speed (from tachometer)

» Robot arm position (from rotary encoder)

» Daily prices of books / air tickets / stocks
» Hourly glucose level in blood (from glucose monitor) 7/

 Heart rate (from heart rate sensor)

14



Vector Refresher

X-y=|x||y|cos # (6.46)

e

 Length: P =x-x
» Decomposition: x=ayte=ayte
* Dot Product of Lis0: xy=0

Vectors [2]

« Magnitude and Direction

f-a = |fllzl cos(6)

« Component (projection) of a vector along another vector

< Error Vector

15



Vectors [3]

* oo bases given X

' (a)

« Which is the best one?

fr~ex
clx| = |f cos 8
elx|? = |fl[x] cos 8 = f- x

Px_ 1
Txx e ¥
f-x=0

« Can | allow more basis vectors than | have dimensions?

Signals Are Vectors

« A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):
Total response = Zero-input response + Zero-state response

Initial conditions External Input

 Vectors are Linear
— They have additivity and homogeneity




Vectors / Signals Can Be Multidimensional

» Assignal is a quantity that varies as a function of an index set

» They can be multidimensional:
— 1-dim, discrete index (time): x[n]

— 1-dim, continuous index (time): x(t)
— 2-dim, discrete (e.g., a B/W or RGB image): x[j; k]
— 3-dim, video signal (e.g, video): x[j; k; n]

Discrete 1D

W oW ®m = w4 &

Continuous 1D

Disc:re]_lte 2D

-

It’s Just a Linear Map

u[n]

-rITITII[

up = [1,2.3,4,..,10)7

* y[n]=2u[n-1] is a linear map

y[n]

.rlllll

y = 1[0.2.4,6,....18]T

« BUT y[n]=2(u[n]-1) is NOT Why?

» Because of homogeneity!

T(au)=aT(u)

17



Norms of signals

Can introduce a notion of signals being "nearby.”

This is characterized by a metric (or distance function).

d(x,y)

o

If compatible with the vector space structure, we have a norm.

X—¥

Examples of Norms

Can use many different norms, depending on what we want to do.

The following are particularly important:
@ /5 (Euclidean) norm:

||lz]|2 = (Z ;c[h’]|2) norm(x,2)
k=1

[~

@ {1 norm:
n
Il]|1 =Z|.LL]| norm(x,1)
k=1
@ /.. norm:
I)|oo = mf?x|;t:[k]| norm(x,inf)

What are the differences?

18



Properties of norms

For any norm | - ||, and any signal x, we have:
@ Linearity: if C' is a scalar,
C-x|=|C]|x
© Subadditivity (triangle inequality):
[+ ¥l < lIx[ + ¥l
Can use norms:

@ To detect whether a signal is (approximately) zero.
@ To compare two signals, and determine if they are “close.”

X—y[|=0

Signal representation by Orthogonal Signal Set

» Orthogonal Vector Space

= A signal may be thought of as having components.

19



Component of a Signal

fltyczlt) t<t<ty

t2
f(t)a(t)dt )
t1

cm M= — [ f(0)2(t)dt
j 22 (t) dt Bz Ju
i1

" Ft)z(t)dt =0

ty

* Let’s take an example:

f(t)~ecsint O0<t<2n

¥id
z{t)=sint and E.,:f sin’(t)dt =7
o

T e,

\.\-“
& r—
0 = E P

R
Fig. 8.3 Approximation of square signal in terms of a single sinusoid.

Thus .
Flt) = Zaint

(3.14)

Basis Spaces of a Signal

ta 0 m#n
]; zm(t)za(t) dt = {En m=n

F(t) = erxy(t) + egzaft) + -+ + enzn(t)

N
= Z enZnl(t)

n=1

N
e(t) = f(t) - Zc:nzn(t)
n=1

[ " Fe)ealt) at

="t

l x,%(t) dt

t2

1
=— F(t)znlt)dt n=12....N
En ty

f#) = exza(t) +eaza(t) + - +cpzn(t) +---

o
eazalt) ti<t<t

n=1

20



Basis Spaces of a Signal

F(t) = crzy(t) +cozalt) + - +cpznl(t) + -
= icnrn(t) t1 <t <ty

» Observe that the error energy Ee generally decreases as N, the
number of terms, is increased because the term Ck 2 Ek is
nonnegative. Hence, it is possible that the error energy -> 0 as
N -> 00. When this happens, the orthogonal signal set is said to
be complete.

* Inthis case, it’s no more an approximation but an equality

Linear combinations of signals

%[n]

yin]

Hnl+y[n]

21



Application Example: Active Noise Cancellation

A “noise” signal, that we want to get rid of.

@ At subject location, signal is

x[n]

@ Microphone picks up signal

x.[n]

@ Subtract the two signals:

?z“[:_t} = J'[:f) — _g_:f._.(t;]

Notice careful synchronization is needed!

Systems as Maps

ELEC 3004: Systems
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Then a System is a MATRIX

uln y[n
[l
y = Du.
y[l] DM D12 ... DLN u[l}
y[2] B Doy Dy --- Doy ul2]
y[M] Dyiy Dap -+ Dun| [u[N]

yli] = Z Djulj].

Linear Time Invariant

LTI
u(t) | h()=F() y(t§=u(t)*h(t)

Linear & Time-invariant (of course - tautology!)

Impulse response: h(t)=F(5(t))

Why?

— Since it is linear the output response (y) to any input (X) is:

z(t) = [z (7)o (t —T)dr '

y(t) =F [[2z ()3 (t —7)dr| Hnsar 100 4 (7Y F[6 (t — )] dr
ht—7) 2 F[5(t—7)]

=y) =[S x(r)h(t—T)dr =z (t)*h(t)

The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(6(t)) of the system.

23



Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

dMz

dy dy dx
, . .y ST A S TS M et
aoy+r11dt+ +an qen OL+?1dt+ “+bm o

Laplace:

agY (s) + a1sY(s) + -+ 4+ ans"Y (s) = bgX (5) + b1sX(s) + -+ + bins™ X (s)
A(8)Y (s) = B(s)X(s)

» Total response = Zero-input response + Zero-state response

Initial conditions External Input

Linear Systems and ODE’s

Linear system described by differential equation

d’y :b0x+b1%+---+bm d”x
dt" dt dt™

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s) +b,sX(s)+---+b,s"X(s)
A(S)Y (s) =B(s) X(s)

where A(s) and B(s) are polynomials in s

24



Unit Impulse Response

LTI

d(t F(5(t)

h(t)=F(5(t))

+ o(t): Impulsive excitation

 h(t): characteristic mode terms

Ex:

EXAMPLE 2.4
Determine the unit impulse response h(f) for a system specified by the equati

(D* 43D +2) yt) = Dxtr) (225)

mial

2) having the characteristic p

his is a se
(A" 430 +2

The characteristic roots of this system are A = —1 and A = —2. Therefore
wt)=ce' +ae™ (2.26a)
Differentiation of this yields
Yall) = —cre 26 " (2.26b)
The initial conditions are [see £ 4b) for N = 2]
Va(0) =1 and ¥a(0) =0
E 28a) and (2.26b), and substituting the initial conditions
simultaneous equations yislds
¢ -1
Moreover, according to E D) = D, 5o that
P(D)y, (1) = Dy,(t) = ¥, (1) e ' 42"
Also in this case, by = 0 [the second-order term is absent in P(D)]. Thersfore

ht) = [P(D)y,()]u(t) = (—e ' +2& ¥ )u(t)

just given, we obtain

Where are we going with this?

ELEC 3004: Systems
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I'his can help simplity matters...
An Example
Consider the following system:

3 T

-3
t
? : :
\ :f ) L :

9 .‘. [.. -1 .n . .
S :

- W‘;‘{I L. H'lul.‘

N

_30 III]l] 2(‘]0 3[‘!] 4II]l] 5(‘]0 6(‘]0 TII]l] B{I]D 960 1000

» How to model and predict (an%l control the output)?

Source: EE263 (s.1-13)
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I'his can help simplity matters...
An Example
Consider the following system:

3 T

(=]
S
.

» How to model and predict (and control the output)?

Source: EE263 (s.1-13)
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[ 'his can help simplity matters...
An Example

 Consider the following system:

= Ax, y=Cx

« X(t) € R8, y(t) € R - 8-state, single-output system
« Autonomous: No input yet! (u(t)=0)

Source: EE263 (s.1-13)

['his can help simplify matters...
An Example

 Consider the following system:

o = MW
T T T
I

Source: EE263 (s.1-13)

27



[ 'his can help simplity matters...

AnExample = ¢

H
300 350
T

H
300 350
T

i
200 350

i
300 350

300 350

300 350

5 H H H H H H
0 50 100 150 200 250 300 350
o T T T T T T
ok e i
\ ) A : ; Source: EE263 (s.1-13)
02 H : H H H H
0 50 100 150 200 250 300 350

Example: Let’s consider the control...

Expand the system to have a control input...
« Be R®2, C € R?*¢(note: the 2" dimension of C)

#=Ar+Bu, y=Czx, x(0)=0

» Problem: Find u such that vy, (t)=(1,-2)
« Asimple (and rational) approach:
— solve the above equation!
— Assume: static conditions (u, X, v constant)
i =0=Ax + Bustatic. Y = Ydes = Cx
=>» Solve for u:

Ustatic = (*C"fl_lB)il Ydes = |:

—0.63
0.36

28



Example: Apply u=u., . and presto!

(05}

200 0 200 400 60 Bnuttozc 1200 1400

1600 1800

u2

=200 0 200 400 600 B[}Dtmﬂﬂ 1200 1400

1800 1800

(75

200 0 200 400 o000 800 , 1000 1200 1400f 1

t

Y2

o

1
ol

3|

Fm o mo @0 am  eo 00 1200 00

but that’s natural ... can we do better?

Teoo 1600

» Note: It takes 1500 seconds fof the y(t) to converge .

Source EE263 (s.1-13)

Example: Yes we can!

How about:

Source: EE263 (s.1-13)

29



Example: How? How about a more clever input?
» How about:

—
— = r
=

Source: EE263 (s.1-13)

« Converges in 50 seconds (3.3% of the time ©)

Example: Can we beat it? Larger inputs & LDS

U1

E.

« Converges in 20 seconds (1.1?3% of the time ©)

Source: EE263 (s.1-13)




What about the DIGITAL case?

R
Viln] "DAC | Vi(t) v\[ c }Vo Volt) "ADC | Vol[n]

%0 H(s) w A/D 4 -

 Problem:
Estimate signal u, given quantized, filtered signal y

» Some solutions:
— ignore quantization
— design equalizer G(s) for H(s) (i.e., GH = 1)
— approximate u as G(s)y
=> Pose as an estimation problem

Source: EE263 (s.1-124)

What about the DIGITAL case?

1 T T

u(t) (solid) and u(t) (dotted)

* RMS error 0.03, well below quantization error (!)

Source: EE263 (s.1-124)
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Ex: Deblurring

Moving
Camera
Optics

perfect image blurry image

‘Simulats Blur and Hose.

Q

« Matlab: deconvwnr

ELEC 3004: Systems 7 March 2016 64

What about ...
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What about ...

 For small current inputs, neuron membrane potential output

response is surprisingly linear.
* Though this has limits ...
neurons “spike” are (quite) nonlinear (truly)

ELEC 3004: Systems

Source: ELEC6.003 (s.3-49)
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Next Time...

* Register on Platypus
+ Try the practise assignment

« We will talk about Data Acquisition / Sampling

ELEC 3004: Systems 7 March 2016 67
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