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Lecture Schedule:

Week Date Lecture Title
1 29-FehIntroduction
3-Mar|Systems Overview
> 7-Mar|Systems as Maps & Signals as Vectors
10-Mar|Data Acquisition & Sampling
3 14-MariSampling Theory
17-MarjAntialiasing Filters
4 21-Mar|Discrete System Analysis
24-MarConvolution Review
gim: Holiday
4-Apr|Frequency Response & Filter Analysis
5 v
7-Apr|Filters
6 11-Apr|Digital Filters
14-Apr|Digital Filters
7 18-Apr|Digital Windows
21-Apr[FFT
8 25-Apr|Holiday
28-AprjIntroduction to Feedback Control
9 3-May|Holiday
5-May|Feedback Control & Regulation
10 9-May|Servoregulation/PID
12-MaylIntroduction to (Digital) Control
1 16-May|Digital Control Design & State-Space
19-May|Observability, Controllability & Stability of Digital Systems
12 23-May|Digital Control Systems: Shaping the Dynamic Response & Estima]
26-May|Applications in Industry
13 30-May| System Identification & Information Theor!
2-Jur]Summary and Course Review



http://videolectures.net/mackay_course_01/
https://www.ucl.ac.uk/cortexlab/class/7._Information_theory.pptx
http://www.mee.tcd.ie/~sigmedia/pmwiki/uploads/Teaching.4S1b/comp_rev.pptx
http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/

Announcements

PS 3 Peer Review Competition ELEC 3004
A The PS 3 Review witthe AReview

highest Likert Score fLab 50):
A Deadline for reviews:

June 3 (11:59 pm) A Redo any aspects of any
A Good reviews discussed of the labs

June 2d Last Lecture A Review course
A Reward: 3004¢ A Review 2015 Final exam

(which we will do
on June 2 also)

Follow Along Reading:

S Today

. B.P.Lathi C Statespacec

Signal processing
and linear systems

1998 A LathiCh. 2 (?)

TK5102.9.L.38 1998
T 82.7-6 Time Constant and Rate off
Information Transmission

David J. C. A Information Theory!
MacKay
InformationTheory,
Inference and Learking
ALGOMHNMS  far i s s
ong :A Final Exam 2015:
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htp ://_www.inference. __:  edu.au/~ elec3004/tutes.h
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:  tml#Final :
Teeees T
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Information
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Shannon Informatiofheory

Information
Source Transmitter Receiver Destination

= [} >
Signal T Received

Signal

Message Message

Noise
Source

i T Huemdamental problem of communication is that of reproducing at one point
either exactly or approximately, a message selected at another goint

On the transmissioaf information over a noisghannel:
A Aninformation source that produces a message

A A transmitter that operates on the message to creatermlwhich can be sent through 3
channel

A channel which is the medium over which the signal, carrying the information that
composes the message, is sent

A receiver, which transforms the signal back into the message intended for delivery

A destination, which can be a person or a machine, for whom or which the message
intended

T

> 3>

[



http://en.wikipedia.org/wiki/Signal_(electrical_engineering)

| nf or mati on theory 1is

A 1t all starts withProbability Theory !
1. (Wikipedig Information theory is a branch of
applied mathematics, electrical engineering,

and computer science involving the
quantification of information

2. Information theory igprobability theory where
you take logs to base 2.

Binary Systematic Channel
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A Ex: A File of N=10,000 bits is transmitted with0.1

REDONDAN (1-7)

How many bits are flipped?




Binary Systematic Channel

Assume a Binomial distribution

A Mean: 01

A variance;, 0 nn Hy(z)

Then: 0.6-

‘ (thﬁ))p fl'[ T 0.4-

, (MP)(MBY)p MM MW T oo
0 T I 1 T

Thus:
PTTTO T

How to beat this?

Filter like mad! Redundant Transmission!
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A But this will also affect ARepetition C
Anermi syo si gfi 33

Matlaly medfilt2(  noisy_im )
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Source: MacKay VideoLectures 01, Slide 30
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Viewing this as a Likelihood
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Performance of repetition codes
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Source: MacKay VideoLectures 01, Slide 45

Huffman Coding

A Huffman is the simplest entropy coding scheme
T It achieves average code lengths no more than 1 bit/symbol

entropy
A Abinary tree is built by combining A0S
the two symbols with lowest
probability into a dummy node 1.0
B0.25
A Thecode length for each symbol is 04 A0
the number of branches between the ¢4 B10
root and respective leaf 0.15 C110
D111
D0.05




What 6s Achi evabl e?
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Source: MacKay VideoLectures 01, Slide 54
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Shannon's noisshannel coding theorem
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For any channel:
Reliable (virtually error-free) communication is possible
atratesupto C

Source: MacKay VideoLectures 01, Slide 58



https://en.wikipedia.org/wiki/Turbo_code
https://en.wikipedia.org/wiki/Forward_error_correction
https://en.wikipedia.org/wiki/Forward_error_correction

Entropy

A Entropy: Probability in Disguisé

The entropy of a random variable X with a probability mass function
p(x) is defined by

H(X}:—Zp{.\'rlogj px). (1.1)
-

Example 1.1.2  Suppose that we have a horse race with eight horses
taking part. Assume that the probabilities of winning for the eight horses

are (l, Jlr % ]—lﬁ ﬁ b—l4 61—4 h]—Jr) We can calculate the entropy of the horse
race as
I | 1 1 1 I
HX)=—1loge— — —-loe———-log— — —log — —4— log —
2 "2 4 74 8 78 16 16 64~ o4
= 2 bits. (1.3)

Entropy

A A messaged 8 & has length

T AR

A Along message, has an average lengtttpéewordof:

[CORECQRINE (Y) R T §e)

Entropy is always positive, singgw) T




Connection to Physics

A A macrostatés a description of a system by largeale
guantities such as pressure, temperature, volume.

A A macrostateould correspond to many different microst&g
with probabilityr) .

A Entropy of amacrostatés
Y NQBAI R

A Hydrolysis of 1 ATPmolecule at bodyemperature: ~ 20 bits

Entropy: So why does this work?

Example 2.1.1 Let

1 with probability p,

X=10 with probability 1 — p.

Then ‘
- _ def .
H(X)=—plogp—(1—p)log(l — p)=— H(p). (2.5)

Plot a graph of H(p) against p.

10
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FIGURE 2.1. H(p) vs. p.

Maximum entropy distributions

A Entropy measures uncertainty in a variable.

A If all we know about a variable is some statistics, we can fi
distributionmatching thenthat has maximum entropy.

A For constraintO("Y) i AQ p8 &, usually of form
@ Q°
A Relationship between andi not always simple
A For continuous distributions there is a (usually ignored)

dependence on a reference derisiigpends on coordinate
system

11



Examples of maximum entropy distributions

Data type Statistic Distribution

Continuous Mean and variance Gaussian
Norrnegative Mean Exponential
continuous
Continuous Mean Undefined
Angular Circular mean and Von Mises

vector strength
Non-negative Intege Mean Geometric
Continuous Autocovariance Gaussian process

stationary process function

Point process Firing rate Poisson process

Conditional Entropy

A Suppose Alice wants to tell Bob the value of X
i And they both know the value of a second variable Y.

A Now !'ghe optimal code depends on the conditional distributi
N6

A Code length fotd "Mhas lengttz] T @6 @)

A Conditional entropy measures average code length when
know Y

A0 W) R T T el
A

12



Mutual information

A How many bits do Alice and Bob save when they both
know Y?

W A ((619)
(COGRE-CIRE-GT
h
(AR
e o)

A Symmetrical in X and Y!
A Amount saved in transmitting X if you know Y equals
amount saved transmitting Y if you know X.

Properties of mutual information

RV ORCCLR
CORCCIH I
0G) 0@ O Y

H(X) H(Y)

Alfd QR 0@ Od

A If @and®are independeri@iy)
Aoy A Aud) CAw Aole Adw O
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Data Compression

A How to measure information
Content?

Source

Compression:

A Add redundancy

Encoder Decoder

t Noisy J %

A DO Inference channel

Exam ple: Mystery Text

EmmaWoodttuse, hands*me, clever* and rich,*with a comiortab *e home an*
happy di*position,*seemed to*unite som* of the b* st bless* ngs of
e*istence ;*andhad* ived nea*ly twenty *ne year*in the*world w* th
very*little *0 distr *ss or vex*her. *he was*the yo*ngest *f the *wo

dau*hters *f a most * ffect *onate * indu *gent* ather *and *ad, i *cons* quenc*

of h*r  si *ter *mar* iage *bee* mis*ress *of h*s ho*se f*om a ver * ea*ly
*eri *d.* er *oth *rh*dd* ed *00* ong*ago*for*her to*ha*e *or*

tYan*an*in*is*in*t * ent mbran*e *f * er *ca* es*es* a*d*h*r*p*a*e*h*d*b*e*
*u*p* | *d*b* *n*e*c*l*e*t*w*m*n*a* g**e**e** **h**h**

**l**n** | **l**s**r**o**a**o**e** | *

a***c***n***s***e***y S d-""""b""‘“"a T e n

W****o****s**** | | a g n t d*"***e****v Fkk

1. Emma Woodhouse, handsome, clever, and rich, with a comfortable home and happy

disposition, seemed to unite some of the best blessings of existence; and had lived
nearly twenty one years in the world with very little to distress or Vex her. She was

the youngest of the two daughters  of a most affectionate, indolent  father; and had ,
in consequence of her sister's marriage , been mistress of his house from a very
early period. Her mother had died too lone ago for her to have more than  an
indistinct remembrance of her caresses; and her place had been supplied by an

excellent woman as governess , who had fallen little short of a mother in affection.
Sixteen years had Miss Taylor been in Mr Woodhouse's family , less as a eoverness

than a friend , very

Source: MacKay VideoLectures 02, Slide 5
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Channel and Source Coding

Source
CHANNEL ’
Compressor Decompressor
CODING
S S
SOURCE
Encoder Decoder
CODING
t £ r
Noisy
channel

Ex: Bent/Unfair Coin

A A simple redundantsoure@a bent coi né

0000000000000000010010010000000000000000001000010001010000000001010000000000000000
0000010000000001000000000000010000011000001000000000000000100000000000100001000001
0000000000000000000010000001000000000001000000000000000000000000010000000000000000
0100010000001000000100100000000000010000000010000000000001001000010101000000110000
1000000000000100000000000000000000000000000000000000000001010000001000000000000010
0010100001100000000010000000000000000000000000000000000000000000000000010000000000
0001000000000000000001000010000000001101100000001010001010000000000000000000000000
0010001010000010000100000000000000000010000010000010000100100000000101000100000000
0000000000000000000000000000011000000001010000000000100100010101000110010101000000
0000001000000000000000001000000010100001101000000010000000101100000000100000000100
1000001000000000000010000000000000010000010000000000000010000000000000000000001000
0010001000000100000000000000100000000001000001000000000000110100000100100000000000
0000000010000000000000000010000000001000000000000000000000010000000100100010000000
0110000001110000000000000100000000000000000000000100000000000000100000000000000000
0010000000000010100000100000000000010000000000001000101000100100010000000000000000
0000000000000000000010100000000100100000000000000000000000010000011000000100000000
0100000000000000100010000000000001000000000000000000000000000000100000000000000100
0000010000000000000000000000000000000000000000000001000000000100100000000100000000
100001000000100000000000

EO T

15



Ben/Unfair Coin

A Outcomew™ {"Y&O BOQ O
A Probabilities{T@dTied}

0(® "YO R o

Such that:
ZO(@ &) N

Source: MacKay VideoLectures 02, Slide 10

Ben/Unfair Coin

Source: MacKay VideoLectures 02, Slide 12

16



Ben/Unfair Coin

Source: MacKay VideoLectures 02, Slide 14

Shannon anWeaver: Models of Communication

Three fiproblemso in Communi

A The technical problem: how
accurately can the message be
transmitted?

A Thesemantigroblem: how precisely
is the meaninfc onveyedol

Source:
http:/fen.wikipedia.org/wiki/File: Transactional_comm_model.jpg

A Theeffectiveness problem: how
effectively does the received meaning
affectbehaviour?

17


http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/File:Transactional_comm_model.jpg
http://en.wikipedia.org/wiki/File:Transactional_comm_model.jpg

Ex: Morse code

Ao mm Ue o mm
Emmeoee Veoomm
Comomme We mm mm
Demeoe Xmmeomm
A Code words are Ee Y - mm -
Foomme /mmmmee
shortest for the most G wm mm
common letters T : : 0o
J o mm - -
: K mm o mm losm mm mm mm
A This means that Ny ol
messages are, on I\l\fjl-- 2000--
average, sent more o=.-- ceeeen
quickly. Pomumue Cmmoooe
od 8 NY | ommmeee
Roemme S m oo
Sees Omm BN =m =m0
T mm 0 e = - = -
Wh at i's the oopti mal C

A X is a random variable
A Alice wants to tell Bob the value of X (repeatedly)
A What is the best binary code to use?

A How many bits does it take (on average) to transmit the va|
of X?

18



Optimal code lengths

A In the optimal code, the word far  “Chas length
Z11 ¢ ORI

A For example:
A 0

Y2
B Ya 10
Cc Ya 11

A ABAACACBAACB coded as 010001101110001110

A If code length is not an integer, transmit many letters toget

KullbackLeibler divergence

A Measures the difference between two probability distributid
i (Mutual information was between two random variables)

A Suppose you use the wrong codedoHow many bits do you

waste? .
Length of Length of optimal

;(?eword odeword
EO ign) B @[l T &4 |(; 1
ol )
TOIR %

F'O ngdn) T, with equality when p and q are the same.
Qo) O n dws@n(w

19



Continuous variables

E @ uniformly distributed between 0 and 1.
A How many bits required to encode X to given accuracy?

Decimal places

1 3.3219
2 6.6439
3 9.9658
4 13.2877
5 16.6096
Infinity Infinity

A Can we make any use of information theory for continuous
variables?

K-L divergence for continuous variables

A Even though entropy is infinite,-K divergence is usually
finite.

A Message lengths using optimal and 1omtimal codes both
tend to infinity as you have more accuracy. But their differg
converges to a fixed number.

ICINE XN CIN %Qw

20



Calculating the Entropy of an Image

0 L -
-50 a 50 100 150 200 250 300

The entropy ofenais = 7.57 bits/pixeapprox

Entropy In General

A Entropy of a source is maximised when all signals are
equiprobable and is less when a few symbols are much m¢
probable than the others.

Entropy = 7.57 bits/pixel N _Entrqpy = 5.6_bits/pixel

o — - L
300 -300 200 -100 100 200 300

I-iistoéuram‘%f the oria’inalzsiqmage Histogram of the difference ima

21



Huffman Coding ofenna

Symbol Code Length

0 42
1 42
2 41
3 17
4 14
é é

Average Code Word LengthB 1/ & X&® w0 "0l Qo Qa

So the codéength is not much greater than the entropy

But this is not very good

A Why?
i Entropy is not the minimum averagedewordength for a
source with memory
i If the other pixel values are known we can predict the unkno
pixel with much greater certainty and hence the effecigeve (
conditional) entropy is much less.

A Entropy Rate
I The minimum averageodewordength for any source.
i Itis defined as

H(c) =lim % H (X, X, X,

22



Coding Sources with Memory

A 1t is very difficult to achieveodewordengths close to the
entropy rate
T In fact it is difficult to calculate the entropy rate itself

A We looked at LZW as a practical coding algorithm
T Averagecodewordength tends to the entropy rate if the file is
large enough
T Efficiency is improved if we use Huffman to encode the outpt
of LZW
I LZ algorithms used in lossless compression formegs.{(ff,
.png .gif, .zip, gz, raré )

Efficiency of Lossless Compression

A Lenna(256x256) file sizes
T Uncompressed tiff 64.2kB
T LZW tiff 7 69.0kB
I Deflate (LZ77 + Huff)i 58kB

A Green Screen (1920 x 1080) file
sizes

T Uncompressed 5.93 MB
T LZW T 4.85 MB
I Deflatei 3.7 MB
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