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Lecture Schedule:

Week Date Lecture Title

29-Feb|Introduction

1 -
3-Mar|Systems Overview

7-Mar |Systems as Maps & Signals as Vectors

2 10-Mar|Data Acquisition & Sampli

14-Mar ling Theory

3 17-Mar|Antialiasing Filters

21-Mar|Discrete System Analysis

24-Mar|Convolution Review

28-Mar|
31-Mar|

Holiday

4-Apr|Frequency Response & Filter Analysis

7-Apr|Filters

11-Apr|Digital Filters

14-Apr|Digital Filters

18-Apr|Digital Windows

21-Apr|FFT

25-Apr|Holiday

28-Apr|Introduction to Feedback Control

3-May|Holiday

5-May|Feedback Control & Regulation

9-May|Servoregulation/PID

12-May|Introduction to (Digital) Control

16-May |Digital Control Design & State-Space

19-May|Observability, Controllability & Stability of Digital Systems

23-May|Digital Control Systems: Shaping the Dynamic Response & Estimation

26-May|Applications in Industr

2-Jun|Summary and Course Review

13 30-May |System Identification & Information Theory
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Announcements

PS 3 Peer Review Competition
» The PS 3 Review with the

highest Likert Score

Deadline for reviews:
June 3 (11:59 pm)
Good reviews discussed
June 2" ast Lecture

Reward: 3004¢

ELEC 3004
“Review Lab”
(“Lab 5”):

» Redo any aspects of any
of the labs

* Review course

* Review 2015 Final exam
(which we will do
on June 2" also)

Follow Along Reading:

http://www.inference.

S Today
4l

Signal processing
and linear systems

David J. C.
MacKay
Information Theory,

e B.P.Lathi =>» State-space €

#grggloz.gus 100s | Lathi Ch. 2 (?)

— §2.7-6 Time Constant and Rate of
Information Transmission

* Information Theory!

Inference and Learnitg
Algorithms

2003 ++ Final Exam 2015:
: http://robotics.itee.uq.

phy.cam.ac.uk/itila/

edu.au/~elec3004/tutes.h

tml#Final

.eanas Next Time  =+===e=sessessessssscsssssssssassssasnannas ,
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Information
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Shannon Information Theory

Information

Source Transmitter Receiver Destination
= [} >
Signal Received
Signal
Message Message

Noise
Source

“The fundamental problem of communication is that of reproducing at one point,
either exactly or approximately, a message selected at another point. ”

On the transmission of information over a noisy channel:
* Aninformation source that produces a message

» A transmitter that operates on the message to create a signal which can be sent through a
channel

» Achannel, which is the medium over which the signal, carrying the information that
composes the message, is sent

» A receiver, which transforms the signal back into the message intended for delivery
» A destination, which can be a person or a machine, for whom or which the message is

intended



http://en.wikipedia.org/wiki/Signal_(electrical_engineering)

Information theory is...

« It all starts with Probability Theory!
1. (Wikipedia) Information theory is a branch of
applied mathematics, electrical engineering,

and computer science involving the
quantification of information.

2. Information theory is probability theory where
you take logs to base 2.

Binary Systematic Channel
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« Ex: A File of N=10,000 bits is transmitted with f=0.1

REDONDAN (1-7) 0

How many bits are flipped?




Binary Systematic Channel

Assume a Binomial distribution

 Mean: u = Np

. i c g2 = _
Variance: 6“ = Npq Ha(z) '
0.8+
Then: 06~
u = (0.1)10,000 0.4-
o2 = (0.1)(0.9)10,000 = 900 02-
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o 0.2 0.4 0.6 08 1 X
Thus:
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How to beat this?

Filter like mad! Redundant Transmission!

T KEDUNDAN
r—y

ﬁ“ ]GLADS.
b f‘\
@T‘: "1‘/@‘{
« But this will also affect » Repetition Code ‘R3’
“non-noisy” signal portions r=t n

Matlab: medfilt2(noisy_im)




Repetition Code ‘R3’
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Source: MacKay VideoLectures 01, Slide 30

BT Ewy

Viewing this as a Likelihood

Likelihood of s Prior Probability of s

—_—— —
P(r|s) P(s)
P(r)
——
Sum of P(r)

P(r)=P(r|ls=0P(s=0)+P(rls=1)P(s=1)

Prls=0)=A-f)XfXf
Prls=0)=()xA-f)x1A-f)
P(s = 0) =%,P(s =1) =%

(-5
A-f)f2+f(1-f)25

2> P(s=1r =011) = =1-1)




Performance of repetition codes
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Source: MacKay VideoLectures 01, Slide 45

Huffman Coding

« Huffman is the simplest entropy coding scheme
— It achieves average code lengths no more than 1 bit/symbol of the

entropy
* Abinary tree is built by combining A06
the two symbols with lowest
probability into a dummy node 1.0
B0.25
* The code length for each symbol is 04 A0
the number of branches between the Col B10
root and respective leaf 0.15 C110
D111
D0.05




What’s Achievable?
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For any channel:
Reliable (virtually error-free) communication is possible
atratesupto C

Source: MacKay VideoLectures 01, Slide 58



https://en.wikipedia.org/wiki/Turbo_code
https://en.wikipedia.org/wiki/Forward_error_correction
https://en.wikipedia.org/wiki/Forward_error_correction

Entropy

« Entropy: Probability in Disguise!

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X}:—Zp{.\'rlogj px). (1.1)
-

Example 1.1.2  Suppose that we have a horse race with eight horses
taking part. Assume that the probabilities of winning for the eight horses

are (% Jlr % ]—lﬁ ﬁ b—l4 61—4 h]—Jr) We can calculate the entropy of the horse
race as
I | 1 1 1 I
HX)=—1loge— — —-loe———-log— — —log — —4— log —
2 "2 4 74 8 78 16 16 64 o4
= 2 bits. (1.3)
Entropy

« A message X; ... X;, has length

Z —log, p(X = X;)

i

» A long message, has an average length per codeword of:

H(X) = E(~log, p(N)) = ) —p(X) log, p(X)
X

Entropy is always positive, since p(X) = 0.




Connection to Physics

« A macrostate is a description of a system by large-scale

guantities such as pressure, temperature, volume.

» A macrostate could correspond to many different microstates i,

with probability p;.

« Entropy of a macrostate is
o S=—kpY;piInp;

 Hydrolysis of 1 ATP molecule at body temperature: ~ 20 bits

Entropy: So why does this work?

Example 2.1.1 Let

1 with probability p,

X=10 with probability 1 — p.

Then

H(X)=—plogp—(1—p)log(l —p}dét H(p).

Plot a graph of H(p) against p.

&

10
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FIGURE 2.1. H(p) vs. p.

Maximum entropy distributions

Entropy measures uncertainty in a variable.
If all we know about a variable is some statistics, we can find a
distribution matching them that has maximum entropy.

For constraints E(S;) = s;,i = 1...n, usually of form
p(X) = e_Zi/liSi

Relationship between A; and s; not always simple

For continuous distributions there is a (usually ignored)
dependence on a reference density — depends on coordinate
system

11



Examples of maximum entropy distributions

Data type Statistic Distribution

Continuous Mean and variance  Gaussian

Non-negative Mean Exponential

continuous

Continuous Mean Undefined

Angular Circular meanand  Von Mises
vector strength

Non-negative Integer Mean Geometric

Continuous Autocovariance Gaussian process

stationary process function

Point process Firing rate Poisson process

Conditional Entropy

» Suppose Alice wants to tell Bob the value of X
— And they both know the value of a second variable Y.

» Now the optimal code depends on the conditional distribution
p(X|Y)

 Code length for X = i has length -log, p(X = i|Y)

« Conditional entropy measures average code length when they
know Y

H(XIY) = = ) p(X, 1) log, p(XIV)
XY

12



Mutual information

« How many bits do Alice and Bob save when they both
know Y?

I(X;Y) = H(X) — HX|Y)
= > p(X,¥)(~log, p(X) +log, p(XIV)
XY

| 3 p(X,Y)
= ) punes, (recr)

« Symmetrical in X and Y'!
« Amount saved in transmitting X if you know Y equals
amount saved transmitting Y if you know X.

Properties of mutual information

I(X;Y) = H(X) — H(X|Y)
= H(Y) — H(Y|X)
=HX)+HY) - H(X,Y) HxY)

H(X) H(Y)

c FX=Y,I(X;Y) = HX) = H(Y)

« If Xand Y are independent, I(X;Y) =0
HX,Y) =HX) + HY|X) = HY) + HX|Y) HX|Y) < H(X)

13



Data Compression

 How to measure information
Content?

Source

Compression:
 Add redundancy

Encoder Decoder

t Noisy J %

b DO Inference channel

Example Mystery Text

Emma Woodhxuse, hands*me, clever* and rich,*with a comiortab*e home anx
happy di*position,xseemed toxunite somx of the b*st bless*ngs of
existencej;*and had *ived neaxly twenty *ne year* 1in the*world wx*th
veryxlittle *0 distrxss or vexxher. xhe was*the yoxngest xf the *wo
dauxhters *f a most xffect*onate* indu*gent *atherx and *ad, i* consxquencx
of hxr sixter'x marxiagex beex misxressxof hxs hoxse fxom a verx eaxly
*erixd. xer xothxr h*d dxed *00 *ongxago*forxher toxhaxe *orx
txanxanxinxisxinxt xem*mbxanxe *f xerxcaxes*xesx axdxhxrxpxaxexhxdxbxex
*Ukpkikdkb* knkexcxlxextxwimixnxax gxxexxexk,xxhxxhxx

*hk LxkNkkThkk L AXShkArk*kOrx*qhkO* k@rx*x7*

QAXKKCHhKRKN*hk Sk k@K kkykkkSkkkdkkkSkkkQkkk Fxkk@kxkNk* %

Wk kokk Ok kokk Sk kkok Tk kkk Lk kkk @k kkk @k sk kkMok ok kk Tok ok ki k @okok ok k @k ok ok k\/k ok ok

II. Emma Woodhouse, handsome, clever, and rich, with a comfortable home and happy
disposition, seemed to unite some of the best blessings of existence; and had lived
nearly twenty one years 1in the world with very little to distress or Vex her. She was
the youngest of the two daughters of a most affectionate, indolent father; and had ,
in consequence of her sister's marriage , been mistress of his house from a very
early period. Her mother had died too lone ago for her to have more than an
indistinct remembrance of her caresses; and her place had been supplied by an
excellent woman as governess, who had fallen little short of a mother in affection.
Sixteen years had Miss Taylor been in Mr Woodhouse's family , less as a eoverness
than a friend , very

Source: MacKay VideoLectures 02, Slide 5




Channel and Source Coding

Source
CHANNEL ’
Compressor Decompressor

CODING

s s
SOURCE

Encoder Decoder

CODING

t £ r

Noisy
channel

Ex: Bent/Unfair Coin

» A simple redundant source - a bent coin...

0000000000000000010010010000000000000000001000010001010000000001010000000000000000
0000010000000001000000000000010000011000001000000000000000100000000000100001000001
0000000000000000000010000001000000000001000000000000000000000000010000000000000000
01000100000010000001001000000000000100000000100000000000010010000101016000000110000
1000000000000100000000000000000000000000000000000000000001010000001000000000000010
0010100001100000000010000000000000000000000000000000000000000000000000010000000000
00010000000000000000010000100000000011011000000010100010160000000000000000000000000
0010001010000010000100000000000000000010000010000010000100100000000101000100000000
0000000000000000000000000000011000000001010000000000100100010101000110010101000000
0000001000000000000000001000000010100001101000000010000000101100000000100000000100
1000001000000000000010000000000000010000010000000000000010000000000000000000001000
0010001000000100000000000000100000000001000001000000000000110100000100100000000000
0000000010000000000000000010000000001000000000000000000000010000000100100010000000
01100000011160000000000000100000000000000000000000100000000000000100000000000000000
0010000000000010100000100000000000010000000000001000101000100100010000000000000000
0000000000000000000010100000000100100000000000000000000000010000011000000100000000
0100000000000000100010000000000001000000000000000000000000000000100000000000000100
0000010000000000000000000000000000000000000000000001000000000100100000000100000000
100001000000100000000000

L 1)1 = 0.1

15



Ben/Unfair Coin

e Outcome: x € {Tails, Heads}
* Probabilities {0.9, 0.1}

P(x = Tails) = 0.9

Such that:
« Plx=a) =p;

Zpi=1

i

Source: MacKay VideoLectures 02, Slide 10

Ben/Unfair Coin

Source: MacKay VideoLectures 02, Slide 12

16



Ben/Unfair Coin

\dex

\
\‘\ /\ "/( N/ \O)y

Source: MacKay VideoLectures 02, Slide 14

Shannon and Weaver: Models of Communication

Three “problems” in Communication:

 The technical problem: how
accurately can the message be
transmitted?

» The semantic problem: how precisely
is the meaning “conveyed”?

Source:
http://en.wikipedia.org/wiki/File: Transactional_comm_model.jpg

 The effectiveness problem: how
effectively does the received meaning
affect behaviour?

o

17
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Ex: Morse code

« Code words are
shortest for the most
common letters

« This means that
messages are, on
average, sent more
quickly.

Ao mm
Emmeoee
Comomme
Demeoe

Ee
Foomme
CGommmoe
Heowsoo
oo

J o mm - -
K mm o mm
Lommeoe
M .
Nmme

o] B B |
Pomsmue
of N NN |
Roemme
Sees

T mm

Ue o mm
Veoomm
We mm mm
Xmmeomm
Y oo mm mm
/mmmmee

losm mm mm mm
2o N HE EN
ecommmm
4o0o0emm
500000
tmmoecee

i XX

S m oo
Omm BN =m =m0
0 e = - = -

What is the “optimal code”?

« X is arandom variable

of X?

What is the best binary code to use?

Alice wants to tell Bob the value of X (repeatedly)

How many bits does it take (on average) to transmit the value

18



Optimal code lengths

* In the optimal code, the word for X = i has length

log, = —log, p(X = i)

p(X i)

For example:
A 0

Y%
B Ya 10
(03 Ya 1

ABAACACBAACB coded as 010001101110001110

If code length is not an integer, transmit many letters together

Kullback-Leibler divergence

» Measures the difference between two probability distributions
— (Mutual information was between two random variables)
Suppose you use the wrong code for X. How many bits do you
waste?

Length of Length of optimal

codeword odeword
Di1(pllg) = Zxp(x) [1082 ﬂ)/ 1082 » x)]

Dk (pllg) = 0, with equality when p and q are the same.
I(X;Y) = D (p(x, Y| Ip()p ()

19



Continuous variables

e X uniformly distributed between 0 and 1.
» How many bits required to encode X to given accuracy?

Decimal places

1 3.3219
2 6.6439
3 9.9658
4 13.2877
5 16.6096
Infinity Infinity

+ Can we make any use of information theory for continuous
variables?

K-L divergence for continuous variables

» Even though entropy is infinite, K-L divergence is usually
finite.

» Message lengths using optimal and non-optimal codes both
tend to infinity as you have more accuracy. But their difference
converges to a fixed number.

p(x) p(x)
x)log,—— — x)log, ——=dx

20



Calculating the Entropy of an Image

0.009

0.008 -

0.007

0.008

0.005

0.004

0.003

0.002

0.001

300

The entropy of lena is = 7.57 bits/pixel approx

Entropy In General

 Entropy of a source is maximised when all signals are
equiprobable and is less when a few symbols are much more
probable than the others.

Entropy = 7.57 bits/pixel . EntroPy =56 bits/pixel

s E
200 240 300 100 o 100

Hoistogrsiam of the c;ﬁginal image Histogram of the difference image

300
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Huffman Coding of Lenna

Symbol Code Length

0 42
1 42
2 41
3 17
4 14

Average Code Word Length = Y22 p, I, = 7.59 bits/pixel

So the code length is not much greater than the entropy

But this is not very good

* Why?
— Entropy is not the minimum average codeword length for a
source with memory
— If the other pixel values are known we can predict the unknown
pixel with much greater certainty and hence the effective (ie.
conditional) entropy is much less.

» Entropy Rate
— The minimum average codeword length for any source.
— Itis defined as

H(y)= Iim%H(Xl, Xy X))

22



Coding Sources with Memory

« Itis very difficult to achieve codeword lengths close to the
entropy rate
— In fact it is difficult to calculate the entropy rate itself

* We looked at LZW as a practical coding algorithm
— Average codeword length tends to the entropy rate if the file is
large enough
— Efficiency is improved if we use Huffman to encode the output
of LZW
— LZ algorithms used in lossless compression formats (eg. .tiff,

.png, .gif, .zip, .0z, .rar...)

Efficiency of Lossless Compression

» Lenna (256x256) file sizes
— Uncompressed tiff - 64.2 kB
— LZW tiff — 69.0 kB
— Deflate (LZ77 + Huff) — 58 kB

« Green Screen (1920 x 1080) file
sizes

— Uncompressed — 5.93 MB
— LZW-4.85 MB
— Deflate — 3.7 MB

23



Differential Coding

» Key idea — code the differences in intensity.

G(X,y) = |(X,y) - I(X'l’y)

Differential Coding

&

Huffman

Calculate
Difference

Enoding

Image

Huffman

<—1 Recon-

| struction |

Decoding

» The entropy is now 5.60 bits/pixel which is much less than 7.57
bits/pixel we had before (despite having twice as many symbols)

24



Lossy Compression

« But this is still not enough compression
— Trick is to throw away data that has the least perceptual
significance

Effective bit rate = 8 Effective bitrate = 1
bits/pixel bit/pixel (approx)

Next Time... /2 |

 Information Theory & More!

* Review:
— Chapter 6 of FPW
— Chapter 13 of Lathi

» Deeper Pondering??

25



Final Exam Review

e June 10, 2016

« From: 2-4

. In: 45-204 (77?)

* Some Review Notes

(from Course Textbooks)

=2>http://robotics.itee.uqg.edu.au

/~elec3004/tutes.html
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