	http://elec3004.com
Shaping the Dynamic Response	
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh	
Lecture 21 (with material from FPW and Lathi)	
elec3004@itee.uq.edu.au http:///fobotics.itee.uq.edu.au/~~@rec3004/	May 23, 2016

Lecture Se	che	edule	:	
	Week	Date	Lecture Title	
	1	29-Feb	Introduction	
	1	3-Mar	Systems Overview	
	2	7-Mar	Systems as Maps & Signals as Vectors	
	2	10-Mar	Data Acquisition & Sampling	
	2	14-Mar	Sampling Theory	
	3	17-Mar	Antialiasing Filters	
		21-Mar	Discrete System Analysis	
	4	24-Mar	Convolution Review	
		28-Mar	H F1	
		31-Mar	Holiday	
		4-Apr	Frequency Response & Filter Analysis	
	5	7-Apr	Filters	
		11-Apr	Digital Filters	
	6	14-Apr	Digital Filters	
	_	18-Apr	Digital Windows	
	7	21-Apr	FFT	
	-	25-Apr	Holiday	
	8	28-Apr	Introduction to Feedback Control	
		3-May	Holiday	
	9	5-May	Feedback Control & Regulation	
		9-May	Servoregulation/PID	
	10	12-May	Introduction to (Digital) Control	
	11	16-May	Digital Control Design & State-Space	
	11	19-May	Observability Controllability & Stability of Digital Systems	
			Digital Control Systems: Shaping the	
	12 ²	23-May	Dynamic Response & Estimation	
		26-May	Applications in Industry	
	12	30-May	System Identification & Information Theory	
	13	2-Jun	Summary and Course Review	
ELEC 3004: Systems				23 May 2016 - 2

Controlabilty

ELEC 3004: Systems

Controllability

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $\mathbf{y} = \mathbf{C}\mathbf{x}$ where $\mathbf{x} = \text{state vector}(n \text{-vector})$

 $\mathbf{u} = \text{control vector}(r \cdot \text{vector})$ $\mathbf{y} = \text{output vector} (m \text{-vector}) \quad (m \le n)$

$$\mathbf{A} = n \times n$$
 matrix

$$\mathbf{B} = n \times r$$
 matrix

 $\mathbf{C} = m \times n$ matrix

is completely output controllable if and only if the composite $m \times nr$ matrix **P**, where

is of rank m. (Notice that complete state controllability is neither necessary nor sufficient for complete output controllability.)

ELEC 3004: Systems

Obtaining a Time Response

ELEC 3004: Systems

23 May 2016 - 15

<section-header><text><list-item><equation-block><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Digital PID Controls (Magic PID Made Easy Equations)

ELEC 3004: Systems

23 May 2016 - **21**

Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function

$$\frac{U(s)}{X(s)} = G_c(s) = K_P + \frac{K_I}{s} + K_D s.$$
 (13.54)

We can determine a digital implementation of this controller by using a discrete approximation for the derivative and integration. For the time derivative, we use the **backward difference rule**

$$u(kT) = \frac{dx}{dt}\Big|_{t=kT} = \frac{1}{T}(x(kT) - x[(k-1)T]).$$
(13.55)

The z-transform of Equation (13.55) is then

$$U(z) = \frac{1 - z^{-1}}{T} X(z) = \frac{z - 1}{Tz} X(z).$$

The integration of x(t) can be represented by the **forward-rectangular integration** at t = kT as

$$u(kT) = u[(k-1)T] + Tx(kT), \qquad (13.56)$$

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

ELEC 3004: Systems

F	PID Intuit	ion				
		Effects of	of increasing a	parameter indepe	ndently	
	Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
	K _p	\downarrow	ſ	Minimal change	\downarrow	\downarrow
	K _I	\downarrow	ſ	ſ	Eliminate	\downarrow
	K _D	Minor change	Ļ	Ļ	No effect / minimal change	Improve (if K _D small)
	ELEC 3004: Systems					23 May 2016 - 24

Shaping the Dynamic Response: Pole Placement

<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Pole Placement

ELEC 3004: Systems

Pole placement: Big idea:

- Arbitrarily select the desired root locations of the closed-loop system and see if the approach will work.
- AKA: full state feedback
 : enough parameters to influence all the closed-loop poles
- Finding the elements of K so that the roots are in the desired locations. Unlike classical design, where we iterated on parameters in the compensator (hoping) to find acceptable root locations, the full state feedback, pole-placement approach guarantees success and allows us to arbitrarily pick any root locations, providing that *n* roots are specified for an *n*th-order system.

ELEC 3004: System

Ackermann's Formula (FPW p. 245)

• Gains maybe approximated with:

 $\mathbf{K} = \begin{bmatrix} 0 \dots 0 & 1 \end{bmatrix} \begin{bmatrix} \Gamma & \Phi \Gamma & \Phi^2 \Gamma \dots \Phi^{n-1} \Gamma \end{bmatrix}^{-1} \alpha_c(\Phi),$

Where: C = controllability matrix, *n* is the order of the system (or number of state elements) and α_c:

$$\mathcal{C} = \begin{bmatrix} \Gamma & \Phi \Gamma \dots \end{bmatrix}$$

$$\alpha_c(\Phi) = \Phi^n + \alpha_1 \Phi^{n-1} + \alpha_2 \Phi^{n-2} + \dots + \alpha_n \mathbf{I},$$

- α_i : coefficients of the desired characteristic equation

$$lpha_c(z) = |z\mathbf{I} - \mathbf{\Phi} + \mathbf{\Gamma}\mathbf{K}| = z^n + lpha_1 z^{n-1} + \dots + lpha_n.$$

ELEC 3004: Systems

Shaping the Dynamic Response: SISO

ELEC 3004: Systems

23 May 2016 - **37**

Design of regulators for	
single-input, single-output systems	
6.2 DESIGN OF REGULATORS FOR SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS	
The present section is concerned with the design of a gain matrix	
$G = g' = [g_1, g_2, \ldots, g_k]$	(6.6)
for the single-input, single-output system	
$\dot{x} = Ax + Bu$	(6.7)
where	
$B = b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$	(6.8)
With the control law $u = -Gx = -g'x$ (6.7) becomes	
$\dot{x} = (A - bg')x$	
Our objective is to find the matrix $G = g'$ which places the pole closed-loop dynamics matrix	s of the
$A_c = A - bg'$	(6.9)

ELEC 3004: Systems

Design of regulators for single-input, single-output systems

at the locations desired. We note that there are k gains g_1, g_2, \ldots, g_k and k poles for a kth order system, so there are precisely as many gains as needed to specify each of the closed-loop poles.

One way of determining the gains would be to set up the characteristic polynomial for A_c :

 $|sI - A_c| = |sI - A + bg'| = s^k + \bar{a}_1 s^{k-1} + \dots + \bar{a}_k$ (6.10)

The coefficients $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_k$ of the powers of s in the characteristic polynomial will be functions of the k unknown gains. Equating these functions to the numerical values desired for $\bar{a}_1, \ldots, \bar{a}_k$ will result in k simultaneous equations the solution of which will yield the desired gains g_1, \ldots, g_k .

This is a perfectly valid method of determining the gain matrix g', but it entails a substantial amount of calculation when the order k of the system is higher than 3 or 4. For this reason, we would like to develop a direct formula for g in terms of the coefficients of the open-loop and closed-loop characteristic equations.

If the original system is in the companion form given in (3.90), the task is particularly easy, because

	$-u_1$	- <i>u</i> ₂ 0		$-a_{k-1} = 0$	$\begin{bmatrix} -a_k \\ 0 \end{bmatrix}$	
A =	0	1	3.83	0	0	(6.11)
	0	0	in en e	1	0	
						23 May 20

Design of regulators for single-input, single-output systems $bg' = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} [g_1, g_2, \dots, g_k] = \begin{bmatrix} g_1 & g_2 & \cdots & g_k \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$ Hence The gains g_1, \ldots, g_k are simply added to the coefficients of the open-loop A matrix to give the closed-loop matrix Ac. This is also evident from the block-diagram representation of the closed-loop system as shown in Fig. 6.1. Thus for a system in the companion form of Fig. 6.1, the gain matrix elements are given by $a_i + g_i = \hat{a}_i \qquad i = 1, 2, \dots, k$ or $q = \hat{a} - a$ (6.12)where a_1 $\hat{a} =$: (6.13)

Design	of regulators for		
single-i	input, single-output systems		
	are vectors formed from the coefficients of the open-loop and closs characteristic equations, respectively. The dynamics of a typical system are usually not in companion for necessary to transform such a system into companion form before (6.12 used. Suppose that the state of the transformed system is \bar{x} , achieved the transformation $\bar{x} = Tx$	rm. It is) can be through (6.14)	
	Then, as shown in Chap. 3,		
	$\dot{x} = ar{A}ar{x} + ar{b}u$	(6.15)	
	where		
	$\bar{A} = TAT^{-1}$ and $\bar{b} = Tb$		
	For the transformed system the gain matrix is		
	$ar{g}=\hat{a}-ar{a}=\hat{a}-a$	(6.16)	
	since $\bar{a} = a$ (the characteristic equation being invariant under a change variables). The desired control law in the original system is	of state	
	$u = -g'x = -g'T^{-1}\bar{x} = -\bar{g}'\bar{x}$	(6.17)	
	From (6.17) we see that $\bar{g}' = g' T^{-1}$		
	Thus the gain in the original system is		
	$g=T' ilde{g}=T'(\hat{a}-a)$	(6.18)	
ELEC 3004: Sy			

Design of regulators for single-input, single-output systems

In words, the desired gain matrix for a general system is the difference between the coefficient vectors of the desired and actual characteristic equation, premultiplied by the inverse of the transpose of the matrix T that transforms the general system into the companion form of (3.90), the A matrix of which has the form (6.11).

The desired matrix T is obtained as the product of two matrices U and V:

$$T = VU \tag{6.19}$$

The first of these matrices transforms the original system into an intermediate system

$$\hat{\vec{x}} = \tilde{A}\tilde{\vec{x}} \tag{6.20}$$

in the second companion form (3.107) and the second transformation U transforms the intermediate system into the first companion form.

Consider the intermediate system

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{b}u \tag{6.21}$$

with \tilde{A} and \tilde{b} in the form of (3.107). Then we must have

$$\tilde{A} = UAU^{-1}$$
 and $\tilde{b} = Ub$ (6.22)

ELEC 3004: Systems

Example 1: Inverted Pendulum

ELEC 3004: Systems

Inverted Pendulum – Equations of Motion
• The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:
$\dot{\theta} = \omega$
$\dot{\omega} = \ddot{\theta} = Q^2\theta + Pu$
Where:
$Q^{2} = \left(\frac{M+m}{Ml}\right)g$ $P = \frac{1}{Ml}.$
If we further assume unity Ml ($Ml \approx 1$), then $P \approx 1$
ELEC 3004: Systems 23 May 2016 - 44

Example 2: Command Shaping

ELEC 3004: Systems

