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Basic Closed-loop Block Diagram

T'F (s) =

W
RA‘(f* D(S) L‘éﬁ— G(s) Y

A

H(s)

Y(s) D (s) G (s) . DG

R(s) 14+ D(s)G(s)H(s) 1+ DGH

Controlabilty
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Controllability

X = AXx + Bu
y =Cx
where x = state vector (n-vector)
u = control vector (r-vector)
y = output vector (m-vector) (m = n)
A = n X n matrix
B = n X r matrix
C = m X n matrix
is completely output controllable if and only if the composite m X nr matrix P, where

:> P=[CB | CAB | CA’B | -~ | CA"'B]

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for
complete output controllability.)

Controllability Example

+ Is this fully controllable: ) ‘
H| | -3 1 X ]

 Solution: (‘J ) { SJLJ ’ [4]“

SERE

2 15 ]| x
-3 1
~2 15
31 [1

SNESd HEH

» We see that vectors B and AB are not linearly independent and
» The rank of the matrix [B | AB] is 1 <m (m=2)
[> ~ the system is not completely state controllable.

» In fact, elimination of x, from the given problem yields: X,(s) s+ 25
X+ 100 = 250 =u + 250 T g T (28 1)

* Notice that cancellation of the factor (s + 2.5) occurs in the numerator and denominator of the transfer
function. Because of this cancellation, this system is not completely state controllable and it’s
unstable system (s=1, RHP!). Remember that stability and controllability are quite different things.
There are many systems that are unstable, but are completely state controllable.




Controllability Example |l
- TF 9 CCF ] L

P N

[ x| )
08 1] : [ Solutian, Consider the systom defined by Equations (9-120) and (9-121). The rank of th Lx]

[ *

%2

\\\\\\

Stability

ELEC 3004: Systems 23 May 2016 - 10




Fast sampling revisited

 Forsmall T:
(sT)?
2

z—1
—zxl+4sT 38=——r
T

s=eT =147+ 4. ~14sT

* Hence, the unit circle under the map from z to s-plane becomes:

Im(z—1)

A
\_/

Re(z — 1)

Specification bounds

* Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) Img(s) Img(s)
wy, = |s] 9
£ X
1
:7 > F—b
9 Re(s) Re(s) Re(s)
\\\ X X
s=g0
. 4.6
Is| =$ s=— 0 =sin~1¢




Discrete bounds

» These map to the discrete domain:

Img(2) Img(z2)
S
X Re ) x,'/f Re(2)

In practice, you’d use Matlab to plot these, and check that the spec is satisfied

Example Code:

%% Input Sy

tem Model G

numg=5; deng=[1 20 0]; sysg=tf (numg, deng);

5% Approximate the ZOH (l-e”

-sT)/ (s)
[nd, dd]=pade(l,2); %pade gives us the "hold" or -e”-sT of a ZOH
sysp=tf (nd, dd); sysi=tf([1],[1,0]); %Now

1 the "1/s" portion
sysl=series (l-sysp, sysi); % Approximation a

% Open loop response

syso=series (sysl, sysg); % mputer the open loop G with the ZOH
sys=feedback(syso,1); % C ter the unity feedback response
step(sys) % Display the step res




Obtaining a Time Response
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From SS to Time Response — Impulse Functions
* Given: x = Ax + Bu
 Solution:

x(£) = eAnlx(yy) /e’\(’”l%u('r)c'l-r

Jig

— Substituting t, = 0 into this:

‘:‘f:l — (.Jl\fx_[l(]_) + eA[l T)lllli:T](!r
JO

- Writethe impulse as: ;) — 501y

— where w is a vector whose components are the magnitudes of r
impulse functions applied at t=0

o}
x(1) = e*x(0-) + / eTIBS(T)w dr
— -

= eMx(0-) + eMBw




From SS to Time Response — Step Response

* Given: x = Ax + Bu

o Startwithu(t) =k
Where K is a vector whose components are the magnitudes
of r step functions applied at t=0.

x(t) = eMx(0) + [ MTBkdr
JO

Vs A"rz \ b
= eMx(0) + M-‘! /(1 ~ A7+ - = Jdr | Bk
LJo A & J

A A

oy + o1 — AL L AT )
= eM'x(0) + e \.Ir T + 3l "|“l\

— Assume A is non-singular

C x(1)

eMx(0) + eM[—(A)(e™ - 1) |Bk
eMx(0) + A(e™  I)Bk

From SS to Time Response — Ramp Response

» Given: x = Ax + Bu

 Start with u(t) = tv
Where v is a vector whose components are magnitudes of ramp
functions applied att =0

x(1) = e*x(0) 4 M RBrv dr

= eMx(0) + e"“/ e 7 drBv
]
) (1, 2A AT, A \
--.»-".\[llj—u"“il\ir 3 O 4‘71 Tl +‘--’JBv

— Assume A is non-singular

Il

eMx(0) + (A%)(e* — I — At)Bv
eMx(0) + [A(eM — 1) - At]Bv

x(1)
=

Il




Example: Obtain the Step Response

. Given: [} _ [*1‘ *?}5][:] + [(ﬂm BESH - [SJ
y=1 ()]E} u(t) = 1()
« Solution:

s+1 05 [ 1 [ -05 | (¢ oA = ol isl - A)
e Y 7[ ' 1 . ¢ ' (e o (51 - A)]
1 § 2+s+0501 s+1] [(- 5((c0s 0.5¢ — sin0.5¢) ¢ % sin 0.5¢ |

- = = e sin .51 e "¥(cos0.5r + sin0.51) |
s+ 05— 05 0.5 1 )

s+ 052+ 035 (54 05) + 052

s+ 05+05
(s + 0.5)* + 057 (5 + 05) + 0.5
— Set k=1, x(0)=0:
x(t) = eMx(0) Al eM I)Bk

= A B

1)
- 0 ij‘ 0.5¢ ¥ (cos0.5¢ - sin0.5t) — 05 | :> y(t) = H U}[ "[':| = i = e " 5in0.5¢
L~z -2 ¢ X
5t |

Example II: Obtain the Step Response

* Given:

« Solution:

. |r : ‘J e m :> B(r) = e = L7 (s1 — A)7]

[o]-[20em cosnlim] [
— Assume x(0)=0:

xi(0) | _ 2et — e ™ et — g
x5(1) ,l 2e + 2e W —gt + 2e7¥

7"‘1(031 . [ &t Je ]
_x,(0) et — e
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Digital PID Controls

(Magic PID Made Easy
Equations)
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Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function

U(s)
X(s)

K;
= Gs) = Kp+ -1 + Kps. (13.54)

We can determine a digital implementation of this controller by using a discrete
approximation for the derivative and integration. For the time derivative, we use
the backward difference rule

d 1

wkT) = 5| = —(x(kT) — x[(k — 1)T]). (13.55)
dat gy 1

The z-transform of Equation (13.55) is then

_] -
X(z)="=

Tz

—Z

T 1 X(z).

U(z) = c

The integration of x(f) can be represented by the forward-rectangular integration at
t = kT as

u(kT) = u[(k — 1)T] + Tx(kT), (13.56)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

11



Implementation of Digital PID Controllers (2)

where u(kT) is the output of the integrator at t = k7. The z-transform of Equation
(13.56) is

U(z) = z 'U(z) + TX(2),
and the transfer function is then

%)_ Tz
X(iz) z-1

Hence, the z-domain transfer function of the PID controller is

KTz z—1
+ Kp— )
z—1 Prg

Gdz) = Kp + (13.57)

The complete difference equation algorithm that provides the PID controller is
obtained by adding the three terms to obtain [we use x(k7) = x(k)]

u(k) = Kpx(k) + Kjlu(k — 1) + Tx(k)] + (Kp/T)[x(k) — x(k — 1)]
= [Kp + KT + (Kp/T)]x(k) — KpTx(k — 1) + Ku(k — 1). (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor.
Of course, we can obtain a PI or PD controller by setting an appropriate gain equal
to zero.

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

PID Intuition

Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time  Steady-state error ~ Stability
K, l n Minimal change l l
K; ! n n Eliminate !
Improve
. No effect / -
Kp Minor change l l minimal change (if Kp
small)

12



PID Intuition: P and Pl and PID
» Responses of P, PI, and PID control to
8 T T 1.8 -
6 r— LD | '
A 7 ": /\ Pl ' _
i M g 0 .'.IAAJAUAA -
E“uUV\f\v’“ <2f \]U 1T 1T 1
7; UPID } 0.4 P S E—
| 0.2 §- - .
-6 | 0 |
0 1 3 4 5 6 0 1 2 3 4 5 6
T (msec) Tim )
(a) step disturbance input (b) step reference input

Shaping the
Dynamic Response:

Pole Placement

ELEC 3004: Systems



Pole Placement (Following FPW — Chapter 6)

» FPW has a slightly different notation:

x = Fx + Gu,
y = Hx.

x(k + 1) = ®x(k) + Tu(k),
y(k) = Hx(k},

FT
d=¢"",

77
I’:f eF1dnG,
0

Pole Placement

Start with a simple feedback control law (“controller’)

I
w=-Kx=—[KKy...] | 22

It’s actually a regulator
-+ it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

Substitute in the difference equation
x(k +1) = dx(k) — TKx(k)
» Z Transform:
(zZ —P+TK)X(z) =0
=» Characteristic Eqn:
det|zl — ® +TK| =0

14
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Pole Placement

Pole placement: Big idea:

« Arbitrarily select the desired root locations of the closed-loop
system and see if the approach will work.

» AKA: full state feedback
-+ enough parameters to influence all the closed-loop poles

« Finding the elements of K so that the roots are in the desired
locations. Unlike classical design, where we iterated on
parameters in the compensator (hoping) to find acceptable root
locations, the full state feedback, pole-placement approach
guarantees success and allows us to arbitrarily pick any root
locations, providing that n roots are specified for an nt"-order

system.
Meaning...
Serious design
10 T
0]
!
g
=l
g 10|
E
1)
3
0.1
0.0 0.5 1.0 1.5 2.0
‘ Frequency

15



Back to Pole Placement

* Given:

Zi = :811 ﬁZI 33!

« This gives the desired control-characteristic equation as:

ac(z) =(z-p)z—-B)(z~—-P3) .=

* Now we “just solve” for K and “bingo”

Pole Placement Example (FPW p. 241)

Example 6.1: Suppose we want to design a control law for the
satellite attitude-control system described by (2.45) with @ = [z; @3]
Example 2.13 showed that the discrete model for this system is

@:[B ﬂ and r:[TQT/ﬂ.

We want to pick z-plane roots of the closed-loop characteristic equa-
tion so that the equivalent s-plane roots have a damping ratio of
¢ = 0.5 and real part of s = —1.8 rad/sec (i.c., s = —1.8 £ 53.12
rad/sec). Using z = e*T with a sample period of 7' = 0.1 sec, we find
that z = 0.8 + j0.25, as shown in Fig. 6.1. The desired characteristic

equation is then
z2 —1.62+0.70 = 0, (6.9)

and the evaluation of (6.7) for any control law K leads to

10 17T T2/2], 5
Z{() 1] ln 1]*[ T J~K‘ Kol

det =10

or

24 (TKy+ (T?/2)K1 — 2)z + (T?/2)K; = TKy+1=0. (6.10)




Pole Placement Example (FPW p. 241)

Equating coefficients in (6.9) and (6.10) with like powers of z, we

obtain two simultaneous equations in‘ the two unknown elements of
K:

TKy+ (T?/2)K, — 2 = —1.6,
(T?/2)K; — TKz +1 =0.70,

which are easily solved for the coefficients and evaluated for T' = 0.1
sec:

%) !
00 =10, K=2E-ss

Ki= 7 T

ELEC 3004: Systems 23 May 2016 - 33

Pole Placement Example (FPW p. 241
1 1 il . T
‘ 'Im axis f I I
‘ |
| o8 | 90° 7l |
A— | I 08" | - | | S S——
L W, = 5% |
I ST "o 2r |
| 126°, ST oz
- W - 3 !
To7 = = e
- ‘ = o7 N 70
\ :

H \ \ ™ o 20" | 36"
144°% 1/ an ! A W PR |’47 -
TAST / \: NAZ —— —V 0.3 ! ;

"N ~. e

I 9, SRS Y T

: fa ‘ 405
| ‘ N L7 s !
S S - SIS — AN A 5 0.6 =]
fon | \ J < ;
1620 [ 10T ‘ N | e 0, =18°
-4 £ AN ] 08 |
~ 4 | ; > T
T B I N AT o T
] T 4 ~ A T \ -
r i - .
- 5 - x
| -t - t=1of fior | g7 [N
-1.0 -0.8 —0.6 —04 -0.2 00 0.2 0.4 0.6 0.8 L0
z = plane loci of roots of constant § and w,, A control roots
s ==tw, ¥ ju, /T -¢? A estimator roots
z=cTs
T = sampling period
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Ackermann's Formula (FPW p. 245)

» Gains maybe approximated with:

[K=[0..0 T & &T.. 8" 'T|'a(®)

« Where: C = controllability matrix, n is the order of the system
(or number of state elements) and «,:

C=[ &r...]
ae(B) = B" + a;B" L + @@ 2+ 4 o],
- a;: coefficients of the desired characteristic equation

au(2) = 21— @ +TK|=2"+ 2" '+ + an.

Ackermann's Formula Example (FPW p.246)

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ay; = —1.6, ay = +0.70,

and therefore

win=[3 ]y Teonly <[5 27)

Furthermore, we find that
_[Tism 3722
r q:r1_{ B8 ]
and

[r cprrlzl/w[ 1 +3T/2],

1 -T/2
and finally

K = [K; K] = (1/T))[0 1]{’1 3T/2} 10.1 0.41']

1 -7/2]{0 01
therefore
1
[K1 K3 = T_"[O'l 0.3577]
=[10 3.5],

which is the same result as that obtained earlier.

18



Shaping the
Dynamic Response:

SISO
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Design of regulators tor
single-input, single-output systems

6.2 DESIGN OF REGULATORS FOR

SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS

The present section is concerned with the design of a gain matrix
G=g=[g.9 -] (6.6)

for the single-input, single-output system

x=Ax+ Bu (6.7)
where
by
b,
B=pb=|"" (6.8)
Ly |
With the control law u = —Gx = —g'x (6.7) becomes
x=(A—bg')x

Our objective is to find the matrix G = ¢' which places the poles of the
closed-loop dynamics matrix

A, =A— by (6.9}

19



Design ot regulators tor
single-input, single-output systems

at the locations desired. We note that there are k gains g, go, ..., g and k
poles for a kth order system, so there are precisely as many gains as needed to
specify each of the closed-loop poles.

One way of determining the gains would be to set up the characteristic
polynomial for A.:

IsT -Al=|sI —A+bg|=s"+as""'+ - --+a, (6.10)

The coeflicients a,, @, ..., d, of the powers of s in the characteristic poly-
nomial will be functions of the k unknown gains. Equating these functions to
the numerical values desired for a,...,d; will result in k simultaneous
equations the solution of which will yield the desired gains g, ..., g

This is a perfectly valid method of determining the gain matrix g, but it
enlails a substantial amount of calculation when the order k of the system is
higher than 3 or 4. For this reason, we would like to develop a direct formula
for g in terms of the coefficients of the open-loop and closed-loop characteristic
equations.

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

—a, =—a, =t —d
1 0 0 0

A=]| 0 | 0 0 {(6.11)
0 0 1 0

Design of regulators for
single-input, single-output systems

0 g g2 Ok
bg'=| O|lgngn--cngd=| = ? ______ 0
0 LI 0
Hence
-4 -4, —— 6 ~ a4 = Gk
1 0 0
A.=A-bg - 0 1 0
0 0 0

The gains g,,..., g are simply added to the coefficients of the open-loop A
matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements
are given by
a;tg =d; i=12...k

or

g=d—a (6.12)

a, a,
a=] : é=|: ] (6.13)
a, a,

where

o

20



Design ot regulators tor
single-input, single-output systems

are vectors formed from the coefficients of the open-loop and closed-loop
characteristic equations, respectively.

The dynamics of a typical system are usually not in companion form. It is
necessary to transform such a system into companion form before (6.12} can be
used. Suppose that the state of the transformed system is X, achieved through
the transformation

=Tx (6.14)
Then, as shown in Chap. 3,
£ = A% + bu (6.15)
where
A=TAT" and b=Tb
For the transformed system the gain matrix is
g=d—-a=da-a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

u=-g'x=—gT 's=-gx (6.17)

From (6.17) we see that

v

g=g'T"
Thus the gain in the original system is

g=Tg=T{d—a) (6.18)

Design of regulators for
single-input, single-output systems

o

In words, .the desired gain matrix for a general system is the difference
between the coeficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has

the form (6.11).
The desired matrix T is obtained as the product of two matrices U and V:

T=VYU (6.19)
The first of these matrices transforms the original system into an intermediate

system
%= A% (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

¥ = A%+ bu (6.21)
with A and b in the form of (3.107). Then we must have

A=UAU"' and b=Ub (6.22)

21



Design ot regulators tor
single-input, single-output systems

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

U'A= AU (6.23)
or .
QA= AQ (6.24)
Now, for a single-input system
Q=[hAb,... 6 A*'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is
00 --v —a
10 v —a,
QA=[bAb,...,A'B][0 1 -+ —a_,
00 - —a, _
=[Ab A%b,.. ., A*'b —ab —a,_ Ab— - - — @, A*'B]  (6.25)

The last term in (6.23) is
(—a,d —ay [ A—-—a A" Vb (6.26)
Now, by the Cayley-Hamilton theorem, (see Appendix):

AF = —u\Ak’L - u,_A"‘ L a.d
50 (6.26) is A*b. Thus the left-hand side of (6.24) as given by (6.25) is
QA =[Ab, A%, ..., A*B]= A[b, Ab, ... ., A*'b] = AQ

which is the desired result.

< /assessable>

V AV AV 4 4V 4 & & 4 & /4

WARNING: NOT ASSESSABLE
YV D VYV VY

» Nothing beyond this point is on the exam.
(except for the exam review ©)

« Do not pay attention.

» Do not attempt to learn.

22



Example 1:

Inverted Pendulum

ELEC 3004: Systems

23 May 2016 - 45

Digital Control

[ T
L= 3Mu} 4 5me3 —mgteosd

I )
|:> DA El |:>

2

d *o(d ?
’ r— s (¢cos:
v} (‘“(; ‘ m//)) +(;I/‘ rm/u)

‘Simpifying tha expression for U leads to

o} = i® — 2ib cost + (36
The Lageangian s now given by

=1 (M + m) &® — mfif cosf + imwﬁ" — mgfcos
and the equations of motion are: -
doL oL
dtoi ~ or
doL oL _
dtgs 00

substituting 7, n these equatons and smplying leads t the equatons tha describe the mation o
(M +m) & — mlé cos + me6*sinf =
6 — gsinf = i cost

rf‘ )
£ ] i
B0 ‘ / V’\
0
Wikipedia, &

Cart and pole

-]
N
.
& [des]

1}
|
2 | 1
// \ L
4 1
e b "W
W
V
8
o 3
97 o4 06 08 1 12 14 05 1 15 7 25
tls) t[s]




Inverted Pendulum

1 1
L= iiﬂvf + Emvg —mgfcost

Velocity pick-off

S— where U1 is the velocity of the cart and U is the velocity of the point mass 112. ¥y and Uz can be
expressed in terms of x and § by writing the velocity as the first derivative of the position;

—w

2 .2
v =@

Simplifying the expression for Vg leads to:
vg = &% — 2080 cosd + £0°

The Lagrangian is now given by:

2
and the equations of motion are:
4oL aL
dt oz~ gr
daL aL
dtgé — a6

6 — gsind = i cosf

d * o /d :
vé = (E(I — fsin 6‘)) + (E(ﬂ casﬁ‘))

1 . 1,
L == (M+m)i? — mbifcosh + §m£’26‘2 — mglcosf

substituting [ in these equations and simplifying leads to the equations that describe the motion o

(M +m)i — mffcosf + m6sind = F

Inverted Pendulum — Equations of Motion

» The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:

0=uw
@ =06=0% +Pu

s M+m
— 1
P—Ml.

Where:

If we further assume unity Ml (Ml = 1), then P = 1
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Inverted Pendulum —State Space

« We then select a state-vector as:

16 . [6] _[w
X = [w] hence x = [w] = [w]
» Hence giving a state-space model as:
[0 11, [0
4= 02 o]’B =4
» The resolvent of which is:
- -1
e o1 [ s 1 [s 1]
o@=61-7=| 0 V] =m@le s

» And a state-transition matrix as:

hot sinh Qt
B(t) = cosh Q 0

Q sinh Qt coshQt

Cart & Pole in State-Space With Obstacles?

Swing-up is a little more than stabilization...

See also;: METR4202 — Tutorial 11:

http://robotics.itee.uq.edu.au/~metrd202/tpl/tll-Weekll-pendulum.pdf
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http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf
http://robotics.itee.uq.edu.au/~metr4202/tpl/t11-Week11-pendulum.pdf

Cart & Pole in State-Space

Swing-up is a little more than stabilization...

Example 2:

Command Shaping

ELEC 3004: Systems
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Experiments: Scanning Over Obstacle

Vombe e

PO LB

ELEC 3004: Systems 23 May 2016 - 53

Command Shaping

0.6
A, ==A, Response
AR ﬁ A, ™ A, Response
' o —e—Total Response [

Position

ELEC 3004: Systems 23 May 2016 - 54
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Rabuct Control
NUUUOL UTILT VI,
Command Shaping for Vibration Reduction

Integrated COTE]
Planner —— - ero—p{ Regulator }——»] Plant
Shapping
Controller
T -

Sensor

L —Tunning — —

Command Shaping

Original velocity profile

Input shaper

*

Time= Time
Command-shaped velocity profile

\ Tirrie

Velocity

Velocity
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Command Shaping

Ao Y T
* a2 From Aj
s From Ag

Initial Command Input Shaper Shaped Command

« Zero Vibration (ZV)
1 K

Al_|1+K 1+K o
b L K = o<
« Zero Vibration and Defivative (ZvD)

1 2K K?
{ﬂz 1+K)? (1+K)? (1K)
k 0 %d T,

ELEC 3004: Systems 23 May 2016 - 57

Experiments: Command Shaping

', /
! ) AT
X | i
oy ) TGN NG
ool 1
. s}

>

ELEC 3004: Systems 23 May 2016 - 58
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Next Time...

+ Digital Control via Emulation!

* Review:
— Chapter 5 of FPW

» Deeper Pondering??
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