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9-May|Servoregulation/PID

12-May|Introduction to (Digital) Control

16-May|Digital Control Design & State-Space

11 [19_May|Observability, Controllability & Stability of Digital Systems

23-May|Digital Control Systems: Shaping the Dynamic Response & Estimation

26-May|Applications in Industry

30-May|System Identification & Information Theory

2-Jun|Summary and Course Review
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Follow Along Reading:

p—— Today
B. P. Lathi =>» State-space €
Signal i
andlincar sysems. | © FPW
1998 — Ch. 5: Transfer Functions: The
TK5102.9.1.38 1998 Digital Filter
 Lathi Ch. 13
G. Franklin, - §13.2 S_y_stematic Proced_ure for
J. Powell, Determining State Equations
M. Workman — §13.3 Solution of State Equations

Digital Control "
of Dynamic Systems . FPW

1990

:  — Chapter 6 - Design of Digital Control
TJ216.F721990 Systems Using State-Space Methods
[Available as
UQ Ebook] ferene Next Tie  +eeeeeessseesssnesssnmesssnsessaneessaneeaas :

A Systematic Procedure for Determining State Egs.

1. Choose all independent capacitor voltages and inductor
currents to be the state variables.

2. Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

3. Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)
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Digital State Space

Extended Version

Solving State Space (Extended Version)...

* Recall:

r= f(x,u,t)

» For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

e ForLTI:

—x = Ax + Bu

— y = Cx -

- Du




Solving State Space

+ In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

« With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.

State-transition matrix P(t)

 Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

x(t) =D (t,7)x (1)




Digital State Space:

« Difference equations in state-space form:

« Where:

x[n+ 1] = Ax[n] + Bu[n]
y[n] = Cxn] + Duln]

— u[n], y[n]: input & output (scalars)
— X[n]: state vector

Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% = Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k +1) = ®x(k) + Tu(k),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /ﬂ ePdnG, (6.4b)




Discretisation FTW!

» We can use the time-domain representation to produce
difference equations!
KT+T

x(kT +T) = eFT x(kT) + f eFUTHT-TD) Gy (1) dt
kT

Notice u(t) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) =u(kT), KkT<t<kT+T

State-space z-transform

We can apply the z-transform to our system:
(z —®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2) _
X =G(z) =H(zI - ®)7T




State-space control design -- Controllability

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:

u=—-Kx
such that det(zl — ® + I'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &r o&?r ... on1ir] to be full-rank.

®: Solving State Space

+ In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

» With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.




State-transition matrix P(t)

Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

x(t) =D (t,7)x (1)

®(s) =[sI—A]"1 =D d(t) = et

Matrix Exponential:

At _ _
et = exp(At) =1+ At + o1 m

Similar idea, but different result, for the control u = I

[: Gamma: Comes from Integrating x

. Aka+1 TZ

Why?

x(t) = eAt=tdx(t,) + fot eAt=DBy (1) dr

A(kt+t—1)
x(kKT +T) = eATx(kT) + fkkTTJrT e Bu(t)dt
u(t) is specified in terms of a continuous time history, though
we often assume u(t) is a ZOH:

u(t) = u(kT) = Introducen = kT + T — 1

an
x(kT +T) = e4Tx(kT) + fkkTT+T e dnBu(kT)

An
>P =e4T I= fOTe dnB




Solving State Space (optional notes) ...

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the “homogeneous,” i.e., unforced equation

X = Ax (3.2)
where A is a constant k by k matrix. The solution to (3.2) can be expressed as
x(1) = e (3.3)
where ' is the matrix exponential function
2 I
e"’:1+A:+A25+A3;+»-~ (3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative of x(t)

dx(r) __i At
T—d[(e )L‘ (35)

and, from the defining series (3.4),
i(e“') = A+A’1+A3'—2+--»f A(I+A1+A2£+~- ) = At
di B 21 B 2! -

Thus (3.5) becomes

dx(f) _

& Ae?e = Ax(1)

Solving State Space (optional notes)

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(r) is given. Then, from (3.3),

x(r) = eMe (3.6)
Multiplying both sides of (3.6) by the inverse of ¢*” we find that
c=(e") "'x(7)

Thus the general solution to (3.2) for the state x(¢) at time ¢, given the state x(7)
at time 7, is

x(1) = e () x(7) (3.7
The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition
(3.4)—
e = gttt (3.8)
for any t, and t,. From this property it follows that
(e") ™ =™ (3.9)
and hence that (3.7) can be written
x(1) = e 7x(1) (3.10)




Solving State Space (optional notes)

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or ““forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e™e(t) (3.11)

is a special form of the state-transition matrix to be discussed

where c(f) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Aee(t) + eMé(1) = Ae™elt) + Bult)
or, upon cancelling the terms A e*c(s) and premultiplying the remainder by
e—Al,
é(t) = e ™Bu(t) (3.12)

Thus the desired function ¢{(¢) can be obtained by simple integration {the
mathematician would say “by a quadrature”)

!
c(t) = J e “*Bu(A) dA
-
The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

Solving State Space (optional notes)

homogeneous equation to obfain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 ¢
x(t) = e™ J e MBu(A) da = J AN BR (L) dr (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write eMg A = gAY

The complete solution to (3.1) is obtained by adding the *complementary
solution™ (3.10) to the particular solution (3.13). The result is

t

x(1) = e 7x(r) I—J- e M Bu(A) di (3.14)

T
We can now determine the proper value for lower limit T on the integral. At
t = 7 (3.14) becomes

x(7) = x(r) + JTeA“’“Bu(A) dx (3.15)
.

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(1) = e Vx(r) + j MM By () da (3.16)

T

10



Solving State Space (optional notes)

This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time r and the “‘present” time ({ The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ Z 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral”’: the contribution to the state x(r) due to the input u is
the convolution of u with e™B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(f).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=0Cx

then this output is expressed by

1
()= Cer x(1) + J- Ce* "M Bu()) da 3.17)

O

Solving State Space (optional notes)

and the impulse response of the system with y regarded as the output is
CEA“_A}B_

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C' are time-varying, (3.16) and (3.17) generalize to

i

x(f) = e x(r) + j eAMB(A)ulA) di (3.18)

T

and

y(£) = C(t) e x(r) + J C(t) e MB(A)u(A) dr (3.19)

T

o

11



Controllability

ELEC 3004: Systems 19 May 2016 - 23

Controllability matrix

« To convert an arbitrary state representation in F, G, H and J to
control canonical form A, B, C and D, the “controllability
matrix”

C=[G FG F?G -+ F"'G]
must be nonsingular.

Why is it called the “controllability” matrix?

12



Controllability matrix

If you can write it in CCF, then the system equations must be
linearly independent.

Transformation by any nonsingular matrix preserves the
controllability of the system.

Thus, a nonsingular controllability matrix means x can be
driven to any value.

Can you use this for

more than Control?

ELEC 3004: Systems 19 May 2016 - 26
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Can you use this for more than Control?

Yes

Frequency Response in State Space

H(x)=C(zI -A)"'B+D=

Poles at == (.55, 1.45.

Eigenvalues of A:

1,1,1.45,.55

What are the (physical)
implications?

The Approach:
Formulate the goal of control as an optimization (e.g. minimal impulse response,

minimal effort, ...).

1

10022 — 2002 + 80

You’ve already seen some examples of optimization-based design:
— Used least-squares to obtain an FIR system which matched (in the least-squares sense)

the desired frequency response.
— Poles/zeros lecture: Butterworth filter

14



Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
| 08
06
L 0.4
o 08
E o 02
T 08l c 0 O X
% - -02
= 0.4} -0.4
-0.6
02t -08
-1
o ‘ ‘ ‘
0 1 2 3 4 5 6 -1 0.5 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
; 0.8
06
g 08f 3-‘2‘ X
2 g "
T 08 g o O
>4 = 02
E 0.4 -0.4 X
~06
02+ -0.8
-1
% 1 5 6 -1 -05 0.5 1

2 3 4
Frequency (rad/sec)




“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
. 0.8
: .
= g
T 06 g o O X
2 = _02
=4 -0.4
-0.6 X
0.2 —0.8
-1
% 1 2 3 4 5 6 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

1
1 08
0.6 X
L 0.4 '
% 0.8
=] = 0.2 X
T 06 = O
=) =
o -0.2 X
= 0.4r -0.4
-0.6 " X
0.2t -0.8 :
-1
0

05 1

0
Real
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

1
1 0.8
06 . X
. 04
8 0.8
S = 0.2
E 0. c 0 O
()] =
] -0.2
s X
0.4} -0.4
-0.6 N pd
0.2t -038 :
-
0 ‘ ‘
0 1 2 3 4 5 6 -1 05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
;
1 0.8
0.6 x
o %8 0.4 X
g g ° x
c 06 e 0 O
S = X
= 0.4 -0.4 : X
-0.6 . X
0.2F -0.8
-1
0
0 1 2 3 4 5 6 -1 -0.5 0 0.5 1
Frequency (rad/sec) Real
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

,
0.8 )
1 0.6 ; x
b 0.4 X
§ " o 02 X
E os E or © X
& = o2 X
= 0.41 0.4 X
-0.6 .
0.2r -0.8 X
-1
GO 1 2 3 4 5 6 -1 -0.5 0 0.5 1
Frequency (rad/sec) Real
How?
« Constrained Least-Squares ...
One formulation: Given x:[0]
u[0]
, ull]
minimize  ||@]|*, whered = |
u[0],u[l],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that
n—1
w[n] = A"2[0] + Y " AU Bk,
k=0

so this problem can be written as

Apsrys — b{SHQ subjectto  Cisays = Dys.

minimize
Ils

18



Stability

ELEC 3004: Systems 19 May 2016 - 37

Fast sampling revisited

 Forsmall T:

72
c=eT =147+ &L

+ ... 14s5T

z—1
—zrl4sT 5= ——
z + s s T

» Hence, the unit circle under the map from z to s-plane becomes:

Im(z — 1)
4

[N
\_/

Re(z — 1)

19



Specification bounds

» Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) 4 Img(s) Img(s)
wp, = |s| _ 9
£ X
'I
3 Re(s) Re(s) Re(s)
\\ X X
\\
s=0
. 4.6
|5|:? s=0 6 =sin™1¢
T S

Discrete bounds

» These map to the discrete domain:

In practice, you’d use Matlab to plot these, and check that the spec is satisfied




Example Code:

%% Input Syste

numg=5; deng=[1 20 0]; sysg=tf(numg, deng);

% Approximate the ZOH (l1-e”-sT)/ (s)
[nd, ddl=pade(l,2); pade gives
sysp=tf (nd, dd); sysi=tf([1],[1,0]);
sysl=series(l-sysp, sysi); Approximation

% Open loop response

syso=series (sysl, sysg);
sys=feedback (syso, 1) ;
step(sys) % Display the s

us the "hold" or -e”-sT of a ZO

Next Time...

N

« Digital Control via Emulation!

e Review:
— Chapter 5 of FPW

» Deeper Pondering??

21



