

Lecture Schedule:						
	Week	Date	Lecture Title			
	TTEER	29-Feb	Introduction			
	1	3-Mar	Systems Overview			
	2	7-Mar	Systems as Maps & Signals as Vectors			
	2	10-Mar	Data Acquisition & Sampling			
	3	14-Mar	Sampling Theory			
		17-Mar	Antialiasing Filters			
	4	21-Mar	Discrete System Analysis			
	4	24-Mar	Convolution Review			
		28-Mar	Holiday			
		31-Mar	Holiday			
	5	4-Apr	Frequency Response & Filter Analysis			
	3	7-Apr	Filters			
	6	11-Apr	Digital Filters			
	0	14-Apr	Digital Filters			
	7	18-Apr	Digital Windows			
	,	21-Apr	FFT			
	8	25-Apr	Holiday			
		28-Apr	Introduction to Feedback Control			
		3-May	Holiday			
		5-May	Feedback Control & Regulation			
	10	9-May	Servoregulation/PID			
	-	12-May	Introduction to (Digital) Control			
	11	16-May	Digital Control Design & State-Space			
		19-Mav	Observability, Controllability & Stability of Digital Systems			
	12	23-May	Digital Control Systems: Shaping the Dynamic Response & Estimation			
		26-May	Applications in Industry			
	12	30-May	System Identification & Information Theory			
	13	2-Jun	Summary and Course Review			
ELEC 3004: Systems	_			30 May 2016 - 2		

Entropy

• Entropy: Probability in Disguise!

The entropy of a random variable X with a probability mass function p(x) is defined by

$$H(X) = -\sum_{x} p(x) \log_2 p(x).$$
 (1.1)

Example 1.1.2 Suppose that we have a horse race with eight horses taking part. Assume that the probabilities of winning for the eight horses are $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64})$. We can calculate the entropy of the horse race as

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{16}\log\frac{1}{16} - 4\frac{1}{64}\log\frac{1}{64}$$

= 2 bits. (1.3)

ELEC 3004: Systems

Entropy

• A message $X_1 \dots X_n$ has length

$$\sum_{i} -\log_2 p(X=X_i)$$

• A long message, has an average length per codeword of:

$$H(X) = E(-\log_2 p(X)) = \sum_X -p(X)\log_2 p(X)$$

Entropy is always positive, since $p(X) \ge 0$.

Connection to Physics

- A macrostate is a description of a system by large-scale quantities such as pressure, temperature, volume.
- A macrostate could correspond to many different microstates i, with probability p_i .
- Entropy of a macrostate is
- $S = -k_B \sum_i p_i \ln p_i$
- Hydrolysis of 1 ATP molecule at body temperature: ~ 20 bits

ELEC 3004: Systems

Entropy: So why does this work? Example 2.1.1 Let $X = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } 1 - p. \end{cases} (2.4)$ Then $H(X) = -p \log p - (1 - p) \log(1 - p) \stackrel{\text{def}}{=} H(p). \quad (2.5)$ Plot a graph of H(p) against p.

Maximum entropy distributions

- Entropy measures uncertainty in a variable.
- If all we know about a variable is some statistics, we can find a distribution matching them that has maximum entropy.
- For constraints $E(S_i) = s_i$, $i = 1 \dots n$, usually of form

$$p(X) = e^{-\sum_i \lambda_i S_i}$$

- Relationship between λ_i and s_i not always simple
- For continuous distributions there is a (usually ignored) dependence on a reference density depends on coordinate system

oles of maximum entropy distributions					
Data type	Statistic	Distribution			
Continuous	Mean and variance	Gaussian			
Non-negative continuous	Mean	Exponential			
Continuous	Mean	Undefined			
Angular	Circular mean and vector strength	Von Mises			
Non-negative Integer	Mean	Geometric			
Continuous stationary process	Autocovariance function	Gaussian process			
Point process	Firing rate	Poisson process			

Conditional Entropy

- Suppose Alice wants to tell Bob the value of X
 And they both know the value of a second variable Y.
- Now the optimal code depends on the conditional distribution p(X|Y)
- Code length for X = i has length $-\log_2 p(X = i|Y)$
- Conditional entropy measures average code length when they know Y

$$H(X|Y) = -\sum_{X,Y} p(X,Y) \log_2 p(X|Y)$$

ELEC 3004: Systems

0 May 2016 - **24**

Mutual information

• How many bits do Alice and Bob save when they both know Y?

$$I(X;Y) = H(X) - H(X|Y)$$
$$= \sum_{X,Y} p(X,Y)(-\log_2 p(X) + \log_2 p(X|Y))$$
$$= \sum_{X,Y} p(X,Y) \log_2 \left(\frac{p(X,Y)}{p(X)p(Y)}\right)$$

- Symmetrical in X and Y!
- Amount saved in transmitting X if you know Y equals amount saved transmitting Y if you know X.

ELEC 3004: Systems

30 May 2016 - **25**

Exa	ample: Mystery Text					
I.	Emma Woodh*use, hands*me, clever* and rich,*with a comiortab*e home an* happy di*position,*seemed to*unite som* of the b*st bless*ngs of e*istence;*and had *ived nea*ly twenty *ne year* in the*world w*th very*little *0 distr*ss or vex*her. *he was*the yo*ngest *f the *wo dau*hters *f a most *ffect*onate* indu*gent *ather* and *ad, i* cons*quenc* of h*r si*ter'* mar*iage* bee* mis*ress*of h*s ho*se f*om a ver* ea*ly *eri*d. *er *oth*r h*d d*ed *00 *ong*ago*for*her to*ha*e *or* t*an*an*in*is*in*t *em*mb*an*e *f *er*ca*es*es* a*d*h*r*p*a*e*h*d*b*e* *u*p*i*d*b* *n*e*c*l*e*t*w*m*n*a* g**e**e**,**h**h** **l**n**i**l**s**r*o**a**o**e**i* a**cc**n**S**e**y**s***d***s**a***r**e***n*** W****o****s***i**i***l*****g***n***t***a****e******					
11.	Emma Woodhouse, handsome, clever, and rich, with a comfortable home and happy disposition, seemed to unite some of the best blessings of existence; and had lived nearly twenty one years in the world with very little to distress or Vex her. She was the youngest of the two daughters of a most affectionate, indolent father; and had , in consequence of her sister's marriage , been mistress of his house from a very early period. Her mother had died too lone ago for her to have more than an indistinct remembrance of her caresses; and her place had been supplied by an excellent woman as governess, who had fallen little short of a mother in affection. Sixteen years had Miss Taylor been in Mr Woodhouse's family , less as a eoverness than a friend , very					
Source: MacKay VideoLectures 02, Slide 5						
ELEC	C 3004: Systems 30 May 2016 - 28					

Ben/Unfair Coin

- Outcome: $x \in \{Tails, Heads\}$
- Probabilities {0.9, 0.1}

$$P(x = Tails) = 0.9$$

Such that:

• $P(x = a_i) = p_i$

$$\sum_{i} p_i = 1$$

Source: MacKay VideoLectures 02, Slide 10

Continuous variables

- *X* uniformly distributed between 0 and 1.
- How many bits required to encode X to given accuracy?

1	3.3219
2	6.6439
3	9.9658
4	13.2877
5	16.6096
Infinity	Infinity

• Can we make any use of information theory for continuous variables?

K-L divergence for continuous variables

- Even though entropy is infinite, K-L divergence is usually finite.
- Message lengths using optimal and non-optimal codes both tend to infinity as you have more accuracy. But their difference converges to a fixed number.

$$\sum_{x} p(x) \log_2 \frac{p(x)}{q(x)} \to \int p(x) \log_2 \frac{p(x)}{q(x)} dx$$

ELEC 3004: Systems

But this is not very good	
 Why? Entropy is not the minimum average codeword length for source with memory If the other pixel values are known we can predict the un pixel with much greater certainty and hence the effective conditional) entropy is much less. 	or a 1known e (ie.
 Entropy Rate The minimum average codeword length for any source. It is defined as 	
$H(\chi) = \lim_{n \to \infty} \frac{1}{N} H(X_1, X_2, \dots, X_n)$	
ELEC 3004: Systems	30 May 2016 - 44

- It is very difficult to achieve codeword lengths close to the entropy rate
 - In fact it is difficult to calculate the entropy rate itself
- We looked at LZW as a practical coding algorithm
 - Average codeword length tends to the entropy rate if the file is large enough
 - Efficiency is improved if we use Huffman to encode the output of LZW
 - LZ algorithms used in lossless compression formats (eg. .tiff, .png, .gif, .zip, .gz, .rar...)

ELEC 3004: Systems

Lossy Compression

- But this is still not enough compression
 - Trick is to throw away data that has the least perceptual significance

Effective bit rate = 8 bits/pixel

Effective bit rate = 1 bit/pixel (approx)

